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Abstract

The interval Shapley-like value for cooperative interval games was introduced by W. Han et al. [W.
Han, H. Sun, G. Xu, A new approach of cooperative interval games: The interval core and Shapley
value revisited, Operations Research Letters 40 (2012) 462–468]. A theorem of characterization of
the interval Shapley-like value was provided in that paper. We show that there is an error in the
proof of that theorem. We indicate how to avoid this error and complete the proof.
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1. Introduction

Cooperative games describe situations in which the cooperation among a set of players

gives rise to a profit. Particularly notable are transferable utility games (or TU-games), in

which each coalition (subset of players) can obtain a profit that the players in the coalition

can freely share. This profit is determined by a real number. But there are situations in

which it is not possible to know exactly the worth of each coalition. One of the models

developed to deal with these situations is that of cooperative interval games. In this model

one knows only a lower bound and an upper bound for the worth of each coalition, and no

further probabilistic assumptions can be made. Cooperative interval games were introduced

by Branzei et al. [3]. Since then, these games have proved to be a useful tool in the analysis

of different problems (see, for instance, [6]). Several solutions for these games have been

studied (see [1] and [2]). An important contribution was made by Han et al. [4]. They

introduced core-like solutions and Shapley-like values for interval games. In particular, they

defined and characterized the so-called interval Shapley-like value. The purpose of this letter

is to show that there is an error in [4] in the proof of the theorem of characterization of the
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interval Shapley-like value. We also show how to avoid that error and complete the proof of

the theorem.

This letter is organized as follows. In Section 2 the notation and definitions used in [4]

are recalled, and some preliminaries concerning TU-games are given. In Section 3 a counter-

example is given to show the mistake made in [4]. Moreover, a family of interval games is

introduced. In Section 4 we propose some modifications to complete the proof of the theorem

of characterization of the interval Shapley-like value.

2. Preliminaries

2.1. TU-games

Let n ∈ N and N = {1, . . . , n}. A cooperative transferable utility game or TU-game on

N is a function w : 2N → R that satisfies w(∅) = 0.

The set of all TU-games on N is denoted by GN . This set is a (2n − 1)-dimensional real

vector space. For each nonempty T ∈ 2N \ {∅} we can consider the game uT ∈ GN defined

by

uT (S) =

{
1 if T ⊆ S,

0 otherwise.

The game uT is called the unanimity game of T . Shapley [7] proved that the set
{
uT : T ∈ 2N \ {∅}

}
is a basis of GN . Thus, for every game w ∈ GN there exist real numbers {∆w(T )}T∈2N\{∅}
such that

w =
∑

T∈2N\{∅}

∆w (T )uT

where each coordinate ∆w (T ) of the game w with respect to the basis of the unanimity

games is called dividend of the coalition T in the game w (see [5]). The dividends can be

obtained recursively:

∆w(T ) =


w(T ) if |T | = 1,

w(T )−
∑

{S∈2N\{∅}:S$T}
∆w(S) if |T | > 1.

2.2. Interval arithmetic

Let I, J be closed and bounded real intervals with I = [I, I] and J = [J, J ]. Let α ∈ R.

Then,

(i) I ⊕ J = [I + J, I + J ],

(ii) I 	 J = [I − J, I − J ],
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(iii) αI =

{
[αI, αI] if α > 0,

[αI, αI] if α < 0.

The set of closed and bounded real intervals will be denoted by I(R).

2.3. Cooperative interval games

Let us recall some of the notations and definitions used in [4].

A cooperative interval game is an ordered pair (N, v) where N = {1, . . . , n} with n ∈ N
and v : 2N → I(R) satisfies v(∅) = [0, 0]. The set N is called the set of players of (N, v), and

v is called the characteristic function of (N, v). For notational simplicity, we will identify

a cooperative interval game (N, v) with its characteristic function v. The family of all

cooperative interval games with set of players N is denoted by IGN .

For any v1, v2 ∈ IGN and α ∈ R, the interval games v1 + v2, v1 − v2, αv1 ∈ IGN are

defined by

(i) (v1 + v2)(S) = v1(S)⊕ v2(S) for every S ∈ 2N ,

(ii) (v1 − v2)(S) = v1(S)	 v2(S) for every S ∈ 2N ,

(iii) (αv1)(S) = α v1(S) for every S ∈ 2N .

For any closed and bounded interval I, the length of I is denoted by |I|. If v ∈ IGN

then the length game |v| ∈ GN is defined by |v|(S) = |v(S)| for every S ∈ 2N . An interval

game v ∈ IGN is uncertainty-free if |v(S)| = 0 for every S ∈ 2N . The set of all uncertainty-

free interval games in IGN is denoted by UIGN . For any T ∈ 2N \ {∅} the interval game

U f
T ∈ UIGN is defined by

U f
T (S) =

{
[1, 1] if T ⊆ S,

[0, 0] otherwise.

Two closed and bounded intervals I, J are related by an indifference relationship, denoted

by I ∼ J , if I+I
2

= J+J
2

. An interval game v ∈ IGN is [0, 0]-indifferent if v(S) ∼ [0, 0] for

every S ∈ 2N . The set of all [0, 0]-indifferent interval games in IGN is denoted by ZIGN .

For any T ∈ 2N \ {∅} the interval game U z
T ∈ ZIGN is defined by

U z
T (S) =

{
[−1, 1] if T ⊆ S,

[0, 0] otherwise.

2.4. The interval Shapley-like value

An interval value on IGN is a function Ψ: IGN → I(R)n. If v ∈ IGN , the i-th coordinate

of the interval vector Ψ(v) represents the payoff of player i in v.
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The interval Shapley-like value Φ∗ : IGN → I(R)n, introduced by Han et al. [4], is defined

by

Φ∗i (v) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
(v(S ∪ {i})	 v(S)),

for every v ∈ IGN and every i ∈ N .

In order to characterize the interval Shapley-like value, Han et al. [4] consider the fol-

lowing properties for a value Ψ: IGN → I(R)n :

(i) Indifference Efficiency (IEFF):
∑

i∈N Ψi(v) ∼ v(N) for all v ∈ IGN .

(ii) Indifference Null Player Property (INP): There exists a unique t > 0 such that Ψi(v) =

[−t, t] for every v ∈ IGN and every i ∈ N null player in v (i.e., v(S ∪ {i}) = v(S) for

all S ∈ 2N).

(iii) Symmetry (SYM): Ψi(v) = Ψj(v) for every v ∈ IGN and every i, j ∈ N symmetric

players in v (i.e., v(S ∪ {i}) = v(S ∪ {j}) for all S ⊆ N \ {i, j}).

(iv) Additivity (ADD): Ψi(v + w) = Ψi(v)⊕Ψi(w) for every v, w ∈ IGN and every i ∈ N .

3. Counter-example

Let n ∈ N and N = {1, . . . , n}.
In Lemma 3.1 (ii) of [4] it is asserted that {U z

T}T∈2N\{∅} is a basis for ZIGN . We prefer

not to use the term “basis”, since ZIGN is not a linear space. In any case, in [4] it is assumed

that for any v ∈ ZIGN there exists a set of real numbers {βz
T}T∈2N\{∅} such that v can be

written as

v =
∑

T∈2N\{∅}

βz
TU

z
T .

This assertion is not correct. Let us see a counter-example. Let N = {1, 2}. Consider the

interval game v ∈ ZIGN defined as

v(S) = [−1, 1] for every S ∈ 2N \ {∅} and v(∅) = [0, 0]. (1)

Suppose that there exists a set of real numbers {βz
T}T∈2N\{∅} such that v can be written as

v =
∑

T∈2N\{∅}

βz
TU

z
T . (2)

Then

[−1, 1] = v({1}) = βz
{1}U

z
{1}({1}) = βz

{1}[−1, 1].
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Therefore, βz
{1} ∈ {−1, 1}. Similarly, βz

{2} ∈ {−1, 1}. But then

v({1, 2}) =

Ñ ∑
T∈2N\{∅}

βz
TU

z
T

é
({1, 2}) = [−1, 1]⊕[−1, 1]⊕βz

{1,2}[−1, 1] = [−2, 2]⊕βz
{1,2}[−1, 1].

Therefore, we have that

[−1, 1] = [−2, 2]⊕ βz
{1,2}[−1, 1]

which is not possible, since there is not any closed and bounded interval I such that

[−1, 1] = [−2, 2]⊕ I.

Therefore, v cannot be written as in equation (2).

Notice that Lemma 3.1 is used in [4] within the proof of Theorem 3.1 when it is asserted

that for any v ∈ IGN there exists a set of real numbers {βk
T}

k=f,z
T∈2N\{∅} such that

v =
∑

T∈2N\{∅}

(βf
TU

f
T + βz

TU
z
T ). (3)

That assertion is not correct. It is clear that we can take the game v defined in (1) as a

counter-example. In fact, we can describe the games in IGN which can be written as in

equation (3). To this end, we need to recall the concept of totally positive TU-game, which

was introduced in [8]

Definition 1 ([8]). A TU-game w ∈ GN is called totally positive if ∆w(T ) > 0 for every

T ∈ 2N \ {∅}.

Proposition 1. Let v ∈ IGN . The following statements are equivalent:

1. There exists a set of real numbers {βk
T}

k=f,z
T∈2N\{∅} such that

v =
∑

T∈2N\{∅}

(βf
TU

f
T + βz

TU
z
T ).

2. The TU-game |v| ∈ GN is totally positive.

Proof. (1) =⇒ (2). Let v ∈ IGN and let {βk
T}

k=f,z
T∈2N\{∅} be real numbers such that

v =
∑

T∈2N\{∅}

(βf
TU

f
T + βz

TU
z
T ).

Notice that, for every closed and bounded intervals I, J , and every α ∈ R, |I⊕J | = |I|+ |J |
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and |αI| = |α||I|. By these properties, it is clear that, for every S ∈ 2N \ {∅},

|v(S)| =

∣∣∣∣∣∣ ∑
T∈2N\{∅}

(βf
TU

f
T (S)⊕ βz

TU
z
T (S))

∣∣∣∣∣∣ =
∑

T∈2N\{∅}

|βz
T ||U z

T (S)| =
∑

T∈2N\{∅}

2|βz
T |uT (S).

Hence, ∆|v|(T ) = 2|βz
T | for every T ∈ 2N \ {∅}. Therefore, |v| is totally positive.

(2) =⇒ (1). Let v ∈ IGN be such that |v| is totally positive. Consider w ∈ GN defined

by

w(S) =
v(S) + v(S)

2
for every S ∈ 2N .

For any S ∈ 2N \ {∅}, we have that

v(S) = [w(S), w(S)]⊕ 1

2
[−|v(S)|, |v(S)|]

=

 ∑
T∈2N\{∅}

∆w(T )uT (S),
∑

T∈2N\{∅}

∆w(T )uT (S)


⊕ 1

2

− ∑
T∈2N\{∅}

∆|v|(T )uT (S),
∑

T∈2N\{∅}

∆|v|(T )uT (S)


which, taking into account that ∆|v|(T ) > 0 for every T ∈ 2N \ {∅}, is equal to

∑
T∈2N\{∅}

[∆w(T )uT (S),∆w(T )uT (S)]⊕
∑

T∈2N\{∅}

ï
−1

2
∆|v|(T )uT (S),

1

2
∆|v|(T )uT (S)

ò
=

∑
T∈2N\{∅}

∆w(T )U f
T (S)⊕

∑
T∈2N\{∅}

1

2
∆|v|(T )U z

T (S).

Therefore,

v =
∑

T∈2N\{∅}

Å
∆w(T )U f

T +
1

2
∆|v|(T )U z

T

ã
.

Example 1. Let N = {1, 2, 3}. Let v be the interval game in IGN defined by

v ({1}) = [−1, 3], v ({2}) = [−1, 1], v ({3}) = [2, 2],

v ({1, 2}) = [1, 7], v ({1, 3}) = [1, 9], v ({2, 3}) = [0, 4], v (N) = [2, 14].
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Then,

|v| ({1}) = 4, |v| ({2}) = 2, |v| ({3}) = 0,

|v| ({1, 2}) = 6, |v| ({1, 3}) = 8, |v| ({2, 3}) = 4, |v| (N) = 12,

from which we easily obtain

∆|v| ({1}) = 4, ∆|v| ({2}) = 2, ∆|v| ({3}) = 0,

∆|v| ({1, 2}) = 0, ∆|v| ({1, 3}) = 4, ∆|v| ({2, 3}) = 2, ∆|v| (N) = 0.

Notice that |v| is totally positive. Therefore, by Proposition 1, v can be written as in equation

(3).

Consider w ∈ GN defined by w(S) =
v(S)+v(S)

2
for every S ∈ 2N . We have that

w ({1}) = 1, w ({2}) = 0, w ({3}) = 2,

w ({1, 2}) = 4, w ({1, 3}) = 5, w ({2, 3}) = 2, w (N) = 8.

It follows that

∆w ({1}) = 1, ∆w ({2}) = 0, ∆w ({3}) = 2,

∆w ({1, 2}) = 3, ∆w ({1, 3}) = 2, ∆w ({2, 3}) = 0, ∆w (N) = 0.

Now we use the last equation obtained in the proof of Proposition 1:

v =
∑

T∈2N\{∅}

Å
∆w(T )U f

T +
1

2
∆|v|(T )U z

T

ã
= U f

{1} + 2U f
{3} + 3U f

{1,2} + 2U f
{1,3} + 2U z

{1} + U z
{2} + 2U z

{1,3} + U z
{2,3}.

4. Proposed correction

Recall that Lemma 3.1 is used in [4] to prove Theorem 3.1, and this theorem is used

to prove Theorem 5.1. We have seen that Lemma 3.1 and Theorem 3.1 are not correct.

Nevertheless, the result stated in Theorem 5.1 is true. Our goal is to give a proof of this. To

this end, we need to introduce a family of interval games.

Definition 2. An interval game v ∈ IGN is called size totally positive if the TU-game

|v| ∈ GN is totally positive.

The set of all size totally positive games in IGN will be denoted by STPIGN .

Proposition 2. Let Ψ: IGN → I(R)n be an interval value. If Ψ satisfies IEFF, INP, SYM

and ADD on IGN then Ψi(v) ∼ Φ∗i (v) for any v ∈ STPIGN and i ∈ N .
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Proof. Take v ∈ STPIGN . By Proposition 1 there exists a set of real numbers {βk
T}

k=f,z
T∈2N\{∅}

such that

v =
∑

T∈2N\{∅}

(βf
TU

f
T + βz

TU
z
T ).

Now proceed as in the proof of Theorem 5.1 of [4].

Now we are in a position to prove the result stated in Theorem 5.1 of [4].

Theorem 3. Let Ψ: IGN → I(R)n be an interval value. If Ψ satisfies IEFF, INP, SYM

and ADD on IGN then Ψi(v) ∼ Φ∗i (v) for any v ∈ IGN and i ∈ N .

Proof. Let v ∈ IGN . Consider g, h ∈ IGN defined by

g =
1

2

∑
T∈2N\{∅}

∆|v|(T )U z
T and h = v + g.

By Proposition 1 we know that g ∈ STPIGN . Furthermore, for every S ∈ 2N \ {∅} we have

that

|g(S)| =

∣∣∣∣∣∣12 ∑
T∈2N\{∅}

∆|v|(T )U z
T (S)

∣∣∣∣∣∣ =
1

2

∑
T∈2N\{∅}

|∆|v|(T )||U z
T (S)| =

∑
T∈2N\{∅}

|∆|v|(T )|uT (S).

Therefore,

∆|g|(T ) = |∆|v|(T )| for every T ∈ 2N \ {∅}. (4)

From |h| = |v|+ |g| and the linearity of the dividends we obtain that

∆|h|(T ) = ∆|v|(T ) + ∆|g|(T ) for every T ∈ 2N \ {∅}. (5)

From (4) and (5) it follows that

∆|h|(T ) = ∆|v|(T ) + |∆|v|(T )| > 0 for every T ∈ 2N \ {∅}.

Hence, h ∈ STPIGN .

Let i ∈ N . Since g, h ∈ STPIGN we know, by Proposition 2, that

Ψi(g) ∼ Φ∗i (g) and Ψi(h) ∼ Φ∗i (h). (6)

By ADD we have that

Ψi(h) = Ψi(v)⊕Ψi(g) and Φ∗i (h) = Φ∗i (v)⊕ Φ∗i (g). (7)
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From (6) and (7) it is clear that Ψi(v) ∼ Φ∗i (v).
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