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a b s t r a c t

The main goal of this paper is to introduce the probability game. On one hand, we analyze the Shapley
value by providing an axiomatic characterization. We propose the so-called independent fairness prop-
erty, meaning that for any two players, the player with larger individual value gets a larger portion of the
total benefit. On the other, we use the Shapley value for studying the profitability of merging two agents.
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1. Introduction

Game theory has beenproved to be a useful toolwhen analyzing
the ballistic missile defense budget allocation and the cooperative
R&D profit allocation problems. A large quantity of facts has proved
that missile interception [6] and cooperative R&D issue have
always been a significant topic in the field of military tactical bal-
listic missile and R&D problems. Take the ballistic missile defense
situation as an example. Once used in the war, it is sure to be anti
tactical ballistic missile interceptor weapons [4]. One of the typical
cases originates from the Gulf War, in which the interception of
Scud missiles by Patriot missile captured worldwide attention [1].
Plenty of research [6,4,1,8] and a number of military exercises
illustrate that multiple layered defense system is safer in compar-
ison with the single one. For instance, on 2016, July, 15th, India
successfully completedmulti-layer ballisticmissile defense system
test [3]. A positive aspect that is still not yet addressed in the
literature is how to distribute the defense project budget among
the individual defense layers in cooperative defense situation. The
most simple and direct method is to allocate the defense budget
according to each layer’s defense probability of success. However,
it is not taken into account the fact that the defense layers are
organized in one system and function as a whole. In the missile
example, all the agents operate with the same aim, yielding that
for any group of agents it is important that at least one succeeds,
as the target is the same for all of them. Therefore, the successful
action probability for the group of the agents is an important index
which reflects the group action competency. By observing this, we
argue that layers certainly enter into alliance and gain through

* Corresponding author.
E-mail address: dshhou@126.com (D. Hou).

cooperation because once the interceptor system fails, it can be at
best costly−at worst, disastrous.

This paper broadens the game theoretic approach to the proba-
bility game, as a model of the cooperation ballistic missile defense
situation, cooperative R&D problems and so on. We introduce the
so-called probability game, of which the characteristic function
is the successful acting probability of the coalition, i.e., the value
of the coalition is described by the probability that at least one
event in S is successful. Many concepts of allocations are proposed
in the literature. Among them, we study the well known Shapley
value, introduced and characterized in [7]. A mass of literature
concentrating on this topic can be found to illustrate the fairness of
this value, by revealing and emphasizing its properties. Examples
include Shapley’s efficiency, null player property, linearity and
symmetry [7], Young’s strong monotonicity [9], and Chun’s coali-
tional strategic equivalence [2]. In the context of probability game,
assume that players are mutually independent, we propose the
so-called independent fairness property, meaning that, the player
with larger successful acting probability will be assigned with
more portion of the total profit.We show that for probability game,
the independent fairness property can be used to characterize the
Shapley value together with linearity, the dummy property and ef-
ficiency. Finally,wedetermine the significant threshold illustrating
whether or not merger of any two players produces extra benefits
to them.

The paper is organized as follows: in Section 2 we conduct on
the probability game and its Shapley value. In Section 3 we deal
with the characterization of the Shapley value, by proposing the
independent fairness property. In Section 4 we use the Shapley
value for studying the profitability of merging two agents.
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2. The Shapley value for probability game

In this section, we determine the Shapley value for the proba-
bility game, as a model of the cooperation ballistic missile defense
situation, cooperative R&D problems, and so on.

Definition 1. The probability game is a triple (N, v, P), where N
is the set of mutually independent players, P = (p1, p2, . . . , pn)
is an n-dimension vector, with pi the successful action probability
of player i, and its characteristic function v : 2N

→ R satisfying
v(∅) = 0 and for any S ⊆ N ,

v(S) =

∑
k∈S

pk −

∑
k,l∈S

pk · pl +
∑

k,l,m∈S

pk · pl · pm − · · ·

+ (−1)s−1
∏
k∈S

pk. (1)

To interpret Definition 1, assume that each player can have a
success or a failure and that successes are probabilistically inde-
pendent across players. Let pi be the probability of success of player
i, then v(S) is the probability that all players i in S have a success,
and all other players have a failure. For the case pi = 0, which
means that this player is doomed to fail, then there is no need to
take further consideration of this player. We exclude such case by
only considering players with positive action probability.

Lots of game theoretic allocations are proposed. The most
simple one is the Proportional value [5]. However, this approach
ignores the fact that the players function as a congruent whole.
Therefore, the players’ indices for dividing the total budget should
not only take into account the individual successful action proba-
bility, but also the coalitional successful action probabilities. This
leads to consider the other solutions, such as the Shapley value. If
we canwork out the index ϕi for dividing the total budget, thenwe
can invest ϕi

v(N) × W to each player, where W is the amount of the
total budget. Next, we conduct on the determination of the Shapley
value. The Shapley value, as an allocation scheme, is introduced by
Shapley in 1953 as follows [7],

Shi(N, v) =

∑
S ̸∋i,S⊆N

s!(n − s − 1)!
n!

[v(S ∪ i) − v(S)], i ∈ N. (2)

Generally, because of the combinatorial terms of the Shapley value,
the computation is rather hulking to deal with. Our purpose is
to simplify the solution part of the probability game. Usually, the
allocation based on the Shapley value supplies a distribution of the
v(N) among all the players according to marginal contributions
with the form v(S ∪ {i}) − v(S), S ⊆ N \ {i}. In the context of
probability game, the next lemma denotes the characterization of
the marginal contributions, playing a significant role to determine
the Shapley value.

Lemma 2.1. For any probability game (N, v, P), it holds that

v(S ∪ i) − v(S) = pi(1 − v(S)) = pi
∏
k∈S

(1 − pk). (3)

The proof of (3) is trivial by the independence of the events and
the probability formula.

Theorem2.2. (i) For the probability game, the Shapley value of player
i, which implies the index for dividing the total budget, is proportional
to his individual successful action probability, while inversely propor-
tional to the other players’ successful action probability. Namely,

Shi(N, v, P) =
pi
n

+ pi
∑

|S|=1,...,n−1,S ̸∋i

αS

∏
k∈S

(1 − pk), i ∈ N, (4)

where αS is the formation probability of coalition S, which is equal to
s!(n−s−1)!

n! .
(ii) Alternatively, the Shapley allocation Shi(N, v, P) can be rewrit-

ten as

Shi(N, v, P)

= pi − pi · [

∑
k∈N\i

1
2
pk −

∑
k,l∈N\i

1
3
pkpl − · · · + (−1)n

1
n

∏
k∈N\{i}

pk] or

= pi − pi
∑

|S|=1,...,n−1,S ̸∋i

1
|S| + 1

(−1)|S|+1
∏
k∈S

pk, i ∈ N. (5)

Proof. The validity of the theorem is due to the Shapley value
applied to the marginal contribution result (3).

(i) Fix coalition S ⊆ N, S ̸∋ i, by (3), it holds

Shi(N, v, P) =

∑
S ̸∋i

s!(n − s − 1)!
n!

[v(S ∪ i) − v(S)]

=

∑
S=∅

s!(n − s − 1)!
n!

[v(S ∪ i) − v(S)]

+

∑
S ̸∋i,S ̸=∅

s!(n − s − 1)!
n!

[v(S ∪ i) − v(S)]

=
pi
n

+ pi
∑

|S|=1,...,n−1,S ̸∋i

s!(n − s − 1)!
n!

∏
k∈S

(1 − pk).

(ii) Because of (3)

Shi(N, v, P) =

∑
S ̸∋i

s!(n − s − 1)!
n!

[v(S ∪ i) − v(S)]

=

∑
S ̸∋i

s!(n − s − 1)!
n!

pi −
∑
S ̸∋i

s!(n − s − 1)!
n!

pi · v(S)

= pi − pi
∑
S ̸∋i

s!(n − s − 1)!
n!

[

∑
k∈S

pk −

∑
k,l∈S

pk · pl − · · ·

+ (−1)s+1
∏
k∈S

pk]

= pi − pi[
∑

k∈N\{i}

∑
S ̸∋i,S∋k

αSpk + · · · + (−1)nαN\{i}

∏
k∈N\{i}

pk]

= pi − pi[
∑

k∈N\{i}

1
2
pk −

∑
k,l∈N\{i}

1
3
pkpl − · · · + (−1)n

1
n

∏
k∈N\{i}

pk]

= pi − pi
∑

|S|=1,...,n−1,S ̸∋i

1
|S| + 1

(−1)|S|+1
∏
k∈S

pk.

The last but one equality holds because for any fixed M =

{i1, i2, . . . , im} ⊆ N \ {i},∑
S ̸∋i,S∋i1,i2,...,im

αS · pi1 · pi2 · . . . · pim

=

∑
|S|=m,...,n−1

s!(n − s − 1)!
n!

(
n − m − 1

s − m

)
pi1 · pi2 · . . . · pim

=
1

m + 1
1

Cm+1
n

pi1 · pi2 · . . . · pim
∑

|S|=m,...,n−1

Cm
s

=
1

m + 1

∏
k∈M

pk.

This completes the proof of (ii). □

Although the formula is quite complicated, its economic in-
terpretation is interesting as follows: the Shapley value index
of player i is only composed of the portion of v(N) relevant to
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player i. More specifically, the grand coalition value v(N) can be
decomposed into∑
k∈N

pk −

∑
k,l∈N

pkpl +
∑

k,l,m∈N

pkplpm − · · · + (−1)n−1
∏
k∈N

pk.

Obviously, the components with respect to i are pi, −pi
∑

k∈N\{i}pk,
. . . ,

∏
k∈Npk, while the Shapley value index of i is the combination

of these components with each component distributed equally
among the existing players appearing in this component, e.g., the
coefficient of pkplpm is 1

3 . By (4), notice that for the probability
game, the Shapley value of player i is proportional to the individual
successful action probability pi, and inversely proportional to the
other player’s successful action probability.

Remark 1. Since the player’s index for dividing the total budget
is given by the Shapley value by (4) or (5), the profit assigned to
player i ∈ N is Shi(N, v, P) ·

W
v(N) .

Proposition 2.3. For player i ∈ N, the difference between dividing
the budget according to the Shapley value and according to the pro-
portional value is

Shi(N, v, P)
v(N)

· W −
pi∑
k∈N pk

· W

=
W

v(N) ·
∑

k∈N pk

∑
k̸=i

(pi − pk) · pk · Aik,

where Aik =
1
2 −

1
3

∑
l∈N\{k,i}pl + · · · +

(−1)|S|
|S|

∑
l1,l2,...,ls−2∈N\{k,i}pl1 ·

. . . pls−2 + · · · +
(−1)n

n

∏
l∈N\{k,i}pl.

Proof. Because

Shi(N, v, P)
v(N)

· W −
pi∑
k∈N pk

· W

=
W

v(N)
∑

k∈N pk
[

∑
k∈N

pk · Shi(N, v, P) − v(N) · pi]

=
W

v(N)
∑

k∈N pk
[−

∑
t∈N

pt (
1
2

∑
k∈N\{i}

pk + · · ·

+
(−1)|S|−1

|S|

∑
l1,...,ls−1∈N\{i}

pl1 · · · pls−1

+ · · · +
(−1)n

n

∏
k∈N\i

pk) + (
∑
k,l∈N

pkpl − · · ·

− (−1)|S|−1
∑

l1,...,ls−1∈N

pl1 · · · pls−1 − · · · − (−1)n−1
∏
k∈N

pk)], (6)

the proof of Proposition 2.3 is immediate if
∑

k̸=i(pi − pk) · pk ·

(−1)|S|
|S|

∑
l1,...,ls−2∈N\{k,i}pl1 · . . . pls−2 coincides with the general term

of (6), i.e.,∑
t∈N

pt ·
(−1)|S|−1

|S|

∑
l1,...,ls−1∈N\{i}

pl1 · · · pls−1

− (−1)|S|−1
∑

l1,...,ls−1∈N

pl1 · · · pls−1

=

∑
k̸=i

(pi − pk) · pk
(−1)|S|

|S|

∑
l1,...,ls−2∈N\{k,i}

pl1 · . . . pls−2 ,

which is left for the reader to check.

3. An axiomatization of the Shapley value for the probability
game

In this section, we present one new axiomatization of the
Shapley value for the probability game based on the independent
fairness property. In the probability game, since the players are
mutually independent with each other, the individual player’s
action is not affected by the other players, yielding the individual
value always plays a pivotal role when distributing the profits.
Therefore, in the cooperation situation, it is often required that the
larger the individual value, the more the profit. This leads to the
consideration of the so-called independent fairness property.

Definition 2. For any cooperative game (N, v), an allocation ϕ

satisfies independent fairness property, if v(i) ≥ v(j), then
ϕi(N, v) ≥ ϕj(N, v), for any i, j ∈ N .

This property states that, for any pair of players i, j ∈ N , the
player with larger individual value will be assigned with a larger
portion of the total profit.

Theorem 3.1. For the probability game (N, v, P), the Shapley value
satisfies efficiency, linearity, dummy property and independent fair-
ness property.

Proof. It is trivial that the Shapley value satisfies efficiency, linear-
ity, dummy property. It remains to prove the independent fairness
property part. To do that, we calculate the gap of the Shapley
value of player i and j. Given v(i) ≥ v(j), it is equivalent to prove
Shi(N, v, P) − Shj(N, v, P) ≥ 0. By (3) and (2),

Shi(N, v, P) − Shj(N, v, P)

=

∑
S ̸∋i

s!(n − s − 1)!
n!

[pi(1 − v(S))]

−

∑
S ̸∋j

s!(n − s − 1)!
n!

[pj(1 − v(S))]

=

∑
S ̸∋i,j

s!(n − s − 1)!
n!

[pi(1 − v(S))]

+

∑
S ̸∋i,S∋j

s!(n − s − 1)!
n!

[pi(1 − v(S))]

+

∑
S ̸∋i,j

s!(n − s − 1)!
n!

[pj(1 − v(S))]

+

∑
S ̸∋j,S∋i

s!(n − s − 1)!
n!

[pj(1 − v(S))]

=

∑
S ̸∋i,j

s!(n − s − 1)!
n!

[(pi − pj)(1 − v(S))] +

∑
S ̸∋i,S∋j

s!(n − s − 1)!
n!

·[pi(1 − v(S \ j ∪ j))] −

∑
S ̸∋j,S∋i

s!(n − s − 1)!
n!

× [pj(1 − v(S \ i ∪ i))]

=

∑
S ̸∋i,j

s!(n − s − 1)!
n!

[(pi − pj)(1 − v(S))]

+

∑
T ̸∋i,T∋j

(t + 1)!(n − t − 2)!
n!

·[pi(1 − v(T ∪ j))] −

∑
T ̸∋j,T∋i

(t + 1)!(n − t − 2)!
n!

× [pj(1 − v(T ∪ i))].
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Denote these three items in the last equality by A, B and C respec-
tively. On one hand, since pi ≥ pj and v(S) ≤ 1,

A =

∑
S ̸∋i,j

s!(n − s − 1)!
n!

[(pi − pj)(1 − v(S))] ≥ 0.

On the other, note that v(T ∪ i) ≥ v(T ∪ j) for all T ⊆ N \ {i, j} and
pi ≥ pj, thus [pi(1 − v(T ∪ j))] ≥ [pj(1 − v(T ∪ i))] yielding

B − C =

∑
T ̸∋i,T∋j

(t + 1)!(n − t − 2)!
n!

[pi(1 − v(T ∪ j))]

−

∑
T ̸∋j,T∋i

(t + 1)!(n − t − 2)!
n!

[pj(1 − v(T ∪ i))] ≥ 0.

This completes the proof. □

By the above theorem, the Shapley value for the probability
game possesses the independent fairness property and other three
properties, which are frequently applied to characterize the values
of the cooperative games. As a matter of fact, the Shapley value
for probability game can also be completely axiomatized by these
three properties together with the proposed independent fairness
property. For that purpose, we decompose the probability game
into the linear combination of a number of unanimity games
UT , T ⊆ N , which is given by

UT (S) =

{
1, if S ⊇ T ;

0, otherwise.

Lemma 3.2. Every probability game (N, v, P) of the form (1) can be
decomposed as the following combination of unanimity games:

v =

∑
T⊆N,T ̸=∅

∏
k∈T

pk · (−1)|T |−1UT .

Proof. It is sufficient to verify that

v(S) =

∑
T⊆N,T ̸=∅

∏
k∈T

pk · (−1)|T |−1UT (S)

holds for all S ⊆ N , which is valid because∑
T⊆N,T ̸=∅

∏
k∈T

pk · (−1)|T |−1UT (S)

=

∑
T⊆S,T ̸=∅

∏
k∈T

pk · (−1)|T |−1

=

∑
T⊆S,|T |=1

∏
k∈T

pk · (−1)|T |−1
+ · · · +

∑
T⊆S,|T |=|S|

∏
k∈T

pk · (−1)|T |−1

=

∑
k∈S

pk −

∑
k,l∈S

pk · pl +
∑

k,l,m∈S

pk · pl · pm − · · · + (−1)s−1
∏
k∈S

pk

= v(S).

The last equality holds by (1). □

Theorem 3.3. For the Shapley value of probability game, it is the
unique value satisfying efficiency, linearity, dummy property and
independent fairness property.

Proof. It remains to prove the uniqueness part, which is equivalent
to prove that there is at most one solution concept satisfying the
mentioned properties. Let φ satisfy the mentioned four properties.
For any T ⊆ N , note that each player in N \ T is a dummy
player in UT , yielding φi(N,UT ) = 0, i ∈ N \ T . While for any
pair of players i, j ∈ T , it is easy to obtain UT (i) ≥ UT (j) and
UT (j) ≥ UT (i). Thus, by independent fairness property, it holds
φi(N,UT ) ≥ φj(N,UT ) and φj(N,UT ) ≥ φi(N,UT ), which yield

φi(N,UT ) = φj(N,UT ), i, j ∈ T . This, together with efficiency and
dummy property, implies φi(N,UT ) =

1
|T |

, i ∈ T . Hence,

Shi(N, v, P) =

∑
T⊆N,T ̸=∅

∏
k∈T

pk · (−1)|T |−1Shi(N,UT )

=

∑
T⊆N,T∋i

∏
k∈T

pk · (−1)|T |−1 1
|T |

= pi − pi
∑

|S|=1,...,n−1,S ̸∋i

1
|S| + 1

(−1)|S|+1
∏
k∈S

pk, i ∈ N,

which completes the proof. □

In Theorem 3.3, we apply one new property to characterize
the Shapley value of probability game, together with efficiency,
dummy property and linearity. The independent fairness property
is specific for the Shapley value of probability game, and of course,
limits the class of games when considering the axiomatization of
the Shapley value. Also, the four properties in Theorem 3.3 are
independent with each other.

Remark 2. The independence of the four properties in Theorem3.3
can be illustrated as follows.

(i) The value ϕ1
i (v) = v(i), i ∈ N , satisfies linearity, dummy

property and independent fairness property. But the efficiency is
invalid.

(ii) The value ϕ2
i (v) =

v(i)∑
k∈Nv(k) · v(N) for all i ∈ N satisfies

efficiency, dummy property and independent fairness property.
But it does not satisfy linearity.

(iii) The value ϕ3
i (v) = v({1, 2, . . . , i})− v({1, 2, . . . , i− 1}) for

all i ∈ N satisfies efficiency, linearity and dummy property. But
the independent fairness property does not apply. Here v({1, 0}) is
interpreted as v(∅) = 0.

(iv) The value ϕ4
i (v) = CISi(v) = v(i)+ v(N)−

∑
i∈Nv(i)

n for all i ∈ N
satisfies efficiency, linearity and independent fairness property.
But the dummy property does not hold for ϕ4.

4. The profitability of merging two agents based on Shapley
value

In this section, the strength of the Shapley value in the form
(5) is embodied in analyzing the behaviors of the players, e.g., the
merger situation. One point of concern is the outcome of merger,
i.e., whether the merger can benefit the merged players. Note that
the Shapley value allocation thatwemade in Section 2, does not tell
us what will happen when players merge. In fact, it only compares
the allocations for different players in an existing situation. Merg-
ers are the subject of the next theorem, which predicts the critical
value to distinguish ifmerger can benefit themergedplayers,when
the Shapley value is used to distribute the total profits. In order
to facilitate notations, we denote the merged players i, j by (i, j)∗,
and the profit assigned to the player (i, j)∗ in n − 1 person game
N \ {i, j} ∪ (i, j)∗, by Sh(i,j)∗ .

Before we state the theorem, we formally define a merger of
players. Let (N, v, P) be a probability game andwe assume,without
loss of generality, that the player n− 1 merges into player n. Then,
we have a newprobability game, (N \{n−1, n}∪(n−1, n)∗), where
(n − 1, n)∗ is regarded as a new player, with the successful action
probability pn−1 + pn − pn−1 · pn.

Theorem 4.1. Let (N, v, P) be a probability game and assume that
players n − 1, n merge into one new player (n − 1, n)∗. Then the gap
of the Shapley value index in front and at the back of amalgamating



D. Hou et al. / Operations Research Letters 46 (2018) 457–461 461

to the merged player (n − 1, n)∗ is as follows,

g(n−1,n)∗

= Sh(n−1,n)∗ (N \ {n − 1, n} ∪ {(n − 1, n)∗})
− (Shn−1(N) + Shn(N))

= pn−1 · pn
∑

|S|=1,...,n−2,S⊆N\{n−1,n}

(−1)|S|−2

× (
2

|S| + 2
−

1
|S| + 1

)
∏
k∈S

pk. (7)

(7) is a direct consequence of (5) applied to the probability
games (N \ {n − 1, n} ∪ (n − 1, n)∗, v, P) and (N, v, P).

Notice that Theorem 4.1 indicates the significant condition if
the players can benefit through merging. To be precise, when
the change of Shapley value index g(n−1,n)∗ is positive, then the
amalgamation of two players is always profitable, otherwisemight
be harmful. Moreover, the theorem only considers the merger by
two players simultaneously. For the other complex situations, the
merger process continues such that two players merge and then a
third player joins, and so on.

Next, we will illustrate with a three-person probability game
to show how this theorem works. Consider the probability game
(N, v, P), where N = {1, 2, 3}, and parameters p1, p2, p3 are the
successful action probability of different players respectively. By
Theorem 2.2, it holds

Sh2(N, v, P) = p2 − p2(
1
2
p1 +

1
2
p3 −

1
3
p1 · p3) and

Sh3(N, v, P) = p3 − p3(
1
2
p1 +

1
2
p2 −

1
3
p1 · p2).

When players 2 and 3 merge as one new player (2, 3)∗, then by
Theorem 2.2,

Sh(2,3)∗ ({1, (2, 3)∗}, v, P) = p(2,3)∗ − p(2,3)∗ ·
1
2
p1

= (p2 + p3 − p2 · p3) − (p2

+ p3 − p2 · p3) ·
1
2
p1.

Therefore,

Sh(2,3)∗ ({1, (2, 3)∗}, v, P) − Sh2(N, v, P)

− Sh3(N, v, P) = −
1
6
p1p2p3. (8)

On the other, by Theorem 4.1,

Sh(2,3)∗ ({1, (2, 3)∗}, v, P) − (Sh2(N, v, P) + Sh3(N, v, P))

= p2 · p3 · (−1) · (
2
3

−
1
2
) · p1 = −

1
6
p1p2p3,

coinciding with the outcome in the form (8). Intuitively, if pi >

0, i ∈ N , then −
1
6p1 · p2 · p3 < 0, yielding the merger of the two

players decreases the probability index, thus, no playerswould like
to merge in three person situation.
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