
ar
X

iv
:1

70
3.

06
04

8v
1

 [
cs

.D
S]

 1
7

M
ar

 2
01

7

An FPTAS for the Knapsack Problem with Parametric Weights✩

Michael Holzhausera,∗, Sven O. Krumkea

aUniversity of Kaiserslautern, Department of Mathematics
Paul-Ehrlich-Str. 14, D-67663 Kaiserslautern, Germany

Abstract

In this paper, we investigate the parametric weight knapsack problem, in which the item weights are affine
functions of the form wi(λ) = ai + λ ·bi for i ∈ {1, . . . ,n} depending on a real-valued parameter λ. The aim is
to provide a solution for all values of the parameter. It is well-known that any exact algorithm for the problem
may need to output an exponential number of knapsack solutions. We present the first fully polynomial-time
approximation scheme (FPTAS) for the problem that, for any desired precision ε ∈ (0, 1), computes (1− ε)-
approximate solutions for all values of the parameter. Our FPTAS is based on two different approaches and
achieves a running time of O(n3/ε2 ·min{log2 P,n2} ·min{logM,n log(n/ε)/ log(n log(n/ε))}) where P is an
upper bound on the optimal profit and M := max{W,n · max{ai,bi : i ∈ {1, . . . ,n}}} for a knapsack with
capacity W.

Keywords: knapsack problems, parametric optimization, approximation algorithms

1. Introduction

The knapsack problem is one of the most funda-
mental combinatorial optimization problems: Given
a set of n items with weights and profits and a knap-
sack capacity, the task is to choose a subset of the
items with a maximum profit such that the weight
of these items does not exceed the knapsack capac-
ity. The problem is known to be weakly NP-hard and
solvable in pseudo-polynomial time. Moreover, sev-
eral constant factor approximation algorithms and
approximation schemes have been developed for the
problem [1–5] (cf. [6] for an overview).

In this paper, we investigate a generalization of
the problem in which the weights are no longer con-
stant but affine functions depending on a parame-
ter λ ∈ R. More precisely, for a knapsack with ca-
pacity W and for each item i in the item set {1, . . . ,n}
with profit pi ∈ N>0, the weight wi is now of the
form wi(λ) := ai + λ · bi with ai,bi ∈ Z. The result-

∗Corresponding author. Fax: +49 (631) 205-4737. Phone: +49
(631) 205-2511

Email addresses: holzhauser@mathematik.uni-kl.de
(Michael Holzhauser), krumke@mathematik.uni-kl.de (Sven
O. Krumke)

ing optimization problem can be stated as follows:

p∗(λ) = max
n∑

i=1

pi · xi

n∑

i=1

(ai + λ · bi) · xi 6 W

xi ∈ {0, 1} ∀i ∈ {1, . . . ,n}

The aim of this parametric weight knapsack problem
is to return a partition of the real line into in-
tervals (−∞, λ1], [λ1, λ2], . . . , [λk−1, λk], [λk,+∞) to-
gether with a solution x∗ for each interval such that
this solution is optimal for all values of λ in the in-
terval.

Besides the fact that the parametric weight knap-
sack problem is clearly NP-hard to solve since it con-
tains the traditional knapsack problem, it was shown
that any exact algorithm for the problem may need
to return an exponential number of knapsack solu-
tions in general [7]. In this paper, we are interested
in a fully polynomial time approximation scheme for the
parametric weight knapsack problem. We will show
that, for any desired precision ε ∈ (0, 1), a polyno-
mial number of intervals suffices in order to be able
to provide a (1 − ε)-approximate solution for each
λ ∈ R.

http://arxiv.org/abs/1703.06048v1

In the following, we let P 6
∑n

i=1 pi denote an
upper bound on the optimal profit and set

M := max{W,n · max{ai,bi : i ∈ {1, . . . ,n}}. (1)

1.1. Previous work

A large number of publications investigated para-
metric versions of well-known problems. This in-
cludes the parametric shortest path problem [8–
11], the parametric minimum spanning tree problem
[12, 13], the parametric maximum flow problem [14–
16], and the parametric minimum cost flow problem
[17] (cf. [18] for an overview).

A problem that is related to the parametric weight
knapsack problem considered here is the paramet-
ric profit knapsack problem, in which the weights
are constant but the profits take on an affine
form pi(λ) = ai + λ · bi. Carstensen [17] first
showed that the number of breakpoints of the op-
timal profit function may be exponentially large in
general and pseudo-polynomially large in the case
of integral input data. Eben-Chaime [19] later pre-
sented a pseudo-polynomial exact algorithm for this
problem. Giudici et al. [18] derived a PTAS for
the general problem and, for the case that λ > 0

and ai,bi > 0 for all i ∈ {1, . . . ,n}, an FPTAS
with a weakly polynomial running-time. Recently,
Holzhauser and Krumke [20] presented an FPTAS
for the problem that works for arbitrary integral val-
ues of ai,bi and runs in strongly polynomial time.

To the best of our knowledge, the parametric
weight knapsack problem considered here was men-
tioned in only one publication so far. Burkard and
Pferschy [7] show that the optimal profit of the para-
metric weight knapsack problem can attain an ex-
ponential number of values in general, yielding that
any exact algorithm for the problem must output an
exponential number of knapsack solutions. The au-
thors present a pseudo-polynomial algorithm for the
inverse problem, in which the largest value for the
parameter is searched in order to achieve some given
profit.

1.2. Our contribution

We present the first FPTAS for the parametric
weight knapsack problem. In fact, this is the first
approximation algorithm for the problem and even
the first algorithmic approach at all. Our algorithm
is based on two different ideas: The first approach
simulates the well-known FPTAS for the traditional

knapsack problem, in which the profits are scaled to
a polynomial size. The second approach is based
on an implicit scaling technique due to Erlebach
et al. [21], in which a (1 + ε)-grid is laid over the
search space of the underlying dynamic program-
ming scheme such that only a (weakly) polynomial
number of entries must be evaluated. Combining
both approaches, the resulting FPTAS achieves a
running time of

O

(
n3

ε2
· min

{

log2 P,n2
}

·

min
{

logM,n log
n

ε

/
log

(
n log

n

ε

)})
,

which allows both a strongly polynomial implemen-
tation and three possibly more efficient weakly poly-
nomial implementations.

1.3. Organization

The results of this paper are divided into three
main parts. In Section 2, we show how we can gen-
eralize the well-known 1

2 -approximation algorithm
for the traditional knapsack problem to the case of
parametric weights. This will build the foundation
for the parametric FPTAS, which will be presented in
Section 3. We will first recapitulate a basic FPTAS for
the traditional knapsack problem in Section 3.1 and
then extend it to the parametric case in Sections 3.2
and 3.3. Finally, we present an alternative approach
that yields a weakly polynomial-time FPTAS in Sec-
tion 4.

2. Obtaining a parametric 1

2
-approximation

Our main FPTAS for the parametric knapsack
problem relies on the well-known 1

2 -approximation
algorithm for the traditional knapsack problem. In
the non-parametric case, this algorithm proceeds as
follows: In a first step, the algorithm sorts the items
in increasing order of their ratios wi

pi
.1 The algorithm

then constructs an intermediate solution x ′ in which
x ′

i = 1 if and only if
∑i

j=1wj 6 W for each i ∈

{1, . . . ,n}. The algorithm then either returns x ′ or the
solution which contains only an item with the largest
profit among all items i with wi 6 W. The resulting

1In its standard definition, the algorithm uses an decreasing
order of the ratios pi

wi
. However, we will use the (equivalent)

inverted formulation here since the parametric ratios will then
take on affine forms.

2

profit is denoted by pA and fulfills 1
2
·p∗ 6 pA 6 p∗,

where p∗ is the optimal profit [6].
Now, in the parametric setting, the ratios wi

pi
are

affine functions of the form

fi(λ) :=
wi(λ)

pi
=

ai + λ · bi

pi
=

ai

pi
+ λ ·

bi

pi

and the profit pA of the approximation becomes a
step function depending on λ. In our FPTAS, we
will need a constant behavior of pA, so we must di-
vide the real line into intervals I1, . . . , Iq such that,
for each j ∈ {1, . . . ,q}, it holds that pA(λ) is con-
stant for λ ∈ Ij. A trivial bound for the number of
necessary intervals is given by q ∈ O(n3) since the
ordering can change up to O(n2) times (whenever
two of the affine functions intersect) and since, for
some given ordering, the number of elements that
fit into the knapsack in the intermediate solution can
change from 1 to n or vice versa in the worst case.

This bound can be improved to O(n2), which can
best be seen by considering so-called k-levels: Let
S := {fi : i ∈ {1, . . . ,n}} denote the set of all ratio
functions as introduced above and, for some fixed
k ∈ {1, . . . ,n}, let gk : R → R denote the function
mapping the parameter λ to the value of the k-th
smallest function in S at λ. The function g is called
the k-level and is both piecewise linear and contin-
uous (see Figure 1). Although a k-level can have
super-linear many breakpoints in general, the total
number of breakpoints among all levels is bounded
by O(n2) (which is moreover clear since there are
only O(n2) intersection points of the functions in S)
[22].

λ

fi(λ)

Figure 1: Plotting the functions fi in the plane. The k = 3 level
is highlighted by the thick blue polygonal chain.

For some given value of λ and for some specific
value of k, the intermediate solution x ′ as described

above consists of the first k items based on the cur-
rent item ordering and can be associated with the k-
level in a plane as depicted in Figure 1. While λ in-
creases, the solution x ′ may change due to two rea-
sons: Either, we enter a new line segment of the k-
level2, in which case the k-th smallest function and
the greedy knapsack solution change; or we change
the level, either since the first k items do no longer fit
into the knapsack or since now k+ 1 or more items
fit. Both cases occur only O(n2) times since each of
the knapsack solutions that corresponds to a linear
line segment becomes feasible or infeasible at most
once.

In summary, we get a partition of the real line
into h ∈ O(n2) intervals I ′1, . . . , I ′h in which the so-
lution x ′ is constant. In addition, the most prof-
itable item that fits into the knapsack can change up
to O(n) times. This yields q ∈ O(n2) final inter-
vals I1, . . . , Iq, which will be used in the FPTAS in
Section 3. It is easy to see that these intervals can be
constructed in O(n2 logn) time.

3. Obtaining a parametric FPTAS

Before we explain the parametric FPTAS in detail,
we first recapitulate the basic FPTAS for the tradi-
tional (non-parametric) knapsack problem as intro-
duced by Lawler [23] since its way of proceeding is
crucial for the understanding of the parametric ver-
sion.

3.1. Traditional FPTAS

Consider the case of some fixed value for λ such
that the weights have a constant (and possibly nega-
tive) value wi. The basic FPTAS for the traditional
knapsack problem is based on a well-known dy-
namic programming scheme, which was originally
designed to solve the problem exactly in pseudo-
polynomial time: Recall that P denotes an upper
bound on the maximum profit of a solution to the
given instance. For k ∈ {0, . . . ,n} and p ∈ {0, . . . ,P},
let w(k,p) denote the minimum weight that is neces-
sary in order to obtain a profit of exactly p with the
first k items. For k = 0, we set w(0,p) = 0 for p = 0

and w(0,p) = W + 1 for p > 0. For k ∈ {1, . . . ,n}

2Actually, only an “upward shifted corner” of the k-level
will generate a new solutions x′ since only in this case the k-
th smallest function leaves the knapsack and the composition of
the knapsack changes.

3

and for the case that pk 6 p, we compute the val-
ues w(k,p) recursively by

w(k,p) = min{w(k− 1,p),w(k− 1,p− pk) +wk},
(2)

representing the choice to either not pack the item
or to pack it, respectively. Else, if pk > p, we set
w(k,p) = w(k − 1,p). The largest value of p such
that w(n,p) 6 W then reveals the optimal solu-
tion to the problem. The procedure runs in pseudo-
polynomial time O(nP).

The idea of the basic FPTAS is to scale down the
item profits pi to new values p̃i :=

⌊
n·pi

ε·pA

⌋
, where pA

denotes the profit of the 1
2 -approximate solution de-

scribed in Section 2. The procedure runs in polyno-

mial time O(n
2

ε
) since the maximum possible profit

is now bounded by P̃ := 2n
ε

. The crucial observa-
tion is that we only lose a factor of (1 − ε) by scal-
ing down the profits, so the solution obtained by the
above dynamic programming scheme applied to the
scaled profits yields a (1 − ε)-approximate solution
for the problem. We refer to [6, 23] for further details
on the algorithm.

3.2. Parametric FPTAS

Now consider the parametric problem setting.
Obviously, the weights of the items change as the pa-
rameter λ increases, but also the scaled profits may
change with λ since they depend on the profit pA

of the 1
2 -approximate solution. We partition the real

line into the same intervals I1, . . . , Iq as described in
Section 2 such that pA and, thus, the scaled prof-
its are constant within each interval, yielding q ∈

O(n2) subproblems. In the following, we restrict our
considerations to one specific such interval, so we
may assume that the values p̃i are constant for all
considered values of λ.

As noted above, the item weights now depend on
λ such that new solutions may become feasible and
current solutions may become infeasible as the pa-
rameter λ increases. The idea of the FPTAS is to con-
sider each possible profit p ∈ {0, . . . , P̃} individually
and to determine the values of λ for which a profit of
p can be achieved by a feasible solution to the scaled
knapsack instance.

In the following, it will be useful to interpret the
underlying dynamic programing scheme as a short-
est path problem: Consider the acyclic graph shown
in Figure 2. For each k ∈ {0, . . . ,n} and profit p ∈

v0,0

v1,0

v2,0

v3,0

...

v
P̃,0

v0,1

v1,1

v2,1

v3,1

...

v
P̃,1

v0,2

v1,2

v2,2

v3,2

...

v
P̃,2

. . .

. . .

. . .

. . .

. . .

. . .

v0,n

v1,n

v2,n

v3,n

...

v
P̃,n

0

w1(λ)

0

w2(λ)

Figure 2: The interpretation of the dynamic programming
scheme as a shortest path problem. In this example, it holds
that p̃1 = 2 and p̃2 = 1.

{0, . . . , P̃}, we insert a node vp,k and connect it with
vp,k+1 via an edge with zero length (if k 6 n − 1)
as well as with vp+p̃k+1,k+1 via an edge with length

wk+1(λ) (if k 6 n− 1 and p+ p̃k 6 P̃). It is easy to
see that the structure of the graph reflects the recur-
sion given in (2), so a solution to the (scaled) knap-
sack instance then corresponds to the largest profit p
such that the length of a shortest path from v0,0 to
vp,n is not larger than W.

Now consider some specific profit p ∈ {0, . . . , P̃}.
In general, there may be a super-polynomial num-
ber of paths in the graph that lead from v0,0 to vp,n.
The lengths of these paths are described by affine
functions depending on the parameter λ and may
increase or decrease as λ increases. Since we are in-
terested in shortest paths, we can restrict our consid-
erations to the function ω(p) : R → R mapping the
parameter λ to the length of a shortest path from v0,0

to vp,n. Clearly, the function ω(p) is concave, contin-
uous, and piecewise linear since it is the point-wise
minimum of finitely many affine functions (see Fig-
ure 3). Whenever ω(p)(λ) 6 W, the knapsack so-
lution induced by a shortest path from v0,0 to vp,n

is feasible and attains a profit of exactly p. Besides
the special cases that, for all λ ∈ R, ω(p)(λ) 6 W

or, for all λ ∈ R, ω(p) > W, there is at most one
interval I

(p)
− := (−∞, λ1] and at most one inter-

4

val I
(p)
+ := [λ2,+∞) with ω(p)(λ1) = ω(p)(λ2) = W

containing the values of λ for which ω(p)(λ) 6 W

(see Figure 3). We call these intervals the feasibil-
ity intervals of p in the following. We associate with
each feasibility interval exactly one knapsack solu-
tion, which remains feasible throughout the whole
interval, by selecting the solution which corresponds
to the intersection at λ1 and λ2, respectively. Note
that this solution may not give a shortest path for the
whole interval but the corresponding knapsack solu-
tion remains feasible and attains the desired profit p.

λ

ω(p)(λ)

W

λ1 λ2I
(p)
− I

(p)
+

Figure 3: The function ω(p) for some specific profit p (black)

together with the feasibility sets I
(p)
− and I

(p)
+ (blue).

In Section 3.3, we show that we can detect these in-
tervals in polynomial time for some specific profit p.
Performing these steps for all attainable profits in

{0, . . . , P̃}, we obtain at most 2 · 2n
ε

many knapsack
solutions together with their feasibility intervals. By
reevaluating the maximum attainable profit at each
boundary value of these intervals, we obtain para-
metric solutions for the scaled knapsack instance
and, thus, an FPTAS for the parametric weight knap-
sack problem.

3.3. Computing the feasibility intervals

It remains to show how we can determine the
feasibility intervals efficiently. For some specific
profit p, we can identify the two intervals (or detect
the special cases that all points are feasible or that
there are no feasible points at all) by two different
methods.

Both methods rely on the same observation: For
some given candidate value λ ∈ R, we can deter-

mine in O(n
2

ε) time if it is smaller, larger, or equal
to the value λ1 (if such a value exists) as intro-
duced above. This observation is based on the fact

that a value of λ is too small if and only if the
length ω(p)(λ) := α + λ · β of a shortest path is
strictly smaller than W and the slope β is positive
(if the slope is zero, we have the special case that
ω(p)(λ) < W for all λ ∈ R due to the concavity of
ω(p)). Conversely, a given value for λ is too large if
ω(p) > W or the slope β is negative. It then holds
that λ = λ1 if ω(p) = W and β > 0. Analogous
arguments apply to the case of λ2.

This observation can be incorporated into a bi-
nary search in order find the value of λ1 if it ex-
ists (the case of λ2 works analogously). Consider
two v0,0-vp,n-paths P1 and P2 with lengths w1(λ) :=

α1 + λ ·β1 and w2(λ) := α2 + λ ·β2 and assume that
β1 6= 0 and β2 6= 0. The critical values of λ at which
the paths become (in)feasible are given by W−α1

β1
and

W−α2

β2
, respectively, and are thus contained in the in-

terval [−(n+ 1)M; (n+ 1)M]. Moreover, in case that
the two critical values are not equal, they differ by at
least 1

n2M2 since

∣∣∣∣
W − α1

β1
−

W −α2

β2

∣∣∣∣

=

∣∣∣∣
(W −α1) ·β2 − (W −α2) ·β1

β1 ·β2

∣∣∣∣ >
1

n2M2
.

Hence, we only need to scan the interval [−(n +

1)M; (n+ 1)M] in steps of length δ := 1
2
· 1
n2M2 : Con-

sider a path P1 in the set of the desired shortest paths
determining the value of λ1. Every other path with
positive slope either has the same length as P1 at λ1
or attains the value W at some point that is strictly
less than λ1 − δ. Hence, whenever we encounter a
situation in which

ω(p)(j · δ) 6 W and ω(p)((j+ 1) · δ) > W

for some j ∈ Z, we know that the shortest path that
is obtained at j · δ is also a shortest path at λ1. In this

case, we can determine the feasibility interval I
(p)
−

exactly and assign it with the corresponding knap-
sack solution. Moreover, we do not need to scan
these points sequentially, but are able to perform a
binary search with a logarithmic number of steps.

In combination with the running time of O(n
2

ε) to
compute the shortest paths, this approach yields a
weakly polynomial overhead of

O

(
n2

ε
· log(nM ·n2M2)

)
= O

(
n2

ε
· logM

)
,

5

where the last equality follows from the fact that
M > n in Equation (1).

As a second approach, we can perform two of
Megiddo’s (1979) parametric searches in order to de-
termine the values of λ1 and λ2: In contrast to the
first approach, we treat the variable λ as a symbolic
variable and simulate the shortest path computation
step by step until we need to stop in order to resolve
a comparison of two affine functions, whose inter-
section yields a candidate value λ. For each such
candidate value, we can proceed as above in order to
determine if it is too small, too large, or equal to λ1
(or λ2, respectively). This would yield an overhead

of O
(
(n

2

ε
)2
)

since we need to recompute a shortest

path in each step of the simulation in the worst case.
Using techniques described in [7], this running time
can be significantly improved to

O

(
n3

ε
· log

n

ε

/
log

(
n log

n

ε

))
.

We refer to [24, 25] for further details on the para-
metric search technique and to [7] for its application
to knapsack problems.

In summary, for some profit p ∈ {0, . . . , P̃}, we can
determine the feasibility intervals in

O

(
n2

ε
· min

{

logM,n log
n

ε

/
log

(
n log

n

ε

)})

time. Since we need to repeat these steps for O(n
ε
)

possible profits and for O(n2) intervals, we get one
of the main results of this paper:

Theorem 1. There is an FPTAS for the parametric
weight knapsack problem running in total time

O

(
n5

ε2
· min

{

logM,n log
n

ε

/
log

(
n log

n

ε

)})
.

�

4. An alternative Approach

A significant contribution to the total running time
of the approach discussed in Section 3 comes with
the explicit scaling of the profits: We needed to di-
vide the problem into O(n2) subproblems in order
to guarantee constant values of the scaled profits. In
this section, we discuss a solution that does not scale
the profits explicitly, yielding a second FPTAS with
a weakly polynomial running time.

Our second approach relies on an implicit scal-
ing technique introduced by Erlebach et al. [21],
originally designed for the multi-objective knapsack
problem. In their FPTAS, the authors stick to the
original (unscaled) profits, but perform the dynamic
programming scheme only for a polynomial number
of profits: Instead of considering each integral profit,
the profit space is being reduced to the points in the
set

S :=
{

(1+ ε)
i
n : i ∈ {0, . . . ,

⌈
n log1+ε P

⌉
}
}

.

The entries of w(·, ·) are only computed for the
points in the set S such that the dynamic program-
ming scheme again runs in polynomial time. In or-
der for the recursion to be well-defined, the term
p − pk is “rounded up” to the next value in S in
Equation (2). Hence, w(k,p) denotes the minimum
weight that is necessary to achieve a profit of at
least p. In can be seen that, in the case of con-
stant weights, this approach yields an FPTAS for the
knapsack problem (cf. [21]).

Analogously to the FPTAS derived in Section 3,
the recursive formulae (2) to compute the approxi-
mate solution induce an interpretation as a shortest
path problem in an acyclic graph. Consequently, the
tools derived in Section 3 apply to this graph struc-
ture: We can determine the feasibility intervals for
each attainable profit (which is now contained in the
set S) subsequently and use them in order to ob-
tain a partition of the real line into different (1− ε)-
approximate solutions. This graph still has O(n) ver-
tical layers, but the number of nodes per layer in-
creases from O(n

ε
) to

O
(⌈
n log1+ε P

⌉)
= O

(
n ·

logP

log(1+ ε)

)

= O
(n
ε
· logP

)
.

Hence, since the complexities to solve the dynamic
programming scheme and to iterate through each
possible profit both increase by O(log P) likewise,
we get an additional overhead of O(log2 P) that
comes with this alternative approach but do no
longer need to divide the problem into O(n2) sub-
problems. This yields the second main theorem of
this paper:

6

Theorem 2. There is an FPTAS for the parametric
weight knapsack problem running in total time

O

(
n3

ε2
· log2 P·

min
{

logM,n log
n

ε

/
log

(
n log

n

ε

)})
. �

Combining the results of Theorem 1 and Theorem 2,
we get the following final result for the approxima-
bility of the parametric weight knapsack problem:

Theorem 3. There is an FPTAS for the parametric
weight knapsack problem running in total time

O

(
n3

ε2
· min

{

log2 P,n2
}

·

min
{

logM,n log
n

ε

/
log

(
n log

n

ε

)})
. �

References

[1] O. Ibarra, C. Kim, Fast approximation algorithms for the
knapsack and sum of subset problems, Journal of the ACM
(JACM) 22 (4) (1975) 463–468.

[2] E. L. Lawler, Combinatorial optimization: networks and
matroids, Courier Corporation, 2001.

[3] M. Magazine, O. Oguz, A fully polynomial approximation
algorithm for the 0–1 knapsack problem, European Journal
of Operational Research 8 (3) (1981) 270–273.

[4] H. Kellerer, U. Pferschy, A new fully polynomial time ap-
proximation scheme for the knapsack problem, Journal of
Combinatorial Optimization 3 (1) (1999) 59–71.

[5] H. Kellerer, U. Pferschy, Improved dynamic programming
in connection with an FPTAS for the knapsack problem,
Journal of Combinatorial Optimization 8 (1) (2004) 5–11.

[6] H. Kellerer, U. Pferschy, D. Pisinger, Knapsack Problems,
Springer, 2004.

[7] R. Burkard, U. Pferschy, The inverse-parametric knapsack
problem, European Journal of Operational Research 83 (2)
(1995) 376–393.

[8] R. Karp, J. Orlin, Parametric shortest path algorithms with
an application to cyclic staffing, Discrete Applied Mathe-
matics 3 (1) (1981) 37–45.

[9] N. Young, R. Tarjan, J. Orlin, Faster parametric shortest
path and minimum-balance algorithms, Networks 21 (2)
(1991) 205–221.

[10] P. Carstensen, The complexity of some problems in para-
metric linear and combinatorial programming .

[11] K. Mulmuley, P. Shah, A lower bound for the shortest
path problem, in: Computational Complexity, IEEE, 14–21,
2000.

[12] D. Fernández-Baca, G. Slutzki, D. Eppstein, Using spar-
sification for parametric minimum spanning tree prob-
lems, in: Scandinavian Workshop on Algorithm Theory,
Springer, 149–160, 1996.

[13] P. Agarwal, D. Eppstein, L. Guibas, M. Henzinger, Para-
metric and kinetic minimum spanning trees, in: Founda-
tions of Computer Science, 1998. Proceedings. 39th Annual
Symposium on, IEEE, 596–605, 1998.

[14] G. Gallo, M. Grigoriadis, R. Tarjan, A fast parametric max-
imum flow algorithm and applications, SIAM Journal on
Computing 18 (1) (1989) 30–55.

[15] S. McCormick, Fast algorithms for parametric scheduling
come from extensions to parametric maximum flow, Oper-
ations Research 47 (5) (1999) 744–756.

[16] M. Scutella, A note on the parametric maximum flow prob-
lem and some related reoptimization issues, Annals of Op-
erations Research 150 (1) (2007) 231–244.

[17] P. Carstensen, Complexity of some parametric integer and
network programming problems, Mathematical Program-
ming 26 (1) (1983) 64–75.

[18] A. Giudici, P. Halffmann, S. Ruzika, C. Thielen, Approxi-
mation schemes for the parametric knapsack problem, In-
formation Processing Letters 120 (2017) 11–15.

[19] M. Eben-Chaime, Parametric solution for linear bicrite-
ria knapsack models, Management Science 42 (11) (1996)
1565–1575.

[20] M. Holzhauser, S. O. Krumke, An FPTAS for the paramet-
ric knapsack problem, arXiv preprint arXiv:1701.07822 .

[21] T. Erlebach, H. Kellerer, U. Pferschy, Approximating multi-
objective knapsack problems, in: Workshop on Algorithms
and Data Structures, Springer, 210–221, 2001.

[22] H. Everett, J.-M. Robert, M. V. Kreveld, An optimal algo-
rithm for computing (K)-levels, with applications, Interna-
tional Journal of Computational Geometry & Applications
6 (3) (1996) 247–261.

[23] E. Lawler, Fast approximation algorithms for knapsack
problems, Mathematics of Operations Research 4 (4) (1979)
339–356.

[24] N. Megiddo, Combinatorial optimization with rational ob-
jective functions, Mathematics of Operations Research 4 (4)
(1979) 414–424.

[25] N. Megiddo, Applying parallel computation algorithms
in the design of serial algorithms, Journal of the ACM
(JACM) 30 (4) (1983) 852–865.

7

	1 Introduction
	1.1 Previous work
	1.2 Our contribution
	1.3 Organization

	2 Obtaining a parametric 12-approximation
	3 Obtaining a parametric FPTAS
	3.1 Traditional FPTAS
	3.2 Parametric FPTAS
	3.3 Computing the feasibility intervals

	4 An alternative Approach

