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Abstract

In the context of augmented Lagrangian approaches for solving semidefinite programming problems, we investigate the possibility

of eliminating the positive semidefinite constraint on the dual matrix by employing a factorization. Hints on how to deal with the

resulting unconstrained maximization of the augmented Lagrangian are given. We further use the approximate maximum of the

augmented Lagrangian with the aim of improving the convergence rate of alternating direction augmented Lagrangian frameworks.

Numerical results are reported, showing the benefits of the approach.
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1. Introduction

Semidefinite Programs (SDP) can be solved in polynomial

time to some fixed prescribed precision, but the computational

effort grows both with the number m of constraints and with

the order n of the underlying space of symmetric matrices. In-

terior point methods to solve SDP become impractical both

in terms of computation time and memory requirements, once

m ≥ 104. Several algorithmic alternatives have been intro-

duced in the literature, including some based on augmented La-

grangian approaches [1, 2, 3, 4, 5]. It is the purpose of this

paper to elaborate on the alternating direction augmented La-

grangian (ADAL) algorithms proposed in [3, 4] by introducing

computational refinements. The key idea will be to eliminate

the positive semidefinite constraint on the dual matrix by em-

ploying a factorization, so that the maximization of the aug-

mented Lagrangian function with respect to the dual variables

can be performed in an unconstrained fashion.

In the remainder of this section we give the problem formu-

lation and state our notations. In Section 2 a description of

the ADAL methods for solving semidefinite programs is given.

Details on how we maximize the augmented Lagrangian, af-

ter the factorization of the dual matrix, are given in Section 3.

In Section 4, we outline our new algorithm DADAL: an addi-

tional update of the dual variable within one iteration of the

ADAL method is used as improvement step. The convergence

of DADAL easily follows by the analysis done in [5], that looks at

ADAL as a fixed point method. We give insights on how DADAL

can improve the convergence rate of ADAL in Section 4.1. Sec-

tion 5 shows numerical results and Section 6 concludes.
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1.1. Problem Formulation and Notations

Let Sn be the set of n-by-n symmetric matrices and S+n ⊂ Sn

be the set of positive semidefinite matrices. Denoting by

〈X, Y〉 = trace(XY) the standard inner product in Sn, we write

the standard primal-dual pair of SDP problems as follows:

min 〈C, X〉

s.t. AX = b,

X ∈ S+n

(1)

and

max bT y

s.t. C −A⊤y = Z

Z ∈ S+n ,

(2)

where C ∈ Sn, b ∈ R
m, A : Sn → R

m is the linear operator

(AX)i = 〈Ai, X〉 with Ai ∈ Sn, i = 1, . . . ,m and A⊤ : Rm → Sn

is its adjoint, A⊤y =
∑

i yiAi.

We assume that both problems have strictly feasible points,

so that strong duality holds. Under this assumption, (X, y, Z) is

optimal if and only if

X ∈ S+n , AX = b, Z ∈ S+n , C −A⊤y = Z, ZX = 0. (3)

We further assume that matrix A has full rank.

Let v ∈ R
n and M ∈ R

m×n. In the following, we denote

by vec(M) the mn-dimensional vector formed by stacking the

columns of M on top of each other (vec−1 is the inverse opera-

tion). We also denote by Diag(v) the diagonal matrix having v

in the diagonal. With ei we denote the i-th vector of the standard

basis in R
n. Whenever a norm is used, we consider the Frobe-

nius norm in case of matrices and the Euclidean norm in case

of vectors. We denote the projection of some symmetric matrix

S onto the positive semidefinite cone by (S )+ and its projection

onto the negative semidefinite cone by (S )−.
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2. Augmented Lagrangian Methods for SDP

Let X ∈ Sn be the Lagrange multiplier for the dual equation

Z − C + A⊤y = 0. In order to solve Problem (2) with the aug-

mented Lagrangian method we introduce

Lσ(y, Z; X) := bT y − 〈Z −C +A⊤y, X〉 −
σ

2
‖Z −C +A⊤y‖2.

To solve (2), we deal with

max Lσ(y, Z; X)

s.t. y ∈ Rm, Z ∈ S+n ,
(4)

where X is fixed and σ > 0 is the penalty parameter.

Once Problem (4) is (approximately) solved, the multiplier X

is updated by a first order rule:

X = X + σ(Z −C +A⊤y) (5)

and the process is iterated until convergence, i.e. until the op-

timality conditions (3) are satisfied within a certain tolerance

(see Chapter 2 in [6] for further details).

Problem (4) is a convex quadratic semidefinite optimization

problem, which is tractable but expensive to solve directly. Sev-

eral simplified versions have been proposed in the literature to

quickly get approximate solutions.

In the alternating direction framework proposed by Wen et al.

[5], the augmented Lagrangian Lσ(y, Z; X) is maximized with

respect to y and Z one after the other. More precisely, at every

iteration k, the new point (Xk+1, yk+1, Zk+1) is computed by the

following steps:

yk+1 := arg max
y∈Rm

Lσk (y, Zk; Xk), (6)

Zk+1 := arg max
Z∈S+n

Lσk (yk+1, Z; Xk), (7)

Xk+1 := Xk
+ σk(Zk+1 −C +A⊤yk+1). (8)

These three steps are iterated until a stopping criterion is met.

The update of y in (6) is derived from the first-order optimal-

ity condition of Problem (4): yk+1 is the unique solution of

∇yLσk (y, Zk; Xk) = b −A(Xk
+ σk(Zk −C +A⊤y)) = 0,

that is

yk+1
= (AA

⊤)−1
( 1

σk
b −A(

1

σk
Xk −C + Zk)

)

.

Then, the maximization in (7) is conducted by considering the

equivalent problem

min
Z∈S+n

‖Z +Wk‖2, (9)

with Wk
= ( Xk

σk −C +A⊤yk+1), or, in other words, by projecting

Wk ∈ Sn onto the (closed convex) cone S−n and taking its addi-

tive inverse (see Algorithm 1). Such a projection is computed

via the spectral decomposition of the matrix Wk.

The Boundary Point Method proposed in [3, 4]

can also be viewed as an alternating direction aug-

mented Lagrangian method. In fact, as also noted

in [5], the available implementation mprw.m (see

https://www.math.aau.at/or/Software/) is an al-

ternating direction augmented Lagrangian method, since in the

inner loop (see Table 2 in [3]) only one iteration is performed.

We report in Algorithm 1, the scheme of mprw.m. The stop-

ping criterion for mprw.m considers only the following primal

and dual infeasibility errors:

rP =
‖AX − b‖

1 + ‖b‖
,

rD =
‖C − Z −A⊤y‖

1 + ‖C‖
;

as the other optimality conditions (namely, X ∈ S+n , Z ∈

S+n , ZX = 0) are satisfied up to machine accuracy throughout

the algorithm. More precisely, the algorithm stops as soon as

the quantity

δ = max{rP, rD},

is less than a fixed precision ε > 0.

Algorithm 1 Scheme of mprw.m

1 Initialization: Choose σ > 0, X ∈ S+n , ε > 0.

Set Z = 0.

2 Repeat until δ < ε:

3 Compute y = (AA⊤)−1
(

1
σ

b −A( 1
σ

Y −C + Z)
)

4 Compute Z = −(X/σ − C +A⊤y)−
X = σ(X/σ − C +A⊤y)+

5 Compute δ = max{rP, rD}

6 Update σ

It is the main purpose of this paper to investigate enhance-

ments to this algorithm. The key idea will be to replace in the

subproblem (4) the constraint Z ∈ S+n by Z = VV⊤ and consid-

ering (4) as an unconstrained problem in y and V .

3. Solving the subproblem (4)

By introducing a variable V ∈ R
n×r (1 ≤ r ≤ n), such that

Z = VV⊤ ∈ S+n , we reformulate Problem (4) as the following

unconstrained maximization problem

max Lσ(y,V; X)

s.t. y ∈ Rm, V ∈ Rn×r,
(10)

where

Lσ(y,V; X) = bT y−〈VV⊤−C+A⊤y, X〉−
σ

2
‖VV⊤−C+A⊤y‖2.

Note that the number of columns r of matrix V represents the

rank of the dual variable Z.

The first-order necessary optimality conditions for Prob-

lem (10) state the following:

2
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Proposition 1. Let (y∗,V∗) ∈ R
m × R

n×r be a stationary point

for Problem (10), then

∇yLσ(y∗,V∗; X) = b −A(X + σ(V∗V∗⊤ − C +A⊤y∗)) = 0,

∇V Lσ(y∗,V∗; X) = −2(X + σ(V∗V∗⊤ −C +A⊤y∗))V∗ = 0.
(11)

From (11), we can easily see that we can keep the optimality

conditions with respect to y satisfied, while moving V along any

direction DV ∈ R
n×r:

Proposition 2. Let DV ∈ R
n×r. Let

y(V + αDV ) = y0 + αy1 + α
2y2, (12)

with

y0 = (AA⊤)−1
(

1
σ

b −A( 1
σ

X −C + VV⊤)
)

,

y1 = (AA
⊤)−1
(

−A(DVV⊤ + VD⊤
V

)
)

,

y2 = (AA⊤)−1
(

−A(DV D⊤
V

)
)

.

Then

∇yLσ(y(V + αDV ),V + αDV ; X) = 0,

for all α ∈ R.

Proof. Let α ∈ R. From (11), we have that ∇yLσ(y,V; X) = 0

iff

AA
⊤y =

( 1

σ
b −A(

1

σ
X −C + VV⊤)

)

.

Therefore, when V = V + αDV , we get

(AA
⊤)y =

1

σ
b −A

( 1

σ
X −C + (V + αDV )(V + αDV )⊤

)

=
1

σ
b −A

( 1

σ
X −C + VV⊤

)

− αA(DVV⊤ + VD⊤V ) − α2
A(DV D⊤V ).

By multiplying both the l.h.s. and the r.h.s. with (AA⊤)−1, we

get the expression in (12) and the proposition is proven.

Thanks to Proposition 2, we can maximize Lσ(y,V; X) with

respect to V , keeping variable y updated according to (12) along

the iterations. Thus we are in fact maximizing a polynomial of

degree 4 in V .

3.1. Direction Computation

In order to compute an ascent direction for the augmented

Lagrangian we consider two possibilities. Either we use the

gradient of Lσ(y,V; X) with respect to V , or we use the gradi-

ent scaled with the inverse of the diagonal of the Hessian of

Lσ(y,V; X). We recall the gradient of Lσ with respect to V , see

(11), as the n × r matrix

∇V Lσ(y,V; X) = −2(M + σVV⊤)V,

where M = X + σ(A⊤y − C). In order to compute the generic

(s, t) entry on the main diagonal of the Hessian, we consider

lim
t→0

1

t

(

fst(V + tese
⊤
t ) − fst(V)

)

,

where fst(V) := e⊤s VV⊤Vet, s ∈ {1, . . . , n}, t ∈ {1, . . . , r}.

We get

∂2Lσ(y,V; X)

∂vs,t∂vs,t

= −2mss − 2σ
(

(e⊤s Vet)
2
+ ‖V⊤es‖

2
+ ‖Vet‖

2
)

.

We define the n × r matrix H by

(H)s,t = 2 max{0,mss} + 2σ
(

(e⊤s Vet)
2
+ ‖V⊤es‖

2
+ ‖Vet‖

2),

and we propose to use the search direction DV , given by the

gradient scaled by H, thus

(DV )s,t :=
(∇V Lσ)s,t

Hs,t

. (13)

We note that H is generically positive, as V should not contain

columns all equal to zero. In practice, we compute the scaled

gradient direction in case ‖∇V Lσ(y,V; X)‖ < 10−3.

3.2. Exact Linesearch

Given a search direction DV , we note that Lσ(y(V+αDV),V+

αDV ; X) is a polynomial of degree 4 in α, so that we can inter-

polate five different points

(αi, Lσ(y(V + αiDV ),V + αiDV ; X) ), i = 1, . . . , 5,

to get its analytical expression. This also means that the max-

imum of Lσ(y(V + αDV ),V + αDV ; X) can be detected analyt-

ically (using the Cardano formula). In practice, we evaluate

the 4-degree polynomial Lσ(y(V + αDV ),V + αDV ; X) in few

thousands of points in (0, 10) and take the best α.

Algorithm 2 is a scheme of the generic iteration we perform

to maximize Lσ(y,V; X), X being fixed.

Algorithm 2 Solving (4) approximately

1 Input: σ > 0, y ∈ Rm, V ∈ Rn×r

2 Repeat until ‖∇V Lσ‖ < ǫinner

3 Compute the search direction DV ∈ R
n×r using (13)

4 Compute optimal stepsize α

5 Update y = y(V + αDV ) according to (12)

and V = V + αDV .

4. DADAL: a dual step for improving alternating direction

augmented Lagrangian methods for SDP

Our idea is to insert the approximated solution of Problem (4)

obtained from Algorithm 2, as a simultaneous update of y and

V to be performed before the projection step in Algorithm 1.

We detail below the scheme of the ADAL method where this

“dual step” is inserted. We refer to Algorithm 3 as DADAL.
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Algorithm 3 DADAL

1 Initialization: Choose σ > 0, r > 0, ε > 0,

X ∈ S+n , V ∈ Rn×r, Z = VV⊤, y ∈ Rm.

2 Repeat until δ < ε:

3 Update (y,V) by Algorithm 2

4 Compute Z = −(X/σ −C +A⊤y)−
X = σ(X/σ −C +A⊤y)+

5 Update r ← rank(Z) and V so that VV⊤ = Z

6 Compute δ = max{rP, rD}

7 Update σ

4.1. Convergence Analysis

The convergence analysis of DADAL may follow from the

analysis in [5], that looks at ADAL as a fixed point method.

One iteration of the ADAL method can be seen as the result

of the combination of two operators, namely (Zk+1, Xk+1) =

P(W(Zk, Xk)), where P denotes the projection performed at

Step 4 in Algorithm 1 and W(Zk, Xk) = Xk/σ−C+A⊤y(Zk, Xk),

being y(Zk, Xk) = (AA⊤)−1
(

b/σk −A(Xk/σk −C + Zk)
)

. It can

be shown that P and W are non-expansive operators (see [5] for

further details). Hence, the key step in the proof of Theorem 2

in [5] states the following

‖(Zk+1, Xk+1/σ) − (Z∗, X∗/σ)‖ = ‖P(W(Zk, Xk)) − P(W(Z∗, X∗))‖

≤ ‖W(Zk, Xk) −W(Z∗, X∗)‖

(14)

≤ ‖(Zk, Xk/σ) − (Z∗, X∗/σ)‖.

In DADAL, before the projection step, the dual variables are up-

dated by performing one maximization step for the augmented

Lagrangian, so that we get (ŷk, V̂k) from (yk,Vk) and, in partic-

ular, the dual matrix is given as Ẑk
= V̂kV̂k

⊤
.

Proposition 3. Let Ẑ, Z, X, X∗, Z∗ ∈ Sn and let Z , Z∗. Let

‖Ẑ − Z∗‖2 ≤ ρ‖Z − Z∗‖2,

with 0 < ρ ≤ 1. Then ρ̄ exists, ρ̄ ≤ 1, ρ̄ ≥ ρ such that

‖(Ẑ, X) − (Z∗, X∗)‖2 ≤ ρ̄‖(Z, X) − (Z∗, X∗)‖2

Proof.

‖(Ẑ, X) − (Z∗, X∗)‖2 = ‖Ẑ − Z∗‖2 + ‖X − X∗‖2

≤ ρ‖Z − Z∗‖2 + ‖X − X∗‖2

= ρ̄‖(Z, X) − (Z∗, X∗)‖2,

where ρ̄ = ρ + ε, with

ε = (1 − ρ) c(X, Z),

and

c(X, Z) :=
‖X − X∗‖2

‖(Z, X) − (Z∗, X∗)‖2
.

Since 0 ≤ c(X, Z) < 1, we have 0 ≤ ε < (1 − ρ), so that ρ̄ ≤ 1

and ρ̄ ≥ ρ.

Note that, if ρ < 1, we have that ρ̄ = ρ + ε < 1.

Theorem 1. Let (ŷk, Ẑk) be the dual variables obtained from

(yk, Zk) by performing one iteration of Algorithm 2. Let the

direction DV in Algorithm 2, be chosen such that

‖Ẑk − Z∗‖ ≤ δ‖Zk − Z∗‖, (15)

with δ ≤ 1. Then the sequence {Xk, yk, Zk} generated by Algo-

rithm 3 converges to a solution {X∗, y∗, Z∗}.

Proof. Since condition (15) holds, we can apply Proposition 3,

so that δ̄ exists, δ ≤ δ̄ ≤ 1, such that

‖(Ẑk, Xk/σ) − (Z∗, X∗/σ)‖ ≤ δ̄‖(Zk, Xk/σ) − (Z∗, X∗/σ)‖.

Then, the series of inequalities (14) can be extended as:

‖(Zk+1, Xk+1/σ) − (Z∗, X∗/σ)‖ = ‖P(W(Ẑk, Xk)) − P(W(Z∗, X∗))‖

≤ ‖W(Ẑk, Xk) −W(Z∗, X∗)‖

≤ ‖(Ẑk, Xk/σ) − (Z∗, X∗/σ)‖

≤ δ̄‖(Zk, Xk/σ) − (Z∗, X∗/σ)‖.

The rest of the proof follows the same arguments as those in

Theorem 2 in [5].

Note that δ < 1 in (15) implies δ̄ < 1 and the additional step

of maximizing the augmented Lagrangian is strictly improving

the convergence rate of ADAL methods.

Remark 1. When dealing with unconstrained optimization

problems, it is well known that the sequence {xk} produced by

Newton’s method converges superlinearly to a stationary point

x∗ if the starting point x0 is sufficiently close to x∗ (see e.g. Prop

1.4.1 in [7]). Therefore, condition (15) is satisfied when, e.g.,

DV is chosen as the Newton direction and our starting V in

Algorithm 2 is in a neighborhood of the optimal solution. As-

sumption (15) is in fact motivating our direction computation:

as soon as we are close enough to an optimal solution, we try

to mimic the Newton direction by scaling the gradient with the

inverse of the diagonal of the Hessian (13).

4.2. Choice and Update of the Penalty Parameter

Let (y0, Z0, X0) be our starting solution. In defining a start-

ing penalty parameter σ0, i.e. a starting value for scaling the

violation of the dual equality constraints in the augmented La-

grangian, we might want to take into account the dual infea-

sibility error rD (defined in Section 2) at the starting solution.

Since the penalty parameter enters in the update of the primal

solution (8) as well, we can tune σ0 so that the starting primal

and dual infeasibility errors are balanced.

Our proposal is to use the following as starting penalty pa-

rameter:

σ0
=

rP

rD

‖AX0 − b‖

‖C − Z0 −A⊤y0‖
(16)

It has been noticed that the update of the penalty parameter σ is

crucial for the computational performances of ADAL methods
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for SDPs [3, 4, 5]. Therefore, in order to improve the numer-

ical perfomance of DADAL, strategies to dynamically adjust the

value of σ may be considered: In the implementation of DADAL

used in our numerical experience (see Section 5), we adopt the

following strategy.

We monitor the primal and dual relative errors, and note that

the stopping condition of the augmented Lagrangian method is

given by rD ≤ ε, provided that the inner problem is solved with

reasonable accuracy. In order to improve the numerical perfor-

mance, we use the following intuition. If rD is much smaller

than rP (we test for 100rD < rp), this indicates that σ is too

big in the subproblem. On the other hand, if rD is much larger

than rp (we test for 2rD > rP), then σ should be increased to

facilitate overall progress. If either of these two conditions oc-

curs consecutively for several iterations, we change σ dividing

or multiplying it by 1.3. Similar heuristics have been suggested

also in [5] and [4].

5. Numerical Results

In this section we report our numerical experience: we

compare the performance of DADAL and mprw.m on ran-

domly generated instances, on instances from the SDP prob-

lem underlying the Lovász theta number of a graph and

on linear ordering problem instances. Both mprw.m and

DADAL are implemented in MATLAB R2014b and are avail-

able at https://www.math.aau.at/or/Software/. In our

implementation of Algorithm 3, we use the choice and update

strategy for the penalty parameter σ described in Section 4.2

and we perform two iterations of Algorithm 2 in order to up-

date (y,V) in Step 3. We set the accuracy level ε = 10−5.

We also report the run time of the interior point method for

SDP using the solver MOSEK [8]. The experiments were carried

out on an Intel Core i7 processor running at 3.1 GHz under

Linux.

5.1. Comparison on randomly generated instances

The random instances considered in the first experiment are

some of those used in [4] (see Table 1). For these instances, the

Cholesky factor of AA⊤ is computed once and then used along

the iterations in order to update the dual variable y.

As can be seen in Table 2, interior point methods are not

able to solve instances with more than 30000 constraints due

to memory limitations. For what concerns DADAL, the number

of iterations decreases. However, we observe that a decrease

in the number of iterations does not always correspond to an

improvement in the computational time: This suggests that the

update of the dual variables performed at Step 3 in DADAL may

be too expensive. According to the MATLAB profiling of our

code, this is due to the need of solving three linear systems for

the update of y (see Proposition 2).

5.2. Computation of the Lovász theta number

Given a graph G, let V(G) and E(G) be its set of vertices and

its set of edges, respectively. The Lovász theta number ϑ(G) of

Problem n m p seed

P1 300 20000 3 3002030

P2 300 25000 3 3002530

P3 300 10000 4 3001040

P4 400 30000 3 4003030

P5 400 40000 3 4004030

P6 400 15000 4 4001540

P7 500 30000 3 5003030

P8 500 40000 3 5004030

P9 500 50000 3 5005030

P10 500 20000 4 5002040

P11 600 40000 3 6004030

P12 600 50000 3 6005030

P13 600 60000 3 6006030

P14 600 20000 4 6002040

P15 700 50000 3 7005030

P16 700 70000 3 7007030

P17 700 90000 3 7009030

P18 800 70000 3 8007030

P19 800 100000 3 80010030

P20 800 110000 3 80011030

Table 1: Randomly generated instances.

MOSEK mprw.m DADAL

Problem time(s) iter time(s) iter time(s)

P1 633.1 340 10.1 68 10.2

P2 2440.4 427 33.1 76 31.2

P3 129.1 260 11.3 146 32.6

P4 7514.6 306 13.3 101 18.9

P5 - 376 51.4 73 56.3

P6 375.7 255 19.5 187 72.9

P7 7388.3 268 11.5 151 23.1

P8 - 289 15.2 130 30.7

P9 - 319 35.3 111 74.4

P10 886.0 251 26.9 222 119.8

P11 - 266 17.3 177 41.9

P12 - 275 18.6 148 42.1

P13 - 293 28.4 132 68.7

P14 1156.3 249 20.3 270 116.2

P15 - 262 22.4 207 83.7

P16 - 278 30.1 151 79.2

P17 - 303 74.2 128 181.5

P18 - 264 34.3 207 111.2

P19 - 285 53.3 157 126.4

P20 - 296 80.9 133 168.6

Table 2: Comparison on randomly generated instances.
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Problem n m ϑ(G)

ϑ-62 300 13389 29.6413

ϑ-82 400 23871 34.3669

ϑ-102 500 37466 38.3906

ϑ-103 500 62515 22.5286

ϑ-104 500 87244 13.3363

ϑ-123 600 90019 24.6687

ϑ-162 800 127599 37.0097

ϑ-1000 1000 249750 31.8053

ϑ-1500 1500 562125 38.8665

ϑ-2000 2000 999500 44.8558

Table 3: Instances from the Kim-Chuan Toh collection [9].

MOSEK mprw.m DADAL

Problem time(s) iter time(s) iter time(s)

ϑ-62 205.1 790 9.4 173 6.8

ϑ-82 1174.5 821 18.2 143 11.1

ϑ-102 - 852 32.2 163 20.7

ϑ-103 - 848 33.8 192 25.1

ϑ-104 - 873 34.0 290 32.9

ϑ-123 - 874 55.0 191 38.6

ϑ-162 - 907 108.9 165 61.2

ϑ-1000 - 941 212.9 177 117.8

ϑ-1500 - 997 803.6 131 266.6

ϑ-2000 - 1034 1948.5 111 478.8

Table 4: Comparison on ϑ-number instances (from the Kim-Chuan Toh collec-

tion).

G is defined as the optimal value of the following SDP problem:

max 〈J, X〉

s.t. Xi j = 0, ∀ i j ∈ E(G),

traceX = 1, X ∈ S+n ,

where J is the matrix of all ones.

In Table 3, we report the dimension and the optimal value

of the theta instances considered, obtained from some random

graphs of the Kim-Chuan Toh collection [9]. As in the case of

randomly generated instances, MOSEK can only solve instances

with m < 25000.

In the case of theta instances AA⊤ is a diagonal matrix, so

that the update of the dual variable y turned out to be less ex-

pensive with respect to the case of random instances. We can

see in Table 4 the benefits of using DADAL: the improvements

both in terms of number of iterations and in terms of computa-

tional time are evident. We want to underline that for specific

instances different tuning of the parameters in DADAL can fur-

ther improve the running time. In Table 5, we report the results

we obtained with DADAL keeping σ fixed to σ0 along the it-

erations and performing only one iteration of Algorithm 2 in

order to update (y,V) in Step 3: this turned out to be a better

choice for these instances and resulted in even a better perfo-

mance compared to mprw.m.

mprw.m DADAL

Problem iter time(s) iter time(s)

ϑ-62 790 9.4 132 4.9

ϑ-82 821 18.2 124 6.8

ϑ-102 852 32.2 123 11.3

ϑ-103 848 33.8 125 11.7

ϑ-104 873 34.0 166 15.2

ϑ-123 874 55.0 121 17.1

ϑ-162 907 108.9 103 27.4

ϑ-1000 941 212.9 105 50.6

ϑ-1500 997 803.6 94 136.8

ϑ-2000 1034 1948.5 89 283.9

Table 5: Comparison between mprw.m and DADAL on theta number instances -

best parameter tuning.

5.3. Comparison on linear ordering problem instances

Ordering problems associate to each ordering (or permuta-

tion) of a set of n objects N = {1, . . . , n} a profit and the goal is

to find an ordering of maximum profit. In the case of the linear

ordering problem (LOP), this profit is determined by those pairs

(u, v) ∈ N × N, where u comes before v in the ordering. The

simplest formulation of LOP problems is a binary linear pro-

gramming problem. Several semidefinite relaxation have been

proposed to compute bounds on this challenging combinatorial

problem [10], the basic one obtained from the matrix lifting ap-

proach has the following formulation:

max 〈C, Z〉

s.t. Z ∈ S+n , diag(Z) = e,

yi j, jk − yi j,ik − yik, jk = −1, ∀i < j < k,

where Z =

[

1 y⊤

y Y

]

is of order n =
(

N

2

)

+ 1. We have considered

LOP instances where the dimension of the set N ranges from

10 to 100 and the matrix C is randomly generated.

Again, for these instances, we have that AA⊤ is a diagonal

matrix and using DADAL, especially when dealing with large

scale instances, leads to an improvement both in terms of num-

ber of iterations and in terms of computational time (see Ta-

ble 6).

6. Conclusions

We investigate the idea of factorizing the dual variable Z

when solving SDPs in standard form within augmented La-

grangian approaches. Our proposal is to use a first order update

of the dual variables in order to improve the convergence rate

of ADAL methods. We add this improvement step to the im-

plementation mprw.m and we conclude that the approach pro-

posed looks particularly promising for solving structured SDPs

(which is the case for many applications).

From our computational experience we notice that the spec-

tral decomposition needed to perform the projection is not nec-

essarily the computational bottleneck anymore. In fact, the ma-
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MOSEK mprw.m DADAL

|N| n m time(s) iter time(s) iter time(s)

10 46 166 0.4 411 0.2 117 0.8

20 191 1331 3.6 441 2.3 150 2.6

30 436 4496 34.5 483 12.1 170 15.5

40 781 10661 294.1 542 60.7 232 79.8

50 1226 20826 1339.8 604 237.7 215 232.1

60 1771 35991 - 636 759.8 252 748.3

70 2416 57156 - 707 2049.1 273 2122.7

80 3161 85321 - 745 4788.6 282 4395.9

90 4006 121486 - 773 9589.3 300 8923.2

100 4951 166651 - 821 18820.7 323 17944.1

Table 6: Comparison on linear ordering problems.

trix multiplications needed in order to update y (see Proposi-

tion 2) can be the most expensive operations (e.g. in the case of

randomly generated instances).

We also tried to use the factorization of Z in a “pure” aug-

mented Lagrangian algorithm. However, this turned out to be

not competitive with respect to ADAL methods. This maybe

due to the fact that positive semidefiniteness of the primal ma-

trix and complementarity conditions are not satisfied by con-

struction (as is the case in ADAL methods) and this slows down

the convergence. We want to remark that dealing with the up-

date of the penalty parameter in ADAL methods turned out to

be a critical issue. Here we propose a unified strategy that leads

to a satisfactory performance on the instances tested. However,

for specific instances, different parameter tuning may further

improve the performance as demonstrated for the case of com-

puting the ϑ-number.

Finally, we want to comment about the extension of DADAL

to deal with SDPs in general form. Of course, any inequal-

ity constraint may be transformed into an equality constraint

via the introduction of a non-negative slack variable, so that

DADAL can be applied to solve any SDP. However, avoid-

ing the transformation to SDPs in standard form is in general

preferable, in order to preserve favorable constraint structures

such as sparsity and orthogonality.

In [5], an alternating direction augmented Lagrangian

method to deal with SDPs that includes, in particular, posi-

tivity constraints on the elements of the matrix X is presented

and tested, even if no convergence analysis is given. In fact,

when considering multi-blocks alternating direction augmented

Lagrangian methods, theoretical convergence is an issue [11].

The investigation on how to properly insert the proposed fac-

torization technique within converging augmented Lagrangian

schemes for SDPs in general form will be the topic of future

work.
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