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On Eulerian orientations of even-degree hypercubes
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Abstract

It is well known that every Eulerian orientation of an Eulerian 2k-edge connected (undirected) graph is

strongly k-edge connected. A long-standing goal in the area is to obtain analogous results for other types of

connectivity, such as node connectivity. We show that every Eulerian orientation of the hypercube of degree

2k is strongly k-node connected.
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1. Introduction

The hypercube Qk is a k-regular graph on 2k nodes that can be constructed by labeling the nodes by

the 2k subsets of the set {1, 2, . . . , k} and placing an edge between two nodes whenever the two node labels

(i.e., the two subsets) differ in a single element. Hypercubes (and their variants) are useful in computer

communication networks, VLSI design, etc., and there is extensive literature in this area, see [3, 5, 8, 12, 15].5

An orientation of an (undirected) graph G = (V,E) is a directed graph D = (V,A) such that each edge

{v, w} ∈ E is replaced by exactly one of the arcs (v, w) or (w, v).

Orientations of hypercubes have applications in practical domains such as broadcasting in computer

communication networks and the design of parallel computer architectures. The connectivity properties of

hypercubes and orientations of hypercubes have been studied, see [3, 8, 15], and orientations of hypercubes10

that achieve the maximum possible node connectivity are of interest, see [8, Proposition 9].

Our key result states that the optimal node connectivity among orientations of Q2k can be achieved in a

trivial way: pick any orientation such that the indegree is equal to the outdegree at every node.

1.1. Smooth orientations and Eulerian orientations

For a node v of a directed graph, we use din(v) to denote the number of arcs with head v; similarly,15

dout(v) denotes the number of arcs with tail v.
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An orientation of an (undirected) graph G is called smooth if the absolute value of the difference between

the indegree and the outdegree of every node is at most one, that is,
∣∣din(v)− dout(v)

∣∣ ≤ 1, ∀v ∈ V (G). A

smooth orientation of an Eulerian graph G is called an Eulerian orientation; such an orientation satisfies

din(v) = dout(v), ∀v ∈ V (G). Moreover, it can be seen that for every Eulerian orientation, for every subset20

of the nodes W , the number of arcs leaving W is equal to the number of arcs entering W , see [4, Ch.6.1].

Therefore, every Eulerian orientation of a 2k-edge connected Eulerian graph results in a directed graph that

is k-edge connected. An Eulerian orientation of an Eulerian graph can be found by orienting the edges of

each connected component according to an Euler tour.

1.2. Nash-Williams’ results and possible extensions25

A well-known result of Nash-Williams says that the edges of a k-edge connected graph can be oriented

such that the resulting directed graph is bk2 c-edge connected [13], [2, Ch.9]. A long-standing goal in the area

is to extend Nash-Williams’ result to obtain analogous results for other types of connectivity, such as node

connectivity and element connectivity, see [6, 10, 11, 16, 17].

1.3. Our results30

We show that every Eulerian orientation of the hypercube Q2k is strongly k-node connected; recall that

a directed graph is called strongly k-node connected if it has ≥ k + 1 nodes and the deletion of any set of

≤ (k − 1) nodes results in a strongly-connected directed graph.

Let us mention that there are easy inductive constructions that prove that there exists a “good orienta-

tion” for a hypercube of even degree; we describe one such construction in Fact 1. For hypercubes of odd35

degree, the smoothness condition does not guarantee “good orientations;” for example, there exist smooth

orientations of Q3 that are not strongly connected.

2. Preliminaries

This section has some definitions and preliminary results. Also, see [4] for standard definitions and

notation.40

The hypercube Qk is the Cartesian product of k copies of K2, see [14]. There are other constructions of

Qk, and we describe three of them.

(i) Label 2k nodes by k-bit binary strings, and place an edge between two nodes whenever their labels

differ in exactly one bit (i.e., the Hamming distance between the two strings is one).

(ii) Label 2k nodes by the 2k subsets of a set with k elements, and place an edge between two nodes45

whenever the two node labels (i.e., the two subsets) differ in a single element.
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(iii) Take two disjoint hypercubes Qk−1, and place an edge between corresponding pairs of nodes in the two

copies of Qk−1; thus, the edges between the two copies of Qk−1 form a perfect matching.

By a d-hypercube we mean a hypercube of degree d.

For a node set S of a graph G, we use NG(S) to denote the set of neighbors of S, thus, NG(S) = {w ∈50

V (G)− S : ∃v ∈ S such that {v, w} ∈ E(G)}.

Fact 1. For each integer k ≥ 1, there exists an Eulerian orientation of Q2k that is strongly k-node connected.

Proof: Let k ≥ 1 be an integer. We sketch an inductive construction that gives a strongly (k + 1)-

node connected Eulerian orientation for the hypercube Q2k+2. Observe that any Eulerian orientation of

Q2 (the 4-cycle) is strongly 1-connected. Assume (by induction) that Q2k has a strongly k-node connected55

Eulerian orientation. View the (2k + 2)-hypercube as four 2k-hypercubes (i.e., four copies of Q2k) together

with 22k 4-cycles, where each of these 4-cycles Ci contains a distinct node i of the first copy of Q2k as

well as the image of i in each of the other three copies of Q2k. By the induction hypothesis, there exists a

strongly k-node connected Eulerian orientation for Q2k. Fix such an orientation for each of the four copies

of Q2k. Moreover, for each of the 4-cycles Ci, fix any Eulerian orientation of Ci. Let D be the resulting60

directed graph (i.e., orientation of Q2k+2). We claim that D is strongly (k+ 1)-node connected. To see this,

consider any set of nodes Z of size ≤ k. Suppose that one of the four copies of Q2k contains Z; then it is

clear that each of the other three copies of Q2k is strongly connected in D − Z, and hence, (using the 22k

oriented 4-cycles of D) it can be seen that D − Z is strongly connected. Otherwise, each of the four copies

of Q2k has ≤ k − 1 nodes of Z, hence, the removal of Z from any one of the four copies of Q2k results in a65

strongly connected directed graph; again (using the 22k oriented 4-cycles of D), it can be seen that D − Z
is strongly connected.

3. Eulerian orientations of 2k-hypercubes

This section has our results and proofs. In this section, we assume that k is a positive integer.

Theorem 2. Let G be a 2k-regular 2k-node connected graph such that for every set of nodes S with 1 ≤70

|S| ≤ |V (G)|/2 we have |NG(S)| > min{k2 − 1, (k − 1)(|S| + 1)}. Then every Eulerian orientation of G

is strongly k-node connected.

Proof: Let D denote an arbitrary Eulerian orientation of G. (In what follows, when we refer to the

orientation of an edge of G we mean the corresponding directed edge of D.) By way of contradiction,

suppose that D is not strongly k-node connected. Then there is a node set Z of size ≤ k− 1 whose deletion75

from D results in a directed graph that has a partition (S, S̄) of its node set V (G)− Z such that both S, S̄

are nonempty and the edges of G−Z in this cut either are all oriented from S to S̄ or are all oriented from
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S̄ to S. We fix the notation such that |S| ≤ |S̄|. (Now, observe that |S| satisfies the condition stated in the

hypothesis.) Moreover, without loss of generality, we assume that the edges are oriented from S to S̄ (the

arguments are similar for the other case). Observe that G− Z has ≥ |NG(S)| − |Z| edges in the cut (S, S̄).80

Thus, D has ≥ |NG(S)| − |Z| edges oriented out from S (and into S̄). Consider the cut (S, S̄ ∪Z) of G, and

observe that it has ≤ min{k|Z|, |S| |Z|} edges oriented into S (and out of Z), because (i) all such edges are

incident to nodes of Z and only k of the 2k edges incident to a node w ∈ Z are oriented out of w; (ii) each

such edge is incident to a node s ∈ S and a node w ∈ Z (and each pair s, w contributes at most one such

edge). Thus, the cut (S, S̄ ∪ Z) of G has ≥ |NG(S)| − |Z| ≥ |NG(S)| − (k − 1) edges oriented out of S and85

≤ min{k|Z|, |S| |Z|} ≤ min{k(k − 1), |S|(k − 1)} edges oriented into S; the hypothesis (in the theorem)

implies that the former quantity is greater than the latter quantity. This is a contradiction: in an Eulerian

orientation of an Eulerian graph, every cut has the same number of outgoing edges and incoming edges.

In the next subsection we show that hypercubes of even degree satisfy all the conditions stated in

Theorem 2; this gives our main result.90

3.1. Bounds for the 2k-hypercube

The main goal of this subsection is to show that the hypercube Q2k satisfies the inequalities stated in

Theorem 2. Our analysis has two parts depending on the size m of the set S ⊆ V (Q2k) (in the statement of

Theorem 2); the first part (Fact 4) applies for 1 ≤ m ≤ k + 1 and it follows easily; the second part (Fact 5)

applies for k + 2 ≤ m ≤ 22k−1 and it follows by exploiting properties of the hypercube. In more detail,95

in the second part, we show that the minimum of |NQ2k
(S)| over all sets S ⊆ V (Q2k) of size m (where

k+ 2 ≤ m ≤ 22k−1) is > k2− 1; our proof avoids elaborate computations by exploiting structural properties

of hypercubes; a key point is to focus on a subgraph of the hypercube induced by the set of binary strings

of Hamming weight i and the set of binary strings of Hamming weight i − 1 (see Claim 6 in the proof of

Fact 5).100

We follow the notation of [1] and use bv(m,Q2k) to denote min{|NQ2k
(S)| : S ⊆ V (Q2k), |S| = m};

thus, bv(m,Q2k) denotes the minimum over all node sets S ⊆ V (Q2k) of size m of the number of neighbors

of S. For the sake of exposition, we mention that the node sets S with |NQ2k
(S)| = bv(m,Q2k) (i.e., the

minimizers of bv(m,Q2k)) are Hamming balls (see [1, page 126]), and the formula for bv(m,Q2k) (stated in

Theorem 3 below) is obtained by computing the minimum number of neighbors of such sets. Harper, see [9]105

and also see [7], proved the following result:
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Theorem 3 (Theorem 4, Ch. 16, [1]). Every integer m, 1 ≤ m ≤ 22k − 1, has a unique representation

in the form

m =
2k∑

i=r+1

(
2k

i

)
+m′, 0 < m′ ≤

(
2k

r

)
,

m′ =
r∑

j=s

(
mj

j

)
, 1 ≤ s ≤ ms < ms+1 < · · · < mr.

Moreover,

bv(m,Q2k) =

(
2k

r

)
−m′ +

r∑

j=s

(
mj

j − 1

)
.

Remark: To find the unique representation of m stated in the above theorem, we start by taking r to be

the largest integer x ∈ {1, . . . , 2k} such that m ≤∑2k
i=x

(
2k
i

)
, and then we fix m′ = m−∑2k

i=r+1

(
2k
i

)
; clearly,

m′ ≤
(
2k
r

)
. Then we write m′ (uniquely) in the form

∑r
j=s

(
mj

j

)
; for this, we take mr to be the largest

integer y such that
(
y
r

)
≤ m′; if m′ =

(
mr

r

)
, then we are done, otherwise, we iterate by replacing m′ and r by110

m′ −
(
mr

r

)
and r − 1, respectively, and then applying the previous step. For example, if k = 3 and m = 17,

then r = 4, and m =
(
6
6

)
+
(
6
5

)
+m′, where m′ = 10 and m′ =

(
5
4

)
+
(
4
3

)
+
(
2
2

)
.

In what follows, we use the abbreviated notation φ(m) for bv(m,Q2k).

Now, our goal is to show that for m = 1, . . . , 22k−1, we have φ(m) > min{k2 − 1, (k − 1)(m+ 1)}. This

will imply that the hypercube Q2k satisfies the inequalities stated in Theorem 2.115

We first consider the case m = 1, . . . , k+ 1, i.e., 1 ≤ m ≤ k+ 1. We claim that φ(m) = 1 + (m/2)(4k−
m− 1). This can be easily verified for m = 1 (by applying Theorem 3). Now, suppose that m = 2, . . . , k+ 1;

then, observe that the unique representation of m (see Theorem 3) is 1+m′, where m′ = m−1 and r = 2k−1,

and moreover, m′ =
(
2k−1
2k−1

)
+
(
2k−2
2k−2

)
+ · · · +

(
2k−m′

2k−m′
)
, hence, φ(m) = (2k) −m′ +

(
(2k − 1) + (2k − 2) +

· · ·+ (2k −m′)
)

= 1 + (m/2)(4k −m− 1).120

Fact 4. For each m = 1, . . . , k + 1, we have

φ(m) > (k − 1)(m+ 1).

Proof: We have φ(m) = 1 + (m/2)(4k −m− 1), for m = 1, . . . , k + 1. Our goal is to show that

α = 1 + (m/2)(4k −m− 1)− (k − 1)(m+ 1)

is positive. We have 2α = m(k −m) + (k + 1)(m − 2) + 6. It can be seen that this quantity is ≥ 4 for

1 ≤ m ≤ k + 1.
(
For 2 ≤ m ≤ k, note that m(k −m) ≥ 0 and (k + 1)(m− 2) ≥ 0, hence, 2α ≥ 6; moreover,

for m = 1 or m = k + 1, we have 2α ≥ 4.
)
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Fact 5. For each m = k + 2, . . . , 22k−1, we have

φ(m) > (k − 1)(k + 1).

Proof: Let α denote
∑k−1

i=0

(
2k
i

)
=
∑2k

i=k+1

(
2k
i

)
; observe that 22k =

∑2k
i=0

(
2k
i

)
= 2α +

(
2k
k

)
, hence,

α = 1
222k − 1

2

(
2k
k

)
.125

Suppose that m = 22k−1. Then m = 1
222k = α + 1

2

(
2k
k

)
, hence,

∑2k
i=k+1

(
2k
i

)
< m ≤ ∑2k

i=k

(
2k
i

)
. Hence,

for each m = k+2, . . . , 22k−1, we have k ≤ r ≤ 2k−1 in the unique representation of m given by Theorem 3,

i.e., we have m =

2k∑

i=r+1

(
2k

i

)
+ m′, where 0 < m′ ≤

(
2k

r

)
, and k ≤ r ≤ 2k − 1; moreover, we have

m′ =
∑r

j=s

(
mj

j

)
, 1 ≤ s ≤ ms < ms+1 < · · · < mr. We will use this notation in the rest of the proof.

To complete the proof, we examine three cases, namely, (1) r = k, (2) k+1 ≤ r ≤ 2k−2, and (3) r = 2k−1.130

Case 1: r = k. Since m = α+m′ ≤ 22k−1, we have 1 ≤ m′ ≤ 22k−1 − α = 1
2

(
2k
k

)
. Hence, φ(m) =

(
2k

r

)
−

m′+
r∑

j=s

(
mj

j − 1

)
≥
(

2k

r

)
−m′ ≥

(
2k

r

)
− 1

2

(
2k

k

)
=

1

2

(
2k

k

)
. Clearly, for k = 3, we have 1

2

(
2k
k

)
> k2−1,

and for k ≥ 3, we have 1
2

(
2k
k

)
≥ 1

2

(
2k
3

)
> k2 − 1. Moreover, for k = 1, Fact 5 holds vacuously, and for

k = 2, by the 4-node connectivity of Q4, we have φ(m) ≥ 4 > k2 − 1 = 3, ∀m ∈ {4, . . . , 8}.

Case 2: k + 1 ≤ r ≤ 2k − 2. Claim 6, see below, states the key inequality

m′ <
r∑

j=s

(
mj

j − 1

)
.

This immediately implies that φ(m) =

(
2k

r

)
− m′ +

r∑

j=s

(
mj

j − 1

)
>

(
2k

r

)
≥
(

2k

2

)
= k(2k − 1) >135

k2 − 1 (for k ≥ 1), as required; observe that the second inequality uses the upper bound on r (as well

as the lower bound r ≥ k + 1 ≥ 2).

Case 3: r = 2k − 1. Thus, we have k+2 ≤ m ≤∑2k
i=2k−1

(
2k
i

)
= 2k+1. Then m′ = m−∑2k

i=2k

(
2k
i

)
= m−1,

hence, k + 1 ≤ m′ ≤ 2k. Thus, φ(m) =

(
2k

r

)
−m′ +

r∑

j=s

(
mj

j − 1

)
≥

r∑

j=s

(
mj

j − 1

)
.

Claim 6, see below, has the inequality
∑r

j=s

(
mj

j−1
)
≥ m′(2k − 1)/2, assuming that r = 2k − 1.140

Thus, we have φ(m) ≥ m′(2k − 1)/2 > (k + 1)(2k − 2)/2 = k2 − 1, as required.

Claim 6. For r ≥ k + 1, we have
r∑

j=s

(
mj

j − 1

)
> m′, and moreover, for r = 2k − 1, we have

r∑

j=s

(
mj

j − 1

)
≥

m′(2k − 1)/2.

To prove this claim, it is convenient to view the 22k nodes of Q2k as the 22k subsets of the set {1, 2, . . . , 2k}
(recall the second construction in Section 2).145
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Let Li ⊂ V (Q2k) denote the set of nodes corresponding to i-element subsets of {1, 2, . . . , 2k}. For A ⊆ Li,

let Γ(A) denote NQ2k
(A) ∩ Li−1 = {v ∈ Li−1 : ∃w ∈ A such that {v, w} ∈ E(Q2k)}; Γ(A) is called the

lower shadow of A. (We mention that the lower shadow of A is denoted by ∂A in [1].)

Following [1, Ch.5], let ∂(r)(m′) denote
∑r

j=s

(
mj

j−1
)
.

Let M ′ ⊆ Lr consist of the first m′ nodes (in colex order) of Lr, and let S′ ⊆ Lr−1 consist of the first150

∂(r)(m′) nodes (in colex order) of Lr−1.

It is well known that the lower shadow of the first m′ nodes (in colex order) of Lr consists of precisely

the first ∂(r)(m′) nodes (in colex order) of Lr−1; see [1, pp. 28–32]. Thus, we have Γ(M ′) = S′.

Our key inequality can be restated as m′ = |M ′| < |S′|. We will derive it by examining the subgraph H

of Q2k induced by M ′∪S′. Note that H is a bipartite graph with the node bipartition M ′, S′. Observe that155

for each node of M ′ (which corresponds to an r-element set), there are exactly r neighbors in Γ(M ′) = S′.

On the other hand, a node in S′ (which corresponds to an (r−1)-element set) has ≤ 2k−r+1 < r neighbors

in M ′ (the strict inequality follows from k + 1 ≤ r). It follows that |M ′| < |S′|. This proves the inequality
r∑

j=s

(
mj

j − 1

)
> m′ of our claim.

Now, suppose that r = 2k−1. Then, the above arguments (on the subgraph H with the node bipartition160

M ′, S′) imply that each node in M ′ has 2k − 1 neighbors in S′, and each node in S′ has ≤ 2 neighbors in

M ′. Hence,

r∑

j=s

(
mj

j − 1

)
= |S′| ≥ |M ′|(2k − 1)/2 = m′(2k − 1)/2. This proves the second part of the claim.

Our main result follows from Theorem 2, Theorem 3, the fact that Q2k is 2k-regular and 2k-connected,

and the inequalities stated above (see Facts 4, 5).165

Theorem 7. Every Eulerian orientation of a hypercube of degree 2k is strongly k-node connected.
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[7] P.Frankl and Z.Füredi, “A short proof for a theorem of Harper about Hamming spheres,” Discrete

Math., 34:311–313, 1981.

[8] M.Hamdi, “Topological properties of the directional hypercube,” Information Processing Letters,185

53:277–286, 1995.

[9] L.H.Harper, “Optimal numberings and isoperimetric problems,” J. Comb. Theory, 1:385–394, 1966.
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