arXiv:1911.08636v1 [math.OC] 20 Nov 2019

An implementation of steepest-descent augmentation
for linear programs

Steffen Borgwardt! and Charles Viss?

! steffen.borgwardt@ucdenver.edu; University of Colorado Denver

2 charles.viss@ucdenver.edu; University of Colorado Denver

Abstract. Generalizing the simplex method, circuit augmentation schemes for linear
programs follow circuit directions through the interior of the underlying polyhedron.
Steepest-descent augmentation is especially promising, but an implementation of the
iterative scheme is a significant challenge. We work towards a viable implementation
through a model in which a single linear program is updated dynamically to remain
in memory throughout. Computational experiments exhibit dramatic improvements
over a naive approach and reveal insight into the next steps required for large-scale
computations.

Keywords: circuits, linear programming, polyhedra

MSC: 52B05, 90C05, 90C08, 90C10

1 Introduction

We consider the optimization of a linear objective ¢ € R™ over a general polyhedron of the
form

P={xeR": Ax=b, Bx <d},

where A € R™4*" and B € R™5*™, Recall from [4,5] the definition of the set of circuits
C(A, B) of P:

Definition 1 (Circuits). For a polyhedron P = {x € R": Ax = b, Bx < d}, the set of
circuits of P, denoted C(A, B), consists of those g € ker(A) \ {0} normalized to coprime
integer components for which Bg is support-minimal over the set {Bx: x € ker(A) \ {0}}.

Circuits first appeared in the literature as the elementary vectors of a subspace [19].
Geometrically, the set of circuits consists of all potential edge directions of P as the right-
hand side vectors b and d vary [12]. For general purposes, any normalization which results
in a unique positive and negative representative for each of these one-dimensional directions
can be used when working with circuits. We refer to such a scalar multiple of a circuit
g € C(A, B) as a circuit direction of P. The integer normalization in Definition 1 allows for
intuitive interpretations of the circuits of many polyhedra from combinatorial optimization
[2,3,6,8,15].

Note that C(A, B) is dependent on the representation of a polyhedron. In fact, converting
between representations can introduce exponentially many additional directions to the set of
circuits [9]. In this paper, we therefore use the above representation for P which generalizes
both standard form and canonical form so that no conversion between representations is
required.

As a generalization of the set of edge directions of P, the set of circuits is a universal test
set for any linear program over the polyhedron [12]; i.e., given a feasible solution x(to the
linear program min{c’x: x € P}, either xq is an optimal solution or there exists a circuit
g € C(A, B) and a step size o > 0 such that xo+ag € P and c’g < 0. Circuits are therefore
used in the development of augmentation schemes for solving linear programs in which

mailto:steffen.borgwardt@ucdenver.edu
mailto:charles.viss@ucdenver.edu

successive, improving, maximal steps are taken along circuit directions until an optimal
solution is reached or the problem is determined to be unbounded [10,13,14]. These schemes
generalize the simplex method in that they follow circuits, the potential edge directions of
the underlying polyhedron; however, their steps are not restricted to only the actual edges
of the polyhedron and may traverse its interior. Hence, the polynomial Hirsch conjecture —
which states that the combinatorial diameter of a polyhedron can be bounded polynomially
—need not be true in order for there to exist a strongly-polynomial time circuit augmentation
scheme for linear programming. For this reason, there has been recent interest in the study
of the circuit diameter [4,7,15]: the minimum number of circuit steps required to walk from
one vertex to another in a polyhedron.

One example of a circuit augmentation algorithm is the greedy or deepest-descent aug-
mentation scheme from [10,11] which requires at most (weakly) polynomially many steps.
The challenge in actually implementing this scheme lies in the computation of the required
circuits — a task presumed to be hard. A promising alternative is the steepest-descent aug-
mentation scheme of [10] which generalizes the minimum-mean cycle canceling algorithm
for solving network flow problems to any bounded linear program [11]. The number of steps
needed for this scheme is bounded by the number of circuits [10]. However, a polyhedral
model which encodes circuits as vertices can be used to efficiently compute each required
circuit [9]. It follows that the algorithm terminates in strongly polynomial time for a poly-
hedron defined by a totally unimodular matrix [9].

A limitation of this steepest-descent augmentation scheme is that a separate linear pro-
gram is required at each iteration to provide the circuits. In this paper, we provide an
improved implementation in which each iteration requires only a simple change in variable
bounds for a single, dynamic linear program. Therefore, the same program remains in mem-
ory throughout the algorithm and each of the computed steepest-descent directions serves
as a warm-start for the program in the subsequent iteration. Further, we generalize the
scheme so that any steepest-descent direction can be used as an augmenting direction —
even if it is not necessarily a circuit of the underlying polyhedron. This enables modified
implementations in which interior point methods are used to solve the dynamic program.

We begin in Section 2 by formally defining this generalized steepest-descent augmen-
tation scheme and showing that it satisfies the same favorable properties as the original
(Theorem 1). Next, in Section 3 we detail our proposed implementation of the scheme.
Lastly, computational results are presented in Section 4. We compare various versions of
our implementation to each other and to a naive approach (Section 4.1) and discuss the
next steps required for adopting steepest-descent augmentation in a viable algorithm for
large-scale computations (Section 4.2).

2 Steepest-descent Augmentation

We outline the basic principles behind a steepest-descent augmentation scheme for linear
programs. Let P = {x € R": Ax = b, Bx < d} be a general polyhedron and consider
the linear program LP = min{c?x: x € P}. At iteration i of an augmentation scheme for
solving LP, assume we have a feasible solution x; € P. If x; is not optimal, the iteration
requires an augmenting direction y; such that y, is an improving direction with respect to
c (ie., ¢y, < 0) and such that y, is strictly feasible at x; (i.e., there exists some a > 0
such that x; + ay,; € P). A maximal step is then taken in the direction of y, starting at x;:
That is, X;4+1 = X; + a;y,; where x; + o;y; € P but x; + a;y; ¢ P for any a > ;.

In the steepest-descent circuit augmentation scheme from [9,10], each of these augment-
ing directions y; is a so-called steepest-descent circuit of P with respect to ¢ at x;:

Definition 2 (Steepest-descent Circuit). Given a polyhedron P = {x € R": Ax =
b, Bx < d}, a feasible solution xg € P, and an objective ¢ € R", a steepest-descent circuit
at xg is a strictly feasible circuit g € C(A, B) that minimizes cTg/||Bg||1 over all such
circuits.

It is shown in [9] that such a circuit can be computed by finding a vertex solution to the
following LP over a polyhedral model of the set of circuits of P:

min ¢’x
st. Ax=0
Bx = yJr -y
yi =0 Vi:(Bxo); =d; (model)
mp mp
Syt Sy =
i=1 i=1
yt.y >0.

Using this augmentation scheme, no circuit is ever repeated as an augmenting direction
and the algorithm terminates in at most |C(A, B)| iterations [9,10]. More specifically, the
number of iterations is bounded by the number of different values of ¢’'g/||Bg||; over all
circuits g € C(A, B) times the dimension of P — a result known as Bland’s Theorem [1,10].

When computing an augmenting direction via LP (model), a vertex solution corresponds
to a circuit of P [9]. However, even if the program returns a non-vertex optimal solution
(for instance, via an interior point method), we show in Theorem 1 that the corresponding
direction can be used in a generalized steepest-descent augmentation scheme for which the
above bounds on the number of iterations still hold. Namely, we define a steepest-descent
augmenting direction at xg € P to be any y € ker(A) which is strictly feasible at xg and
minimizes ¢’y /||By||1 over all such directions. A steepest-descent augmentation at x; € P
is thus a maximal augmenting step x;+1 = x; + o;y; along a steepest-descent augmenting
direction y;.

Theorem 1. Consider the linear program LP = min{c’x: x € P} where P = {x €
R™: Ax = b, Bx < d}. Given a feasible solution xo € P, the number of steepest-descent
augmentations needed to solve LP is at most

T

am(P)-|{ g <A B ||

Proof. The claim follows from the conformal sum property of circuits [12], which states that
any y € ker(A) can be expressed as the sum y = 22:1 Ajg; of at most dim(P) circuits g;
of P (i.e., t <mn—mau), where A > 0 and each Bg; belongs to the same orthant of R™2
as By. Therefore, any augmenting direction y decomposes into at most dim(P) conformal
circuits gy, ..., 8;, where each g; is sign-compatible with y with respect to the matrix B.

Let x¢,x1,...,X; be a sequence of steepest-descent augmentations beginning at xy. We
show that for each augmentation x;;1 = x; + o;y;, at least one of the conformal circuits of
y; must not appear as a conformal circuit in any of the other augmenting directions.

By the definition of steepest-descent augmentations, we retain two useful properties of
the (circuit) augmentations from [9,10]: the steepness of consecutive augmenting directions
is non-increasing (i.e., —c’y, 1 /||By; 1|1 < —c’y;/||By;l|1) and a change in orthants
from By, to By, implies a strict change in the steepness of the steps.

Consider the augmenting direction y,. Assume y, is not a circuit and let g, ..., g, denote
its conformal circuits (i.e., y, = 22:1 Ajg;)- We claim that the steepness c’y,/||By;||1 of
y; is equal to the steepness Cng/HngHl for each of the g;’s. To see this, note by the
definition of conformal circuits that each g; is strictly feasible at x;. Hence, by choice of y;,
none of the g;’s is steeper than y,. On the other hand, suppose one of the g;’s is less steep
than y;; ie., ¢’'g;/||Bg;lli > c’y;/||By;ll1. Without loss of generality, assume g, is less

steep than y;. We then have:

CT(yz' - /\1g1) = CTyz' - >\1ch1
Ty, Aiclg
= ||By;|| —=>— — ||B 217 o1
1BYilli gy ~ P&l g
cly, Aicly,
<|IBy,lh i~ || Bl
1Byill gy i ~ 1Bl gy
1Byl — [BOug)l - <7y,
Byl
(||1B(y; — Migy)l) - Ty,
< Byl

where the second inequality follows from the definition of conformal circuits. This implies:

c?(y; — Migy) cly,
I[B(y; — Mgl |I1By;lh

However, since y,; — A\1g, must itself be strictly feasible at x;, this contradicts the choice of
y;. Thus, each g, has the same steepness as y;.

It follows that each of the circuits g; can only appear as a conformal circuit while the
steepness of augmenting directions is ¢’y /|| By;||1. For a fixed steepness value, note that all
of the applied augmenting directions must be sign-compatible with each other with respect
to B. Hence, one of the g;’s must not appear as a conformal circuit in any subsequent
iteration, else the augmenting step would not have been maximal. Further, at most dim(P)
augmentations can be applied for a fixed steepness value. To see this, note that due to sign-
compatibility, if a maximal step terminates at a facet F' of P, subsequent augmentations
for the current steepness value may not leave F'. Therefore, each step belongs to a face of
P with strictly smaller dimension than that of the previous step.

Since the steepness of augmenting directions throughout the steepest-descent scheme is
non-decreasing, it follows that the total number of iterations is bounded by the dimension of
P times the number of different possible steepness values — the bound stated in the theorem.

|

We note the similarity of this steepest-descent augmentation scheme for linear programs
to gradient descent for general optimization problems. Gradient descent computes a steepest
direction with respect to the Euclidean norm; in the case of linear minimization, this direc-
tion is the negative objective projected onto set of strictly feasible directions at the current
solution (i.e., the inner cone of the current solution). If a solution is on the boundary of the
polyhedron, computing this direction is equivalent to the projection of the cost vector onto
a polyhedral cone — a quadratic programming problem.

In contrast to the gradient descent direction, computing the steepest-descent direction
becomes easier as the number of facets containing the current solution increases: Each in-
equality of Bxg < d which is tight corresponds to a variable which becomes fixed in LP
(model). Thus, steepest-descent augmentation can be interpreted as a viable implementa-
tion of a maximal-step gradient descent scheme for linear programs — instead of using the
steepest feasible direction with respect to the Euclidean norm (implicitly assuming that the
underlying solution space is a ball in R™), we compute the steepest feasible direction y with
respect to the 1-norm of By, which takes into account the combinatorial structure of the
underlying polyhedron.

3 Implementation

When implementing the steepest-descent augmentation scheme described in Section 2, the
constraints of LP (model) change at each iteration according to the active facets at the

current feasible solution. In this section, we modify the program so that only the variable
upper bounds change at each iteration. Thus, a dynamic model can remain in memory
throughout the algorithm and each of the computed steepest-descent directions can be used
to warm-start the model in subsequent iterations.

Note that in LP (model), due to the non-negativity of y ™, y ~ and the constraint y ;"% yi+
St y; =1, each of the variables y;r and y,; is implicitly bounded above by 1. When the
current feasible solution xq satisfies (Bxg); = d;, the upper bound for yj is strengthened
to 0. Therefore, we can reformulate LP (model) as follows:

min ¢'x

s.t. Ax =0
Bx—-yT+y =0
yi <0 Vi:(Bxo)i=d;
yi <1 Vi:(Bxg)i <d;

mp mp
Yoyvi+d v =1
i=1 i=1

y,y~ >0.

(steepest)

Since only the right-hand side of LP (steepest) changes at each iteration, the augmenting
direction used in iteration 7 of the steepest-descent augmentation scheme corresponds to a
dual feasible solution to the program at iteration ¢+ 1. Hence, warm-starting a dual simplex
method to solve LP (steepest) at each iteration is a natural approach for computing the
required directions. An outline of this proposed implementation of the steepest-descent
augmentation scheme is detailed in Algorithm 1.

Algorithm 1 Steepest-descent Augmentation Scheme

1: procedure STEEPESTDESCENT(P, ¢,%xo € P) > Solves LP = minyep cTx
2: Initialize LP (steepest) using P, ¢, and xq.

3: 140

4: Solve LP (steepest) to obtain optimal solution (x*,y*,y ™)

5: y; — x*

6: while c’y, < 0do

7 a; + max{a € R": x; + ay, € P}

8: Xi+1 ¢ Xi + iy,

9: Modify variable upper bounds for LP (steepest) based on x;4+1
10: Using y; as a warm-start, re-solve LP (steepest) to obtain optimal solution (x*,y ',y ™)
11: YVig & x°
12: 1+ 1+1
13: end while
14: return x;

15: end procedure

The success of Algorithm 1 is dependent upon LP (steepest) being easier to solve than
the original LP. Note that although LP (steepest) is formulated within a higher-dimensional
space than that of the original problem due to the splitting of Bx into positive and negative
parts, the actual increase in dimension of the feasible set is at most m g due to the introduced
equality constraints. Thus, we can compare this formulation to the introduction of slack
variables required when solving the original problem via the simplex method. Additionally,
unlike the original problem, LP (steepest) does not depend on the right-hand side vectors
d or b.

Recall also that each active facet at the current solution further reduces the dimension of
LP (steepest). Hence, whereas highly degenerate solutions cause inefficiencies in the simplex

method, these points make the computation of a steepest-descent circuit easier. Lastly, note
that if P has a pair of parallel facets, then the corresponding constraints in LP (steepest)

are redundant. In particular, if B; = — By, the program is equivalent to the following:
min ¢’'x
s.t. Ax =0
(Bx)i=y —y; Vi#k
yi = Vi # k: (Bxo); = d;
y; =0 if (BX())k = dk
2yf +2y; +) (v +yi) =1
i#£j,k
yty >o0.

Taking all of the above into account, an interesting direction of research would be to
determine families of LPs for which solving LP (steepest) becomes significantly easier than
solving the original problem. However, even without this expert knowledge, we observe from
our computational results in Section 4.2 that solving LP (steepest) from scratch is easier
than solving the (warm-started) original problem approximately half of the time. When a
previous steepest-descent direction is used as a warm-start for LP (steepest), its computation
time is faster by an order of magnitude.

Thus, an order-of-magnitude advantage for LP (steepest) is achieved in all but the first
iteration of Algorithm 1. There are several ways a potentially effective warm-start could be
computed for LP (steepest) in the first iteration as well: A steep, feasible direction at xg
could be used to warm-start the primal simplex method (such as the first edge direction
chosen by the simplex method when applied to the original problem), or a steep but not
necessarily feasible direction could be used to warm-start the dual simplex method (such as
the projection of the cost vector ¢ onto the affine hull of P). A study of these possibilities
is another natural direction for future research.

4 Computational Results

We implemented the steepest-descent augmentation scheme as outlined in Algorithm 1 using
Gurobi [17] to initialize and repeatedly solve LP (steepest) via the dual simplex method.
The algorithm was evaluated on a subset of 79 problems from the Netlib LP Test Set
[16,18], a repository which serves as a benchmark for comparing the performance of linear
programming algorithms on real-life examples. Code for our experiments is available at
https://github.com/charles-viss/steepest-descent.

First, in Section 4.1, we evaluate our proposed implementation of the steepest-descent
augmentation scheme by comparing it to other alternative implementations; i.e., foregoing
the warm-starts at each iteration or using the primal simplex method or an interior point
method to repeatedly solve LP (steepest) rather than the dual simplex method. Next, in
Section 4.2, we compare the performance of the scheme to that of the simplex method on
the original problem and discuss the required next steps towards a viable implementation.

4.1 Comparison of Implementations

The average (mean and median) results of the experiments comparing different implemen-
tations of the steepest-descent scheme are given in Table 1. We measured the total running
time for each variation or the scheme as well as the number of iterations and the time needed
to solve LP (steepest) at each iteration. To evaluate the effectiveness of using warm-starts,
we record both the average time needed to compute the first steepest-descent direction as
well as the average time needed for all steepest-descent computations. All experiments were
performed on an Intel i5 8th Gen CPU.

https://github.com/charles-viss/steepest-descent

l H dual simplex | interior point | primal simplex | dual simplex*

Mean Total Time (s) 3.932 9.243 17.055 18.193
Median Total Time (s) 0.875 3.109 1.814 4.300
Mean Avg. Step Time (ms) 3.78 27.38 25.37 49.30
Median Avg. Step Time (ms) 2.04 18.22 5.89 20.47
Mean First Step Time (ms) 30.20 24.20 33.08 27.50
Median First Step Time (ms) 15.62 15.62 15.62 15.62
Mean SD Iterations 231.6 171.1 234.1 231.6
Median SD Iterations 137.0 119.0 134.5 137.0

Table 1: Comparison of the running time, average step times, and number of iterations
for different implementations of the steepest-descent scheme. (*) indicates the dual simplex
method without using warm-starts at each iteration.

We first note the success of the dual simplex implementation of the steepest-descent
scheme compared to the primal simplex and interior point implementations. Both total
running time and average step times are drastically reduced via dual simplex due to the
effectiveness of warm-starts. By comparing the first step times to the average step times,
we observe that whereas warm-starts for the interior point method do not appear to have
a beneficial impact on average step time, warm-starting the dual or primal simplex method
results in significant improvement. For the dual simplex method, warm-starts reduce the
average step direction computation time by an order of magnitude. For the primal simplex
method, a reduction in computation time is still apparent but not nearly as dramatic —
especially when comparing the mean average step times. However, both the interior point
and primal simplex implementations (which use warm-starts) significantly outperform the
dual simplex implementation when warm-starts are not utilized.

Lastly, we note that the interior point implementation — which is capable of comput-
ing augmenting directions that are not necessarily circuits — results in significantly fewer
iterations than the other two implementations. This suggests that further improvements
to the steepest-descent scheme could be achieved by integrating the capability to compute
non-circuit augmenting directions into the proposed dual simplex implementation.

4.2 Towards a Viable Implementation

Recall that the steepest-descent augmentation scheme requires an initial feasible solution. To
evaluate the viability of the steepest-descent scheme, we therefore compare its performance
to that of the primal simplex method warm-started with the same initial solution (i.e., Phase
IT of the primal simplex method on the original problem). This comparison is detailed in
Table 2, which provides the average total running time and number of iterations for both
algorithms as well as the first and average step time for the steepest-descent scheme.

We observe that although the total running time for the steepest-descent scheme is
not competitive with that of the simplex method, computing a first steepest-descent di-
rection via LP (steepest) is comparable to solving the original problem, while computing
subsequent directions is significantly easier. We note also that when computing the first
steepest-descent direction, approximately one-third of the time is spent in Phase I of the
dual simplex method. On the other hand, the simplex method when applied to the original
problem starts immediately at Phase II. We therefore see eliminating Phase I of this ini-
tial steepest-descent computation as an important, future angle of attack for improving the
steepest-descent scheme.

Additionally, we note that although the steepest-descent scheme takes much longer to
actually terminate, the decrease in objective value achieved through its first few steps is
often similar to that of the simplex method. Consider the results in Figure la, which are
representative of the behavior of the steepest-descent scheme when applied to many of the

First Step First Step First Step Average Step
SD Results|| Total (s) | N. Tters (Total, ms) | (Phase I, ms) | (Phase II, ms) (ms)
Mean 3.932 231.6 30.20 8.95 21.65 3.78
Median 0.875 137.0 15.62 4.98 10.64 2.04

l Simplex Results H Total (ms) ‘ N. Iters

Mean

30.24

452.6

Median

15.61

285.0

Table 2: Breakdown of the total running time, first step time (Phase I and Phase II), and
average step time of the steepest-descent (SD) scheme compared to the performance of the
simplex method — warm-started with the same starting feasible solution as the SD scheme
—on 79 problems from the Netlib LP test set.

Time comparison for cycle Time comparison for modszkl

700000 ~e~ simplex
—e~ stespest descent

600000
500000

3 400000
=

Z 300000

Obj. Value

200000

100000

o

0 2 1] 6 8 10 L oo 02 0a 06 08
Time Time

(a) Results for cycle. (b) Results for modszk1.

Fig. 1: Plots of the objective value over time for the steepest-descent augmentation scheme
and the primal simplex method on two problems from Netlib.

Netlib problems. During the first few iterations of the scheme, relatively large steps are
taken and the objective value decreases quickly — at a similar rate to that of the simplex
method. However, after this fast initial drop, the steepest-descent scheme requires many
additional iterations to finally converge to an optimal solution.

Another example which exhibits this behavior is given in Figure 1b. During its first few
iterations, the steepest-descent scheme dramatically reduces the objective value while the
simplex method stalls at a degenerate vertex. Thus, an optimal strategy for this problem and
for similar problems could be to first use the steepest-descent scheme to quickly improve the
objective value via large steps along steep, interior directions. Then, once a certain progress
threshold is reached, the algorithm could jump to a nearby vertex and terminate quickly
via the simplex method. Using such an approach, an optimal solution could potentially be
found faster than the time required by either the steepest-descent scheme or the simplex
method individually.

Note from Figure 2a that one reason the steepest-descent scheme is initially successful
in Figure 1b is the fast computation time for the first steepest-descent direction. In fact,
Phase I of this initial computation is virtually nonexistent. Hence, the problem is structured
in such a way that LP (steepest) is relatively easy to solve via the dual simplex method —
even without warm-starts.

For other problems, this reiterates the need for a warm-start for LP (steepest) at the
first iteration. Consider Figures 2b and 2c. The time needed to compute the first steepest-
descent direction is almost as much as the time needed for the simplex method to solve the
original problem. However, in subsequent iterations when a warm-start is available, the time
needed to compute steepest-descent directions is significantly reduced. If the first iteration
were to be as fast as subsequent iterations, the steepest-descent scheme may again have an
opportunity to outperform the simplex method during its initial iterations.

Time breakdown for modszk1 Time breakdown for cycle Time breakdown for degen3

simplex total first SD step time average 5D step time . simplex total first SD step time average SD step time: . simplex total first SD step time average SD step time:
(a) Results for modszk1. (b) Results for cycle. (c) Results for degen3.

Fig. 2: Solve time for the simplex method compared to the first and average steepest-descent
computation times for three Netlib problems.

In summary, further steps are needed for a practically viable implementation of the
steepest-descent augmentation scheme. Most importantly, as discussed at the end of Sec-
tion 3 and as demonstrated by our computational results, a method is needed to quickly
compute an effective warm-start for LP (steepest) in the first iteration. Such a direction
could be determined based on the underlying LP or computed through tailored algorithms
for special families of LPs. There are additional ways in which expert knowledge on the
underlying LP could be beneficial: For example, in polyhedra defined by totally unimodu-
lar matrices, steps along steepest-descent circuit directions only visit integral solutions [8].
This ensures a lower bound on the decrease in objective value achieved at each iteration.
Additionally, it significantly reduces the complexity of computing step sizes and ensures
numerical stability — addressing two issues which we observed for several of the Netlib test
problems.

References

1. R. G. Bland and D. L. Jensen. On the computational behavior of a polynomial-time network
flow algorithm. Mathematical Programming, Ser. A, 54(1):1-39, 1992.

2. S. Borgwardt. On the diameter of partition polytopes and vertex-disjoint cycle cover. Mathe-
matical Programming, Ser. A, 141(1):1-20, 2013.

3. S. Borgwardt, J. A. De Loera, E. Finhold, and J. Miller. The hierarchy of circuit diameters
and transportation polytopes. Discrete Applied Mathematics, 240:8-24, 2018.

4. S. Borgwardt, E. Finhold, and R. Hemmecke. On the circuit diameter of dual transportation
polyhedra. SIAM Journal on Discrete Mathematics, 29(1):113-121, 2016.

5. S. Borgwardt, E. Finhold, and R. Hemmecke. Quadratic diameter bounds for dual network
flow polyhedra. Mathematical Programming, 159(1-2, Ser. A):237-251, 2016.

6. S. Borgwardt and F. Happach. Good clusterings have large volume. Operations Research,
67(1):215-231, 2019.

7. S. Borgwardt, J. A. De Loera, and E. Finhold. Edges vs circuits: a hierarchy of diameters in
polyhedra. Advances in Geometry, 16(4):511-530, 2016.

8. S. Borgwardt and C. Viss. Circuit Walks in Integral Polyhedra. arXiv eprints: 1712.01933v3,
2017.

9. S. Borgwardt and C. Viss. A polyhedral model for enumeration and optimization over the set
of circuits. Discrete Applied Mathematics, in print, 2019.

10. J. A. De Loera, R. Hemmecke, and J. Lee. On augmentation algorithms for linear and integer-
linear programming: from Edmonds-Karp to Bland and beyond. SIAM Journal on Optimiza-
tion, 25(4):2494-2511, 2015.

11. J. B. Gauthier, J. Desrosiers, and M. Liibbecke. Vector space decomposition for solving large-
scale linear programs. Operations Research, 66(5):1376-1389, 2018.

12. J. E. Graver. On the foundation of linear and integer programming I. Mathematical Program-
ming, 9:207-226, 1975.

13. R. Hemmecke, S. Onn, and L. Romanchuk. N-fold integer programming in cubic time. Math-
ematical Programming, Ser. A, 137:325-341, 2013.

14

15.

16.
17.
18.
19.

. R. Hemmecke, S. Onn, and R. Weismantel. A polynomial oracle-time algorithm for convex
integer minimization. Mathematical Programming, Ser. A, 126:97-117, 2011.

S. Kafer, K. Pashkovich, and L. Sanita. On the circuit diameter of some combinatorial poly-
topes. SIAM Journal on Discrete Mathematics, 33(1):1-25, 2017.

T. Koch. The final netlib-lp results. Operations Research Letters, 32(2):138-142, 2004.
Gurobi Optimization LLC. Gurobi optimizer reference manual, 2019.

Netlib. Netlib collection of Ip problems in mps format, 2013.

R. T. Rockafellar. The elementary vectors of a subspace of RY. In Combinatorial Mathematics
and its Applications, pages 104-127. University of North Carolina Press, 1969.

10

	An implementation of steepest-descent augmentation for linear programs

