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A subgradient method for equilibrium problems

involving quasiconvex bifunctions∗
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Abstract

In this paper we propose a subgradient algorithm for solving the equi-

librium problem where the bifunction may be quasiconvex with respect

to the second variable. The convergence of the algorithm is investigated.

A numerical example for a generalized variational inequality problem is

provided to demonstrate the behavior of the algorithm.

Keywords: Equilibria, Subgradient method, Quasiconvexity.

1 Introduction

In this paper we consider the equilibrium problem defined by the Nikaido-Isoda-
Fan inequality that is given as

Find x∗ ∈ C such that f(x∗, y) ≥ 0 ∀y ∈ C, (EP )

where C is a closed convex set in R
n, f : Rn ×R

n → R ∪ {+∞} is a bifunction
such that f(x, x) = 0 for every (x, x) ∈ C × C ⊂ dom f . The interest of
this problem is that it unifies many important problems such as the Kakutani
fixed point, variational inequality, optimization, Nash equilibria and some other
problems [3, 4, 11, 14] in a convenient way. The inequality in (EP) first was
used in [16] for a convex game model. The first result for solution existence
of (EP) has been obtained by Ky Fan in [6], where the bifunction f can be
quasiconvex with respect to the second argument. After the appearance of the
paper by Blum-Oettli [4], the problem (EP) is attracted much attention of many
authors, and some solution approaches have been developed for solving Problem
(EP) see e.g. the monographs [3, 11]. A basic method for solving some classes
of Problem (EP) is subgradient (or auxiliary subproblem) one [15, 19], where
at each iteration k, having the iterate xk, the next iterate xk+1 is obtained
by solving the subproblem min{f(xk, y) + 1

2ρk
‖y − xk‖2 : y ∈ C}, with ρk >
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0. This subproblem is a strongly convex program whenever f(xk, .) is convex.
Since in the case of variational inequality, where f(x, y) := 〈F (x), y − x〉, the
iterate xk+1 = PC(x

k − 1

2ρk
F (xk)), the gradient method can be considered

as an extension of the projection one commonly used in non smooth convex
optimization [24] as well as in the variational inequality [7]. The projection
algorithms for paramonotone equilibrium problems with f being convex with
respect to second variable can be found in [1, 22, 25]. Note that when f(x, .)
is quasiconvex the subgradient method fails to apply because of the fact that
the objective function f(xk, y) + 1

2ρk
‖y − xk‖2, in general, is neither convex

nor quasiconvex. To our best knowledge there is no algorithm for equilibrium
problems where the bifunction f is quasiconvex with respect to the second
variable.

In this paper we propose a projection algorithm for solving Problem (EP),
where the bifunction may be quasiconvex with respect to the second variable. In
order to deal with quasiconvexity we employ the subdifferential for quasiconvex
function first introduced in [8], see also [20, 21] for its properties and calculus
rules. The subdifferential of a quasiconvex function has been used by some
authors for nonsmooth quasiconvex optimization see. e.g. [12, 10, 24], and for
quasiconvex feasibility problems [5, 17].

2 Subdifferentials of quasi-convex functions

First of all, let us recall the well known definition of quasiconvex functions, see
e.g. [13]

Definition 2.1. A function ϕ : Rn → R ∪ {+∞} is called quasiconvex on a
convex subset C of Rn if and only if for every x, y ∈ C and λ ∈ [0, 1], one has

ϕ[(1 − λ)x+ λy] ≤ max[ϕ(x), ϕ(y)]. (1)

It is easy to see that ϕ is quasiconvex on C if and only if the level set

Lϕ(α) := {x ∈ C : ϕ(x) < α}. (2)

is convex for any α ∈ R.
We consider the following Greenberg-Pierskalla subdifferential introduced in

[8]

∂GPϕ(x) := {g ∈ R
n : 〈g, y − x〉 ≥ 0 ⇒ ϕ(y) ≥ ϕ(x)}. (3)

A variation of the GP-subdifferential is the star-sudifferential that is defined
as

∂∗ϕ(x) :=

{

{g ∈ R
n : 〈g, y − x〉 > 0⇒ ϕ(y) ≥ ϕ(x)} if x 6∈ D∗

R
n if x ∈ D∗,

where D∗ is the set of minimizers of ϕ on R
n. If ϕ is continuous on R

n, then
∂GPϕ(x) = ∂∗ϕ(x) ([21]).
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These subdifferentials are also called quasi-subdifferentials or the normal-
subdifferentials. Some calculus rules and optimality conditions for these subd-
ifferentials have been studied in [20, 21], among them the following results will
be used in the next section.

Lemma 2.2. ([10], [20]) Assume that ϕ : Rn → R ∪ {+∞} is upper semicon-
tinuous and quasiconvex on domϕ. Then

∂GPϕ(x) 6= ∅ ∀x ∈ domϕ, (4)

and
∂∗ϕ(x) = ∂GPϕ(x) ∪ {0}. (5)

Lemma 2.3. ([10], [21])

0 ∈ ∂GPϕ(x)⇔ ∂GPϕ(x) = R
n ⇔ x ∈ argmin y∈Rnϕ(y). (6)

The following result follows from Lemma 4 in [10], which can be used to find
the subdifferential of a fractional quasiconvex function.

Lemma 2.4. ([10]) Suppose ϕ(x) = a(x)/b(x) for all x ∈ domϕ, where a is a
convex function, b is finite and positive on domϕ, domϕ is convex and one of
the following conditions holds

(a) b is affine;

(b) a is nonnegative on domϕ and b is concave;

Then ϕ is quasiconvex and ∂(a− αb)(x) is a subset of ∂GPϕ(x) for α = ϕ(x),
where ∂ stands for the subdifferential in the sense of convex analysis.

3 Algorithm and its convergence analysis

In this section we propose an algorithm for solving Problem (EP), by using
the star-sudifferential with respect to the second variable of the bifunction f .
As usual, we suppose that C is a nonempty closed convex subset in R

n, f :
R

n×R
n → R∪{+∞} is a bifunction satisfying f(x, x) = 0 and C×C ⊂ dom f .

The solution set of Problem (EP) is denoted by S(EP ).

Assumptions

(A1) For every x ∈ C, the function f(x, .) is quasiconvex and f(., .) is upper
semi continuous on an open set containing C × C;

(A2) The bifunction f is pseudomonotone on C, that is

f(x, y) ≥ 0⇒ f(y, x) ≤ 0 ∀x ∈ C, y ∈ C,

and paramonotone on C with respect to S(EP ), that is

x ∈ S(EP ), y ∈ C and f(x, y) = f(y, x) = 0⇒ y ∈ S(EP ).

3



(A3) The solution set S(EP ) is nonempty.

Paramonotonicity of bifunctions has been used for equilibrium as well as split
equilibrium problems in some papers see e.g. [1, 22, 25, 26]. Various properties
of paramonotonicity can be found, for example in [9].

For simplicity of notation. let us denote the sublevel set of the function
f(x, .) with value 0 and the star subdifferential of f(x, .) at x as follows

Lf (x) := {y : f(x, y) < f(x, x) = 0},

∂∗

2f(x, x) := {g ∈ R
n|〈g, y − x〉 < 0 ∀y ∈ Lf(x)}.

The projection algorithm below can be considered as an extension of the one in
[22] to equilibrium problem (EP), where f is quasiconvex with respect to the
second variable.

Algorithm 3.1. (The Normal-subgradient method) Take a real sequence {αk}
satisfying the following conditions

αk > 0 ∀k ∈ N,
∑

∞

k=1
αk = +∞,

∑

∞

k=1
α2
k < +∞.

Step 0: x0 ∈ C, k = 0.
Step k: xk ∈ C.

Take gk ∈ ∂∗

2f(x
k, xk).

If gk = 0, stop: xk is a solution.
Else normalize gk to obtain ‖gk‖ = 1.
Compute

xk+1 = PC(x
k − αkg

k).

If xk+1 = xk then stop.
Else update k ←− k + 1.

Remark 3.2. At each iteration k, in order to check that the iterate xk is
a solution or not one can solve the programming problem miny∈C f(xk, y). In
general solving this problem is costly, however in some special cases, for example,
when C is a polyhedral convex set and the function f(xk, .) is affine fractional,
this program can be solved efficiently by linear programming methods.

The following remark ensures the validity of the algorithm.

Remark 3.3. (i) Since the star-subdifferential is a cone, one can always nor-
malize its nonzero element to obtain an unit vector in the subdifferential.

(ii) If Algorithm 3.1 generates a finite sequence, the last point is a solution
of (EP). Indeed, if 0 ∈ ∂∗

2f(x
k, xk) then by Lemma 2.3, we have

xk ∈ argminy∈Rnf(xk, y),

which implies f(xk, y) ≥ 0 for any y ∈ C.

4



If xk+1 = xk then xk = PC(x
k − αkg

k). Hence,

〈−αkg
k, y − xk〉 ≤ 0 ∀y ∈ C,

or
〈gk, y − xk〉 ≥ 0 ∀y ∈ C.

Since gk ∈ ∂∗

2f(x
k, xk) = ∂GP

2 f(xk, xk), we have f(xk, y) ≥ f(xk, xk) ≥ 0 for
every y ∈ C.

For convergence of the algorithm we need the following results that has been
proved in [22] for the case the bifunction f is convex in the second variable.

Lemma 3.4. The following inequality holds true for every k,

‖xk+1 − xk‖ ≤ αk. (7)

Proof. Since xk+1 = PC(x
k − αkg

k),

〈xk+1 − xk + αkg
k, y − xk+1〉 ≥ 0 ∀y ∈ C.

By subtituting y = xk, we obtain

‖xk+1 − xk‖2 ≤ αk〈g
k, xk − xk+1〉

≤ αk‖g
k‖‖xk+1 − xk‖

= αk‖x
k+1 − xk‖.

Therefore,
‖xk+1 − xk‖ ≤ αk.

Proposition 3.5. For every z ∈ C and k, the following inequality holds

‖xk+1 − z‖2 ≤ ‖xk − z‖2 + 2αk〈g
k, z − xk〉+ α2

k. (8)

Proof. Let z ∈ C, then we have

‖xk+1 − z‖2

= ‖xk − z‖2 − ‖xk+1 − xk‖2 + 2〈xk − xk+1, z − xk+1〉

≤ ‖xk − z‖2 + 2〈xk − xk+1, z − xk+1〉. (9)

Since xk+1 = PC(x
k − αkg

k) and z ∈ C,

〈xk − xk+1, z − xk+1〉 ≤ αk〈g
k, z − xk+1〉. (10)

From (9) and (10),

‖xk+1 − z‖2

≤ ‖xk − z‖2 + 2αk〈g
k, z − xk+1〉

= ‖xk − z‖2 + 2αk〈g
k, z − xk〉

+2αk〈g
k, xk − xk+1〉. (11)
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By Cauchy-Schwart inequality and the fact that ‖gk‖ = 1, we have

〈gk, xk − xk+1〉 ≤ ‖xk − xk+1‖.

Since, by Lemma 3.4, ‖xk − xk+1‖ ≤ αk, the inequality (11) becomes

‖xk+1 − z‖2 ≤ ‖xk − z‖2 + 2αk〈g
k, z − xk〉+ 2α2

k

The following lemma is an extension of Lemma 6 in [10] to the diagonal
subdifferential of a bifunction being quasiconvex in its second variable.

Lemma 3.6. (a) If B(x, ǫ) ⊂ Lf (x
k) for some x ∈ R

n and ǫ ≥ 0, then

〈gk, xk − x〉 > ǫ.

(b) lim infk→∞〈gk, xk − x〉 ≤ 0 ∀x ∈ C.

Proof. (a) If B(x, ǫ) ⊂ Lf (x
k), then x+ ǫgk ∈ Lf (x

k) for ǫ > 0 small enough.
Since gk ∈ ∂∗

2f(x
k, xk), we have

〈gk, x+ ǫgk − xk〉 < 0.

From ‖gk‖ = 1, it follows that

〈gk, xk − x〉 > ǫ.

(b) By contradiction, we assume that there exist x ∈ C, ξ > 0 and k0 such
that for any k ≥ k0,

〈gk, xk − x〉 ≥ ξ > 0.

In view of Proposition 3.5, we have

2αk〈g
k, z − xk〉 ≤ ‖xk − z‖2 − ‖xk+1 − z‖2 + δk.

By summing up, we obtain

2

∞
∑

k=0

αkǫ ≤ 2

∞
∑

k=0

αk〈g
k, z − xk〉

≤ ‖x0 − z‖2 +
∞
∑

k=1

α2
k.

Thus,

0 < ǫ ≤
‖x0 − z‖2 +

∑

∞

k=1
α2
k

2
∑

∞

k=0
αk

.

This is a contradiction because of
∑

∞

k=1
α2
k < +∞ and

∑

∞

k=0
αk = +∞.
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Now, we can state the convergence theorem.

Theorem 3.7. Suppose that Algorithm 3.1 does not terminate. Let {xk} be
the infinite sequence generated by the algorithm and {xkq} be the subsequence of
{xk} that contains all iterates belonging to S(EP ). Then under Assumptions
(A1), (A2), (A3), one has

(a) If {xkq} is infinite then limk→∞ d(xk, S(EP )) = 0;

(b) If {xkq} is finite then the sequence {xk} converges to a solution of the
problem (EP).

Proof. Let x∗ be an arbitrary point of S(EP ). If f(x∗, xk) ≥ 0, then by pseu-
domonotonicity, f(xk, x∗) ≤ 0. If f(xk, x∗) = 0, then again by pseudomono-
tonicity, we obtain f(x∗, xk) = 0. Moreover, by paramonotonicity of f on C
w.r.t S(EP ), we can say that xk is also a solution of (EP).

We consider two cases.

(a) The sequence {xkq} is infinite. By Proposition 3.5,

‖xk+1 − z‖2 ≤ ‖xk − z‖2 + 2αk〈g
k, z − xk〉+ α2

k

By choosing z = xk
q , we obtain

‖xk+1 − xkq‖2 ≤ ‖xk − xkq‖2 + 2αk〈g
k, xkq − xk〉+ α2

k (12)

Now, for k such that kq < k < kq+1, x
k does not belong to S(EP ). Then,

for kq < k < kq+1, f(xk, xkq ) < 0 , which means that xkq ∈ Lf(x
k).

Therefore,
〈gk, xkq − xk〉 < 0 ∀kq < k < kq+1. (13)

From (12) and (13), for kq ≤ k < kq+1, it follows that

‖xk − xkq‖2 ≤
k

∑

i=kq

α2
i ≤

∞
∑

i=kq

α2
i . (14)

Moreover, since xkq ∈ S(EP ), we have d2(xk, S(EP )) ≤ ‖xk − xkq‖2. In
addition, by the assumption
limq→∞

∑

∞

i=kq
α2
i < +∞, it follows from (14) that,

lim
k→∞

d(xk, S(EP ) = 0. (15)

(b) The sequence {xkq} is finite. Then, there exists k0 such that for k ≥ k0,
we have xk 6∈ S(EP ). Then f(xk, x∗) < 0. In this case, we divide our proof
into four steps.

7



Step 1:{‖xk − x∗‖} is convergent and therefore {xk} is bounded.
Indeed, f(xk, x∗) < 0 for k ≥ k0, which means that x∗ ∈ Lf (x

k) for
k ≥ k0. Thus,

〈gk, x∗ − xk〉 < 0 ∀k ≥ k0. (16)

Combining this with (8) in Proposition 3.5, we obtain

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + α2
k. (17)

Since
∑

∞

k=1
α2
k < +∞, we can conclude that {‖xk − x∗‖} is convergent

and therefore {xk} is bounded.

Step 2: lim infk→∞〈gk, xk − x∗〉 = 0. Indeed, thanks to Lemma 3.6(b),
we have

lim inf
k→∞

〈gk, xk − x∗〉 ≤ 0. (18)

From (16) and (18),

lim inf
k→∞

〈gk, xk − x∗〉 = 0.

Step 3: Let {xki} be a subsequence of {xk} such that

lim
q→∞

〈gki , xkq − x∗〉 = lim inf
k→∞

〈gk, xk − x∗〉 = 0. (19)

Since {xk} is bounded, then {xki} is bounded too. Let x be a limit point
of {xki}, without loss of generality, we assume that limi→∞ xki = x.
We now prove that f(x, x∗) = 0.

Indeed, by pseudomonotonicity of f on C, we have

f(x, x∗) ≤ 0.

Moreover, we show that f(x, x∗) = 0. In fact, by contradiction, assume
that there exists a > 0 such that

f(x, x∗) ≤ −a.

Then, since f(., .) is upper semicontinuous on C × C, there exist ǫ1 >
0, ǫ2 > 0 such that for any x ∈ B(x, ǫ1), y ∈ B(x∗, ǫ2) we have

f(x, y) ≤ −
a

2
.

On the other hand, since limi→∞ xki = x, there exists i0 such that xki

belongs to B(x, ǫ1) for every i ≥ i0, So, for i ≥ i0 and y ∈ B(x∗, ǫ2), one
has

f(xkq , y) ≤ −
a

2
< 0,

which means that B(x∗, ǫ2) ⊂ Lf (x
kq ). Then, by Lemma 3.6(a), we have

〈gkq , xkq − x∗〉 > ǫ2 ∀q ≥ q0.

8



This contracts with (19). So, f(x, x∗) = 0.

Step 4: The sequence {xk} converges to a solution of (EP). Indeed, by
Step 3, f(x, x∗) = 0. Since f is pseudomonotone on C, we have f(x∗, x) ≤
0, which together with x∗ ∈ S(EP ), implies f(x∗, x) = 0. Then, thanks
to the paramonotonicity of f , x is also a solution of (EP). By Step 1,
{‖xk − x‖2} is convergent, which together with limq→∞ xkq = x implies
that the whole sequence {xk} must converge to the solution x of (EP).

Remark 3.8. (i) If at each iteration k, one can check that whether xk is a
solution or not yet, then all generated iterates do not belong to the solution set
S(EP ). In this case the sequence {xk} converges to a solution of (EP).

(i) If, in addition, we assume that f(x, .) is strictly quasiconvex for x ∈ C,
that is for every 〈g, y−x〉 > 0 ⇒ f(x, y) > f(x, x) = 0 whenever g ∈ ∂f∗(x, x),
then the sequence {xk} converges to the unique solution of (EP).

Indeed, if f(x, .) is strictly quasiconvex, then, since f(xk, x∗) ≤ 0 = f(xk, xk),
by strictly quasiconvex, 〈gk, x∗ − xk〉 ≤ 0. thus in virtue of Proposition 3.5, we
obtain

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + α2
k ∀k.

So the convergence of {xk} can be proved as in case (b) of the convergence
theorem.

4 A Generalized Variational Inequality and Com-

putational Experience

Consider the following generalized variational inequality problem

Find x∗ ∈ C such that 〈F (x), ϕ(y) − ϕ(x)〉 ≥ 0 ∀y ∈ C, (GV I)

where F : C → R
n is a given operator with domF ⊆ C, and ϕ : C → R

n

is a vector function such that 〈F (x), ϕ(y)〉 is quasiconvex on C for any fixed
x ∈ C. Generalized variational inequalities were considered in [18], and some
solution-existence results were established there. Problem (GVI) can take the
form of equilibrium (EP) by taking f(x, y) := 〈F (x), ϕ(y) − ϕ(x)〉. Clearly,
when ϕ(y) ≡ y, Problem (GVI) becomes a standard variational inequality one.
Note that because of quasiconvexity of ϕ, available methods for variational
inequalities as well as those for equilibrium problems with f being convex in its
second variable fail to apply to (GVI). Now we consider a typical example of
problem (GVI) by taking

f(x, y) =

〈

Ax+ b,
A1y + b1
cT y + d

−
A1x+ b1
cTx+ d

〉

, (20)

with A,A1 ∈ R
n×n, b, b1, c ∈ R

n, d ∈ R and C ⊂ {x| cTx+ d > 0}.

9
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Figure 1: Behavior of the error

Let Â = (dAT
1 − cbT1 )A. Then, the bifunction f(x, y) is paramonotone if and

only if Â1 = 1

2
(Â + ÂT ) is positive semidefinite and rank(Â1) ≤ rank(Â) (see

[9]).
We apply the two versions of the Normal-subgradient algorithm in Section

3 to solve this problem. In the first version (denoted by (NG1)), we construct
the sequence without checking the solvability of each obtained iterate. In the
second version (denoted by (NG2)), we check at each iteration whether xk is a
solution of (EP ) or not by solving the linear fractional programminy∈C f(xk, y).
As it is well known, see e.g. [23], that affine fractional functions appear in many
practical problems in various fields.

We take C = [1, 3]n, the entries of A,A1, b, b1, c, d are uniformly generated
in the interval [0, 1]. We tested the algorithm with problems of different sizes,
each of sizes has hundred instances We stop the computation of the first version
(NG1) at iteration k if either gk = 0 or err1 := ‖xk − xk+1‖ < 10−4, whereas
for the second version (NG2), at each iteration k, we check the solvability of xk

by solving the problem yk = argminy∈Cf(x
k, y), and stop the computation at

iteration k if −miny∈C f(xk, y) < 10−3. Otherwise, we stop the computation if
the number of iteration exceeds 2000. For both versions, we say that a problem
is successfully solved if an iterate xk satisfying
err := −miny∈C f(xk, y) < 10−1 has been obtained. Figure 1 shows that the
error goes to 0 as the number of iterations k goes to +∞. The computational
results are shown in Table 1 for (NG1) and Table 2 for (NG2), where the
number of successfully solved problems as well as the time and error in average
are reported.
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Table 1: Algorithm (NG1) with αk =
100

k + 1

n N. prob. N. succ. prob. CPU-times(s) Error

5 100 100 0.026574 0.000006
10 100 100 0.277551 0.000308
20 100 100 0.582287 0.001506
50 100 87 9.787128 0.027892

Table 2: Algorithm (NG2) with αk =
100

k + 1

n N. prob. N. succ. prob. CPU-times(s) Error

5 100 100 0.005953 0.000004
10 100 100 0.124109 0.000066
20 100 100 0.527599 0.000625
50 100 100 6.685981 0.003728
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