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Abstract. The Thief Orienteering Problem (ThOP) is a multi-component
problem that combines features of two classic combinatorial optimization
problems: Orienteering Problem and Knapsack Problem. The ThOP is
challenging due to the given time constraint and the interaction between
its components. We propose an Ant Colony Optimization algorithm to-
gether with a new packing heuristic to deal individually and interactively
with problem components. Our approach outperforms existing work on
more than 90% of the benchmarking instances, with an average improve-
ment of over 300%.
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Problems - Ant Colony Optimization.

1 Introduction

The Traveling Thief Problem (TTP) [4] is a well-studied multi-component prob-
lem that combines Traveling Salesman Problem (TSP) and Knapsack Problem
(KP). The TTP has been designed in order to provide an academic abstraction
of multi-component problems for the scientific community. In brief, in the TTP,
a single thief has to visit all cities (TSP component) and can make a profit by
stealing items and storing them in a rented knapsack (KP component). As stolen
items are stored in the knapsack, it becomes heavier, and the thief travels more
slowly, with a velocity inversely proportional to the knapsack weight. The thief’s
objective is to maximize the total profit of the stolen items while considering
the price to pay for the knapsack, which is proportional to the rent time.

The TTP has been gaining fast attention due to its challenging intercon-
nected multi-components structure. Thus far, many approaches have been pro-
posed for solving it, including iterative heuristics , metaheuristic approaches
, and exact approaches to study the quality of solutions for small in-
stances . Some studies have investigated the structure and properties of the
TTP [22,32]. We refer for a comparison of 21 algorithms in order to provide
a TTP portfolio.

The Thief Orienteering Problem (ThOP) has been designed as an aca-
demic multi-component problem with different interactions and constraints in
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mind: it combines the Orienteering Problem (OP) and the Knapsack Prob-
lem (KP). The OP is a well-studied problem in operational research (see, e.g.,
[6L/16L[18L|28]), where a participant starts on a given point, travels through a
region visiting checkpoints, and has to arrive at a control point within a given
time. Each checkpoint has a score, and the objective of the participant is to
find the route that maximizes the total score, i.e., whose sum of scores of the
checkpoints visited is maximal. Recent real-world examples of the OP include
tourists planning their sight-seeing trips |12], rescue teams planning the visit of
safe places in case of emergencies [2|, and politicians or music bands planning
their tours [1}[14].

For the ThOP, Santos and Chagas |26] have proposed a Mixed Integer Non-
Linear Programming formulation for it, but no computational results have been
presented due to the formulation’s complexity. Instead, two simple heuristic al-
gorithms have been proposed, i.e., one based on Iterated Local Search (ILS) [21]
and one based on a Biased Random-Key Genetic Algorithm (BRKGA) |17]. The
BRKGA outperformed ILS on large instances, and the authors have attributed
this to the diversification introduced of the mutant individuals.

In this work, we propose the use of a two-phase swarm intelligence approach
based on Ant Colony Optimization (ACO) and a new greedy heuristic, to con-
struct, respectively, the route and the packing plan (stolen items) of the thief.
We investigate the importance of the components via automated algorithm con-
figuration and then evaluate our approach on a broad set of instances.

The remainder of this paper is structured as follows. In Section[2] we formally
describe the ThOP and present detailed solution examples to demonstrate the
interwovenness characteristic of the multi-components of the problem. In Sec-
tion [3] we present our solution approach proposed for addressing the ThOP.
Section [4] reports the experiments and analyzes the performance of the proposed
solution approach against previous ones already proposed in the literature. We
conclude in Section [5| with a summary and outline possible future work.

2 Problem description

As stated by Santos and Chagas [26], in the ThOP, there is a set of n cities,
labeled from 1 to n, where the cities 1 and n are, respectively, the cities where the
thief starts and ends their journey. A set of m items scattered among the other
cities (2,...,n—1), and each city has one or more items. Each item i € {1,...,m}
has a profit p; and weight w; associated. For any pair of cities ¢ and j, the distance
d;; between them is known.

In the ThOP, there is a single thief to steal items scattered among cities. The
thief has a knapsack with a limited capacity W to carry the items. Moreover,
the thief has a maximum time 7" to complete their whole robbery plan. The
speed of the thief is inversely proportional to their knapsack weight. When the
knapsack is empty, the thief can move with their maximum speed v,,,,,.. However,
when the knapsack is full, the thief moves with the minimum speed v,,;,. The
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speed v of the thief when the knapsack weight is w < W is given by v =
Umaz — W X (vmax - Umin) / w.

The objective of the ThOP is to provide a path from the start city 1 to the
end city n, as well as a set of items chosen from the cities visited throughout
the route so that to maximize the total profit stolen, ensuring that the capacity
of the knapsack W is not surpassed and the total traveling time of the thief is
within the time limit 7. The thief does not need to visit all cities.

Note that, while the ThOP and the TTP appear to be similar due to the
KP as a component, it has been argued that the ThOP is more practical due to
two key differences: in the ThOP there is (A) no need to visit all the cities, and
(B) the interaction is not through a time-dependent rent for the knapsack, but
through a constraint that imposes on the thief a time limit to complete the tour
— at the very least for the aforementioned real-world examples, speed typically
remains constant, but time constraints have to be fulfilled, and only worthwhile
places have to be visited. While the relaxation of difference (A) might appear
trivial, the consideration of this constraint, i.e., to visit all cities, is typically
reflected in the design of heuristic [30] and exact |23//31] approaches to the TTP,
with Chand and Wagner [5]’s Multiple Traveling Thieves Problem (MTTP) being
the only exception known to us. Regarding the difference (B) and the ThOP in
general, applications of it can arise when there is no enough time and capacity
to visit all possible cities. For an overview of time-dependent routing problems,
we refer the interested reader to Gendreau et al. [15].

In order to clarify the characteristics of the ThOP, we depict in Figure [I] a
small worked example of a ThOP instance that involves 4 cities and 5 items.
Note that there are no items in the start (1) and end (4) cities, whereas there
are some items of different weights and profit distributed in the other cities (2
and 3). The distances from each pair of cities are given in the edges. In the
following, we present in detail some solutions for this instance. For this purpose,
let us consider v = 0.1, Ve = 1.0, W =3, and T' = 75.

end city

Fig.1: A ThOP instance involving 4 cities and 5 items (from [26]).
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We may represent a ThOP solution in two parts (m, z). The first one consists
of the route m = (1,...,n), a vector containing the ordered list of visited cities.
Note that the first and last city are fixed for any feasible solution. The second
part is the packing plan z = (z1,22,...,2m), a binary vector representing the
states of items (z; = 1 if item ¢ is stolen, and 0 otherwise). According to this
representation, let us consider the following ThOP solutions for the instance
previously described:

— ({1,2,3,4),(1,0,0,1,0)): it is a feasible solution with a total profit of 20+40 =
60. The total weight of stolen items is 3 and the total traveling time is 75,
which satisfies both limits W and T. The total traveling time is calculated

as:

- (1

i

travel from the start city to city 2 at maximum speed: time is computed
as di2/Vmaz = 5/1.0 = 5;

at city 2 the thief steals item 1: the speed decreases to v = 1.0 — 2 X
(1.0-10.1) /3 =0.4;

travel from city 2 to city 3: total traveling time is 5+da3/v = 5+8/0.4 =
5+ 20 = 25;

at city 3 item 4 is collected: the speed drops to v = 1.0-3x(1.0—0.1) /3 =
0.1;

travel from city 3 to the end city: total traveling time is 5+ 20+ d3g/v =
5420+5/0.1 =54 20+ 50 = 75.

3,2,4),(1,0,0,1,0)): it is an infeasible solution. Although the stolen items

have been the same as the previous solution, the total traveling time (83.43)
exceeds the time limit:

- (1

i

travel from the start city to city 3 at maximum speed: time is computed
as di3/Vmar = 6/1.0 = 6;

at city 3 the thief steals item 4: the speed decreases to v = 1.0 — 1 X
(1.0-0.1) /3 =0.7;

travel from city 3 to city 2: total traveling time is 6+ ds2 /v = 6+8/0.7 =
6+ 11.43 = 17.43;

at city 3 item 4 is collected: the speed drops to v = 1.0-3x(1.0—0.1) /3 =
0.1;

travel from city 2 to the end city: total traveling time is 6+17.43+dog/v =
6+ 17.43+6/0.1 =6+ 17.43 + 60 = 83.43.

3,4),(0,0,1,0,0)): it is the optimal solution for this instance with a total

profit of 100. The total weight is 3 < W and the total traveling time is
56 < T

e travel from the start city to city 3 at maximum speed: time is computed

as di3/Vmaz = 6/1.0 = 6;

e at city 3 the thief steals item 3: the speed decreases to v = 1.0 — 3 X

(1.0-0.1) /3 =0.1;

e travel from city 3 to the end city: total traveling time is 6 + dzq/v =

6+ 5/0.1 = 6 + 50 = 56.
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Note that the packing plan of the optimal ThOP solution for the example in-
stance happens to be the same as the optimal solution for the knapsack problem.
However, it is not always that the thief can steal the best knapsack configuration
within the time limit 7. To exemplify this, let us now consider a tighter time
limit equal to 20 for the previous instance. For this case, the optimal ThOP
solution would be ((1,3,4),(0,0,0,1, 1)), which has a total profit of 80 and total
traveling time of 18.5.

3 Stealing items with ants

In the following, we describe our heuristic approach for the ThOP. It is loosely
based on Wagner’s TTP study [29]. As in [29], we propose in this work the use
of swarm intelligence based on Ant Colony Optimization (ACO) [9] in order to
solve ThOP’s tour part, while a novel heuristic will be responsible for solving
the ThOP’s packing part, i.e., to select the set of stolen items.

ACO algorithms consist of an essential class of probabilistic search techniques
that are inspired by the behavior of real ants. These algorithms have proven to be
efficient in solving a range of combinatorial problems [8]. The basic idea behind
ACOs is that ants construct solutions for a given problem by carrying out walks
on a so-called construction graph. These walks are influenced by the pheromone
values that are stored along the edges of the graph. During the optimization
process, the pheromone values are updated according to good solutions found
during the optimization, which should then lead the ants to better solutions in
further iterations of the algorithm. We refer the interested reader to the book
by Dorigo and Birattari [7] for a comprehensive introduction.

In order to define the thief’s route, we use Stiitzle’s ACOTSP 1.0.3 frame-
Workﬂ This framework implements several ACO algorithms for the symmetric
TSP, i.e., its found solutions are tours that visit all cities. While this may not
be efficient or even feasible for the thief due to the time limit to conclude their
journey, we will adapt the output according to the solution found by the packing
algorithm in order to determine efficient solutions for the ThOP.

We note that ACOTSP builds complete TSP tours, not OP tours, hence
possibly affecting the algorithm performance. We decided against the OP-tour
approach: assuming that we have an OP tour and then consider the packing,
we may (based on our two-phase approach) end up skipping cities anyhow if
there are no interesting items to pick up; hence, a further dropping of cities
may be required anyhow. Of course, this would be different if we would have an
algorithm to solve the OP and KP parts simultaneously.

3.1 ACO framework and adjustments

The ACOTSP framework allows us to choose which ant colony optimization
approach to be used. As in [29], we use the standard MAX-MIN ant system

4 Publicly available online at http://www.aco-metaheuristic.org/aco-code
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by Stiitzle and Hoos [27], which restricts all pheromones to a bounded interval
in order to prevent pheromones from dropping to arbitrarily small values. In
Algorithm [I] we show the simplified overview of the proposed swarm intelligence
approach, combined with the packing heuristic algorithm.

Algorithm 1: ACO for the ThOP

best

best

17 — D,z — o

2 repeat

3 II < construct TSP tours using ants

4 foreach TSP tour 7 € II do

5 z  construct a packing plan from 7 using PACK(w, ptries)
6 if profit of z is higher than profit of 2%¢** then

e ‘ 71,best — C(ﬂ')7 Zbest — 2

8 update ACO statistics and pheromone trail
9 until stopping condition is fulfilled

10 return mb¢t, zbest

¢(m) returns a tour for the thief from the TSP tour 7 by removing all cities where no
item is stolen according to the packing plan z.

Initially (line , the best ThOP solution (tour and packing plan) found by
the algorithm is initialized as an empty solution. The algorithm performs its
iterative cycle (lines [2] to E[) as long as the stopping criterion is not fulfilled.
At line [3] each ant constructs a TSP tour. For each TSP tour m (line [), we
apply our heuristic algorithm for defining a packing plan (line |5, Algorithm ,
thus defining a feasible ThOP solution (m, z). At lines [] to [} the best solution
found is possibly updated according to the solution (7, z) previously found. Note
that we remove from 7 all cities where no items have been stolen according to
the packing plan z (line [7)) in order to get a more efficient ThOP’s tour (all
ThOP instances use Euclidean distances rounded up). After all tours have been
considered, ACO statistics and the pheromone values are updated according to
the quality of the ThOP solutions found (line . At the end of the algorithm
(line [L7), the best solution found is returned.

Implementation Notes The overall logic of the ACOTSP framework remains
unchanged in our proposed algorithm. Some minimal modifications have been
performed to adapt it to the ThOP specifications. To construct the TSP tours, we
just established that the first and last cities must be those where the thief begins
and ends their robbery journey. In the ACOTSP framework, the pheromone trail
update performs based on the quality of the TSP tours found by ants. Since the
objective of the TSP is to find the shortest possible tour visiting each city, the
fitness of a given tour is inversely proportional to its total distance. On the
other hand, in our ACOTSP adaptation, the fitness of each tour is set in terms
of the quality of the stolen items throughout the tour, which are defined by
the heuristic packing plan. As the ACOTSP framework is developed explicitly
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for the TSP, a minimization problem where its solutions have positive objective
values, we consider that the fitness of a ThOP’s tour 7 is inversely proportional
to UB + 1 — p(z), where UB is an upper bound for the ThOP and p(z) is the
total profit of packing plan z. Note that in this way we can maintain the same
behavior of fitness of the TSP solutions, without modifying the ACO framework
structure. The upper bound UB is defined as the optimal solution for the KP
version that allows selecting fractions of items. This KP version can be solved
in O(mlogy, m).

3.2 ThOP packing heuristic

In Algorithm [2] we describe our heuristic strategy for constructing a packing
plan from a fixed tour. Note that even when the tour of the thief is kept fixed,
finding the optimal packing configuration is NP-hard [25].

Algorithm 2: Packing Algorithm: PACK (7, ptries)

1z O, try + 1
2 repeat

choose a real number for each parameter 6, §, and v from a uniform
distribution in the range [0, 1], so that 6 +0 +~v =1
4 foreach i <~ 1 to m do
5 ‘ compute score s; for item % // Eq.
6 2o
7 for j < 1 to m do
8 i < get item with the j-th highest score
9 22 U{i}
10 if weight of 2’ is higher than W then 2’ + 2’ \ {i}
11 else
12 t < compute the required time to steal z’ by visiting only cities
with selected items following the order of the TSP tour 7
13 if ¢ is longer than T then 2’ < 2"\ {i}
14 if profit of 2’ is higher than profit of z then z < 2’
15 try < try+1

16 until try > ptries
17 return z

Our packing heuristic algorithm seeks to find a good packing plan z from
multiple attempts for the same tour m. The number of attempts is defined by
ptries. Each attempt is described between lines [2] to [I6] At the beginning of
each attempt (line [3|), we uniformly select three random values (6, 4, and ~)
between 0 and 1, and then normalize them so that their sum is equal to 1. These
values are used to compute a score s; for each item i € {1,...,m} (lines[4to[5),
where 6, §, and ~ define, respectively, exponents applied to profit p;, weight w,
and distance d; in order to manage their impact. The distance d; is calculated
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according to the tour 7 by sum all distances from the city where is the item i to
the end city. Equation [I] shows as the score of item 7 is calculated.

pi’
= ’wi‘S X di’y (1)

Note that each score s; incorporates a trade-off between a distance that item
7 has to be carried over, its weight, and its profit. Equation [I] is based on the
heuristic PACKITERATIVE that has been developed for the TTP [13]. However,
unlike in [13], we consider an exponent for the term of distance to vary the im-
portance of its influence. Furthermore, the values of all exponents are randomly
selected drawn between 0 and 1 for each attempt (and then normalized) to search
the space for greedy packing plans.

After computing scores for all items, we use their values to define the priority
of each item in the packing strategy. The higher the score of an item, the higher
its priority. Between lines [7] and we create the packing plan for the current
attempt by considering the items according to their priorities. If an item violates
the constraints of the ThOP (lines (10| and , it is not selected. Note that we
calculate travel time (line from the cities listed on tour 7, but we ignore
those cities where no items are selected. After completing the current attempt’s
packing plan, its quality is compared to the best packing plan so far (line ,
which is then possibly updated (line [14). At the end of all attempts, the best
packing plan found is returned (line

Note that our packing algorithm is non-deterministic (in contrast to the
deterministic PACKITERATIVE [13)’s), as it has randomized components. In our
preliminary experiments, we have observed that ants find identical or very similar
routes throughout the iterations of the ACO algorithm. For this reason, we
decided to design our packing algorithm in a non-deterministic way in order
to increase the explore the packing plan space more broadly. Moreover, via the
parameter ptries, we can control the number of attempts needed to reached good
packing plans.

4 Computational experiments

We now present the experiments performed to study the performance of the
proposed framework concerning the quality of its solutions. We have rerun Santos
and Chagas [26]’s ThOP code to enable a fair comparison as the computational
budget is based on wallclock time.

Our framework has been implemented based on Thomas Stiitzle’s ACOTSP
1.0.3 framework, which has been implemented in C programming language. In
our experiments, each run of the proposed algorithm has been sequentially (non-
parallel) performed on an Intel(R) Xeon(R) E5-2660 (2.20GHz), running under
CentOS Linux 7 (Core). Our code, as well as all results and solutions, can be
found at https://github.com/jonatasbcchagas/aco_thop.
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4.1 Benchmarking instances

To assess the quality of the proposed algorithm, we have used all ThOP instances
defined by Santos and Chagas [26]. As stated by the authors, these instances have
been created upon a benchmark of TTP instances [24] by removing the items on
city n and by adding a maximum travel time. They have created 432 instances
with the following characteristics:

— numbers of cities: 51, 107, 280, and 1000 (TSP instances (XXX): eil51, pr107,
a280, dsj1000);

— numbers of items per city (YY): 01, 03, 05, and 10;

— types of knapsacks (ZZZ): weights and values of the items are bounded and
strongly correlated (bsc), uncorrelated (unc), or uncorrelated with similar
weights (usw);

— sizes of knapsacks (WW): 01, 05 and 10 times the size of the smallest knapsack;

— maximum travel times (TT): 01, 02, and 03 classes. These values refer to 50%,
75%, and 100% of instance-specific references times defined in the original
ThOP paper [26].

All 432 ThOP instances can be obtained by combining the different charac-
teristics described above. Each instance is identified as XXX_YY_ZZZ WW_TT. thop.

4.2 Parameter tuning to gain insights

Our first study analyzes the influence of the values of the main parameters of
our algorithm. As in the previous work [26] on the ThOP, we have defined as
stopping criteria the execution time equal to [{5] seconds, which is given in
terms of the number of items m of each particular instance.

The ACOTSP framework allows setting a large number of parameters. We
consider the following: ants defines the number of ants used; alpha controls the
relative importance of pheromone trails in the construction of tours; beta defines
the influence of distances between cities for construction the tours; and rho sets
the evaporation rate of the pheromone trail. Besides, we analyze the influence of
our parameter ptries, which is used for deciding how many attempts our packing
algorithm performs to determine the set of stolen items.

Table [1| shows the parameter values we have considered in our analysis. The
ranges have been selected following preliminary experiments.

In order to find a suitable configuration of parameters among all possible
ones, we use the Irace package [20], which is an implementation of the method
I/F-Race [3]. The Irace package implements an iterated racing framework for
the automatic configuration of algorithms. In our experiments, we have used all
Irace default settings, except for the parameter mazFEzperiments, which has been
set to 5000. This parameter defines the stopping criteria of the tuning process.
We refer the readers to [19] for a complete user guide of Irace package.

To analyze the influence of parameter values across the different types of
instances, we divide all 432 instances into 48 groups and then execute Irace on
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Table 1: Parameter values considered during the tuning experiments.

Parameter Investigated values
ants {10, 20, 50, 100, 200, 500, 1000}
alpha {0.00,0.01,0.02,...,10.00}
beta {0.00,0.01,0.02,...,10.00}
rho {0.00,0.01,0.02,...,1.00}
ptries {1,2,3,4,5}

each of them. Each group is identified as XXX_YY_ZZZ, where XXX informs the
TSP base group, YY the number of items per city and ZZZ the type of knapsack.
Each group XXX_YY_ZZZ contains all nine instances defined with different sizes of
knapsacks and maximum travel time.

ants  alpha  beta  rho  ptries ants  alpha  beta  rho  ptries
10 10 1 10 10 1
eils1.01bsc |\ o0 5 pri07_01 bsc [\ o0 .
eil51_01_unc pr107_01_unc
eil51.01_usw | 500 pr107_01_usw|\ \ 500
75 75| 075 75 75| 075
eil51_03_bsc 4 pr107_03_bsc 4
eil51_03_unc 260 pr107_03_unc| / (2971
eil51_03_usw pr107_03_usw|/ / /X
100 5 5 05 3 100 5 s | os 3
€il51_05_bsc pri07_05 bsc
eils1_05_unc [y / pr107_05_unc <o 4 g
€il51_05_usw prio7_05_usw 2
2.5 25| 025 s 25| o025 \
eil51_10_bsc 20 pr107_10_bsc 20
eil51_10_unc \ pr107_10_unc
10 ! 10 B
eil51_10_usw pri07_10_usw
0 0 0 0 0 0
ants  alpha  beta  rho  ptries ants  alpha  beta  rho  ptries
10 10 1 10 10 1
28001 bsc [\ ;0 S dsj1000_01_bsc |~ 0| .
a280_01_unc dsj1000_01_unc
a280_01_usw |\  so0 dsj1000_01_usw| 500
75 750 \o75 75 751, ‘075
a280_03_bsc 4 dsj1000_03_bsc I/ 4
2280_03_unc 2007 | dsj1000_03_unc [~ 299
a280_03_usw | /7 dsj1000_03_usw
100 5 5 05 3 100 5 5 05 3
a280_05_bsc dsj1000_05_bsc
a280_05_unc s \ dsj1000_05_unc -
a280_05_usw 2 dsj1000_05_usw| 2
5 25| 025 5 25| 025
a280_10_bsc 20 \ dsj1000_10_bsc 20
a280_10_unc dsj1000_10_unc N
10 1 10 1
a280_10_usw dsj1000_10_usw
0 0 0 0 0 0

Fig. 2: Best parameter configurations for the 48 groups of instances.

In Figure [2| we plot for each group all configurations returned by Irace at

the end of its run. Each parallel coordinate plot lists for each of the 48 groups
(shown in the left-most column) the configurations returned by Irace (shown in

the other columns). As Irace can return more than one configuration, multiple

configurations are sometimes shown. Each axis indicates a parameter and its
range of values, and each configuration of parameters is described by a line that
cuts each parallel axis in its corresponding value. Through the concentration of
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the lines, we can see which parameter values have been most selected among all
tuning experiments.

We can make several observations. For example, the number of ants has a
higher concentration between 50 and 200, with a higher frequency between 100
and 200 for the groups of instances that consider the TSP bases pri107, a280,
and dsj1000. The importance of the pheromone trail has remained with values
close to 1 for all groups of instances. This is generally compensated by the
values of beta, which varies based on the underlying TSP instance. This is not
too surprising, as the underlying TSP instances are different in nature and not
normalized, hence requiring different values of beta. We can also observe that
only few packing attempts (as exhibited by the low ptries values) are needed to
reach good results, which is especially true for larger instances.

In an attempt to furnish a single configuration of parameters that can general-
ize all tuning results and also be able to provide a more appropriate configuration
for new unknown instances, we average the numerical values and take the mode
of the categorical parameter ptries. This results in the following configuration:
ants = 196, alpha = 1.24, beta = 5.46, rho = 0.51, and ptries = 1.

4.3 Results

In order to analyze the efficiency of the proposed algorithm on all ThOP in-
stances, we run our ACO algorithm 10 independent times on each instance, and
then use the average value of the objective function and the best one found in
these runs in our analysis. Our experiments analyze two versions of our ACO al-
gorithm. In the first one, we consider the algorithm set with the best parameter
values found by the Irace package (collectively called ACOThOP#*). In contrast,
the second version uses the general configuration of parameters derived from the
Irace results of all tuning experiments (called ACOThOP).

In Figure [3] we assess the quality of our algorithm, in its two versions, by
comparing the solutions found by it with the best results reached by the al-
gorithms proposed by Santos and Chagas [26]. For each instance, we consider
the best-known solution to be a lower bound on the achievable objective value.
Then, we take the average results produced by each approach and compute the
ratio between that average and the best objective value found, which gives us
the approximation ratio. Note that the higher this metric, the higher the av-
erage efficiency of that particular solution method. In the figure, we show the
results for the 48 previously defined groups of instances. We report the aver-
age approximation ratio obtained for the instances belonging to each group of
instances.

We can see in Figure [3| that our algorithm has performed significantly better
on all groups of instances, especially on those with larger instances. Note that
the algorithms proposed by Santos and Chagas [26] are highly affected by the
number of items contained in each city, while our framework appears to do better
everywhere, and especially well (relatively speaking) on larger instances, where
is finds many new best solutions. Our approaches ACOThOP* and ACOThOP
outperform the results achieved in [26] on 419 and 410 out of 432 instances,
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Fig. 3: Approximation ratio of the solution approaches across different groups of
instances — whiskers show the standard deviation in the groups.

based on the average solution quality. Regarding the best results found, our
approaches have been able to find better solutions for 410 and 402 instances,
respectively. On average, considering the best results obtained for all instances,
our approaches ACOThOP* and ACOThOP have been, respectively, 320% and
313% better than the best solutions found in . In addition, our results show
lower standard deviation values, which indicates a better convergence of our
algorithm.

To statistically compare the quality of the solutions, we use the Wilcoxon
signed-rank test on the results achieved in the 10 independent runs of each solu-
tion method. With a significance level of 5% (p-value < 0.05), the performance
compared to is as follows on the 432 instances:

— ACOThOP* is worse in only 2 cases, there is no difference in 21 cases, and
it is better in 409 cases (95%).

— ACOThOP is worse in only 18 cases, there is no difference in 12 cases, and
it is better in 401 cases (93%).

Table [2| summarizes a closer analysis of the solutions found. For each TSP
base instance, which resulted in 108 instances each, we show averaged infor-
mation concerning all the best solutions achieved by each approach. Column D
shows the ratio between the total distance traveled and the number of cities
visited by the thief, while columns %T and %W report the percentage spent
of the time limit and the percentage used of the knapsack capacity. If values
in these last two columns are close to 100%, then these indicate limiting fac-
tors. Furthermore, by comparing the values in column D from the same TSP
base instance, we can see which approach has found the most spread-out routes
and/or with more edge crossings. As an example, we show this in Figurefor the
instance pr107-10_usw_10_03.thop; this is an instance with a high performance
difference between the two shown approaches. The graphical representation of
the solutions plots the cities in their respective coordinates. The initial and final
cities are represented by a green triangle and a red square, respectively, while
black points represent the other cities. The diameter of the point representing
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a city shows the proportion of profit available in that city. The continuous lines
connecting pairs of cities represents the route performed by the thief. The line
thickness increases according to the total weight picked by the thief. We can
see that our solution has a significantly more efficient route, it travels a shorter
distance and, from it, a higher profit has been achieved.

Table 2: Information on the structure of the best solutions found.

Santos and

*
TS()IZX)I[()?,se Chagas (2018) ACOThOP ACOThOP

D %T %W D %T %W D %T %W
eil51 12.6 929 73.5 9.7 93.1 826 9.8 93.0 81.9
prl07 925.2 96.0 64.7 537.3 99.7 81.8 543.8 99.7 81.0
a280 35.3 97.9 50.5 13.2 989 814 13.7 989 80.3
dsj1000 178520.2 98.6 33.7 30290.7 93.5 82.1 31204.3 93.6 81.1

é

Fig.4: Graphical representation of the best solution found in [26] (left) and
the best solution found by our approach ACOThOP* (right) for the instance
pr107-10-usw-10-03.thop.

Santos and Chagas (2018) ACOThOP*
Profit = 133925 Profit = 474464
Distance traveled = 54183 Distance traveled = 40427

We can observe in Table[2] that the routes found by our ACO algorithm, in its
two versions, are more efficient than those found by Santos and Chagas [26]. Also,
we note that the ratio between the total distance traveled and the number of
cities visited is higher for the best solutions found in [26], especially for instances
with more cities. This behavior directly impacts solutions because they can be
quickly limited by the travel time limit, which can be seen when analyzing the
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columns referring to the solutions found in |26]. As our ACO algorithm — together
with our packing routine that fills the knapsack more — has been able to find
more efficient routes, a better balance between the limiting factors has been
obtained, which resulted in significantly better solutions (see again Figure |3)).

5 Concluding remarks

In this work, we have approached the Thief Orienteering Problem (ThOP), a re-
cent academic multi-component problem that combines two classic combinatorial
optimization problems: the Orienteering Problem and the Knapsack Problem.
We have proposed a two-phase heuristic algorithm based on Ant Colony Op-
timization, and we have studied the effect of the components using automated
algorithm configuration. Our experiments have shown that the best configura-
tions as well as the average configuration are better on over 90% of the 432
instances with an average fitness improvement higher of over 300%; the largest
improvements are on the largest instances, when compared to the best solutions
in the literature. Based on our analysis, this is due to the efficiency of the ant
colony optimization used to determine the thief’s route together with our novel,
randomized packing routine.

As future work, we will investigate exact algorithms to solve small and mid-
sized ThOP instances to establish global optima. Another interesting study will
be to address a version of the problem that considers multiple thieves in order
to provide a more generic problem, for example, to take a more fundamental
approach to the above-mentioned scenarios of the politicians campaigning or
the rescue-teams checking safety places.
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