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A useful technique for piecewise deterministic Markov decision

processes

Xin Guo ∗ and Yi Zhang †

Abstract: This paper presents with justifications a technique that is useful for the study of piecewise
deterministic Markov decision processes (PDMDPs) with general policies and unbounded transition
intensities. This technique produces an auxiliary PDMDP from the original one. As to be discussed
and claified, the auxiliary PDMDP possesses certain desired properties, which may not be possessed
by the original PDMDP. Moreover, the performance measure of any policy in the original PDMDP
can be replicated by the auxiliary PDMDP for a large class of performance criteria. As an application,
we apply this technique to risk-sensitive PDMDPs with total cost criteria.

Keywords: Continuous-time Markov decision processes. General nonstationary policies. Piecewise
deterministic Markov decision processes. Unbounded transition intensities.
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1 Introduction

This paper concerns the optimal control of piecewise deterministic Markov processes, where the state
evolves according to a deterministic and uncontrolled flow between two consecutive jumps, and the
transition intensities and post-jump distributions are controlled. Henceforth it will be termed as a
piecewise deterministic Markov decision process (PDMDP).

A powerful method of studying PDMDPs is to reduce it to an equivalent discrete-time Markov
decision process (DTMDP) by inspecting the PDMDP at each of its jump moments and regarding the
(possibly relaxed) control function used during a sojourn time as an action in the DTMDP, see e.g.,
[1, 3, 4, 7, 14, 15]. Consequently, the action space in the induced DTMDP, as a set of measurable
mappings, is in general a more complicated object than the action space in the original PDMDP. The
reason for applying this reduction is to gain access to the rich toolbox of known results on DTMDPs
that have been studied since 1950s.

It is well appreciated that the theory of DTMDPs is better established when the underlying
DTMDP model satisfies some compactness-continuity conditions, see [8, 9, 10]. One example of such
compactness-continuity conditions is that the action space is a compact Borel space, the loss function
is lower semicontinuous in the action, and the transition kernel possesses a strong Feller property with
respect to the action, i.e., it maps each bounded measurable function on the state space to a function,
which is jointly measurable in the state and action, and also continuous in the action. (A precise
formulation of this is in the appendix.)

However, even if the original PDMDP satisfies a natural set of compactness-continuity conditions,
see Condition 3.1 below, it can happen that the transition kernel in the induced DTMDP fails to
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satisfy the desired continuity condition. We demonstrate this in Example A.1 below. On the other
hand, it turns out that this inconvenience does not appear if the transition intensities of the PDMDP
are strongly positive, i.e., bounded away from zero by a constant, see Proposition A.1.

In the more specific context of continuous-time Markov decision processes (CTMDPs), where the
state does not change between two consecutive jumps, another difficulty associated with nonstationary
policies and transition intensities not strongly positive, which is different from the aforementioned one,
was documented in [5, 6, 11].

The contribution of this paper is that we present a technique, which produces an auxiliary PDMDP
model satisfying the following: a) the original PDMDP can be thinned out of the auxiliary PDMDP,
and the performance of any policy in the original PDMDP is replicated by a corresponding policy in
the auxiliary PDMDP; b) the transition intensities in the auxiliary PDMDP are strongly positive, and
its induced DTMDP satisfies the desired compactness-continuity conditions1 if so does the original
PDMDP. Then as an application, we extend some optimality results for risk-sensitive PDMDPs with
total cost criteria, which were previously obtained in [7] under the extra requirement on the transition
intensities being strongly positive, see the footnote in Proposition A.1. This requirement is omitted
here with the help of the proposed technique.

In the context of CTMDPs, there have been known techniques, which produce new CTMDP
models, in which the performance measure in the original model can be replicated. One example is
the uniformization in [12, 13] requiring bounded transition intensities and justified under stationary
policies. Its more recent variants that deal with models with unbounded transition intensities can
be found in [2, 11], which are also similar in nature: the former one considers CTMDPs with a
denumerable state space and deterministic stationary policies, whereas in the latter one, models with
more general policies were considered. Our technique can be viewed as their extension from CTMDPs
to PDMDPs, but there are some notable differences.

In greater detail, our technique is closer to [11] as we also consider general policies and unbounded
transition intensities. Nevertheless, apart from a more general process under control being dealt with
here, let us mention another more important difference from [11] as follows. The justification in [11]
only serves the risk-neutral problem with total cost criteria, as it is based on the comparison of (total)
occupation measures in the original model and the new model. This is not suitable for risk-sensitive
problems, where in general the performance measures cannot be readily written as integrals of the
cost rate with respect to the occupation measures. In contrast, here our justification applies to both
risk-neutral and risk-sensitive problems with both total cost and average cost criteria, see Remark
3.1(c).

The rest of this paper is organized as follows. In Section 2 we describe the PDMDP model. In
Section 2 we present and prove the main result with an application to risk-sensitive PDMDPs. The
appendix presents the induced DTMDP. While the reference to the appendix can be avoided in the
main text, it clarifies and demonstrates the issues mentioned in the beginning of this introduction.

2 Description of PDMDP model

Let S be a nonempty Borel state space endowed with the Borel σ-algebra B(S), A be a nonempty
Borel action space, and q stand for a signed kernel q(dy|x, a) on B(S) given (x, a) ∈ S ×A such that

q̃(ΓS |x, a) := q(ΓS \ {x}|x, a) ≥ 0

for all ΓS ∈ B(S), and

q(S|x, a) = 0, q̄x = sup
a∈A

qx(a) < ∞,

1See Proposition A.1 for the precise definition of the compactness-continuity condition for the induced DTMDP.
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where qx(a) := −q({x}|x, a) is the transition intensity. The signed kernel q is also called the transition
rate. Between two consecutive jumps, the state of the process evolves according to a measurable
mapping φ from S × [0,∞) to S, see (2) below. It is assumed that for each x ∈ S

φ(x, t+ s) = φ(φ(x, t), s), ∀ s, t ≥ 0; φ(x, 0) = x, (1)

and t → φ(x, t) is continuous. Unless stated otherwise, the term of measurability is always understood
in the Borel sense. Finally let the cost rate c be a [0,∞)-valued measurable function on S ×A.

For the rest of this paper, it is convenient to introduce the following notations. Let P(A) be the
space of probability measures on B(A), endowed with the standard weak topology. For each µ ∈ P(A),

qx(µ) :=

∫

A

qx(a)µ(da), q̃(dy|x, µ) :=

∫

A

q̃(dy|x, a)µ(da), c(x, µ) :=

∫

A

c(x, a)µ(da).

Condition 2.1 For each x ∈ S,
∫ t

0 qφ(x,s)ds < ∞, and
∫ t

0 supa∈A c(φ(x, s), a)ds < ∞, for each t ∈
[0,∞).

Condition 2.1 is assumed to hold throughout this paper. The integrals in Condition 2.1 are well defined
because the integrands are universally measurable.

Now we briefly describe the PDMDP with the system primitives {S,A, q, φ, c}. Let us take the
sample space Ω by adjoining to the countable product space S × ((0,∞) × S)∞ the sequences of
the form (x0, θ1, . . . , θn, xn,∞, x∞,∞, x∞, . . . ), where x0, x1, . . . , xn belong to S, θ1, . . . , θn belong to
(0,∞), and x∞ /∈ S is the isolated point. We equip Ω with its Borel σ-algebra F .

Let t0 := 0 =: θ0, and for each n ≥ 0, and each element ω := (x0, θ1, x1, θ2, . . . ) ∈ Ω, let

hn := (x0, θ1, . . . , θn, xn); tn := tn−1 + θn; t∞(ω) := lim
n→∞

tn.

Then, (Ω,F) is the canonical sample space of the marked point process (tn, xn) with the mark space
S, and θn = tn − tn−1 is the sojourn time, where the convention of ∞−∞ := ∞ is in use. Define the
process, which evolves according to the flow φ during a sojourn time:

ξt =

{

φ(xn, t− tn), if tn ≤ t < tn+1;
x∞, if t∞ ≤ t,

(2)

where x∞ /∈ S is an isolated cemetery point. The process is controlled through its local characteristics
as follows.

A policy π is given by a sequence (πn) such that, for each n = 0, 1, 2, . . . , πn(da|hn, s) is a stochastic
kernel on A given hn, s with s > 0, and for each ω = (x0, θ1, x1, θ2, . . . ) ∈ Ω, t > 0,

π(da|ω, t) := I{t ≥ t∞}δa∞(da) +
∞
∑

n=0

I{tn < t ≤ tn+1}πn(da|hn, t− tn), (3)

defines a P(A ∪ {a∞})-valued (relaxed) control process, where a∞ /∈ A is some isolated point. If for
some measurable mapping ϕ from S to A such that πn(da|x0, θ1, . . . , θn, x, t) ≡ δϕ(x)(da), then the
policy π = (πn) is called deterministic stationary and is identified with the mapping ϕ.

A policy π and an initial state x define a probability measure P γ
x on the canonical sample space,

under which P π
x (x0 = x) = 1, and the conditional distribution of (θn+1, xn+1) given hn satisfies

P π
γ (θn+1 ∈ Γ1, xn+1 ∈ Γ2|hn)

=

∫

Γ1

e−
∫ t
0

∫
A
qφ(xn,s)(a)πn(da|hn,s)ds

∫

A

q̃(Γ2|φ(xn, t), a)πn(da|hn, t)dt,

∀ Γ1 ∈ B((0,∞)), Γ2 ∈ B(S); (4)

P π
γ (θn+1 = ∞, xn+1 = x∞|hn) = e−

∫∞
0

∫
A
qφ(xn,s)(a)πn(da|hn,s)ds

3



on {xn ∈ S}.
The proposed technique in this paper will be applied to the risk-sensitive optimal control problem

for the PDMDP with a total cost criterion, which reads

Minimize over all policies π: Eπ
x

[

e
∫ ∞

0

∫
A
c(ξt,a)π(da|ω,t)dt

]

= Eπ
x

[

e
∑∞

n=0

∫ tn+1
tn

∫
A
c(φ(xn,s),a)πn(da|hn,s−tn)ds

]

=: V (x, π)

Here
∫ tn+1

tn
is understood as

∫

(tn,tn]
⋂

R
, and we put c(x∞, a) ≡ 0. The value function is defined by

V ∗(x) = infπ V (x, π) for all x ∈ S. We shall call the above system primitives {S,A, q, φ, c} and the
corresponding optimal control problem the “original model”, to distinguish it from the auxiliary model
that will appear later.

However, our technique is also applicable to PDMDPs with other performance measure. For
instance, one may consider the expected long run average cost defined by

V (x, π) := lim
T→∞

Eπ
x

[

∫ T

0

∫

A
c(ξt, a)π(da|ω, t)dt

T

]

= lim
T→∞

Eπ
x

[

∑∞
n=0

∫ tn+1∧T
tn∧T

∫

A
c(φ(xn, s), a)πn(da|hn, s− tn)ds

T

]

, (5)

where tn ∧ T := min{tn, T}. See Remark 3.1(c).

3 Main result

Fix λ > 0 in what follows. We introduce an auxiliary model {S̆, A, q̆, φ̆, c̆} defined in terms of the
system primitives of the original model. When there is a danger of confusion, we shall primarily use
breves to signify the auxiliary model. Without special explanations, all the objects signified with
breves are understood similarly to their counterparts without breves.

Roughly speaking, the auxiliary model arises from inserting additional inspections of the state
process during each sojourn time in the original model (up to the moment of explosion) taking place
in an independent Poisson process with rate λ. The changes in the second coordinate of the state in
the auxiliary model take place at and only at each of such inspection epochs, which will be recorded
as “fictitious” jumps and generate strongly positive transition intensities.

The state space is S̆ = S × {−1, 1}, endowed with the product topology, where {−1, 1} is with
the discrete topology. The action space is A. The transition rate q̆ on B(S̆) given S̆ ×A is defined as
follows:

q̆(dy × {−i}|(x, i), a) = λδx(dy); q̆(dy × {i}|(x, i), a) = q(dy|x, a) − λδx(dy),

with δx(dy) being the Dirac measure concentrated on the singleton {x}, so that

q̆(x,i)(a) = q̆(S̆ \ {(x, i)}|(x, i), a) = q̆(S \ {x} × {−1, 1}|(x, i), a) + q̆(S × {−i}|(x, i), a)

= qx(a) + λ ∀ (x, i) ∈ S̆, a ∈ A.

In other words, the auxiliary model has strongly positive transition intensities. The flow is defined by

φ̆((x, i), t) = (φ(x, t), i).

The cost rate is

c̆((x, i), a) = c(x, a) ∀ (x, i) ∈ S̆, a ∈ A.
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Let

V̆ ((x, i), π̆) = Ĕπ̆
(x,i)[e

∫∞
0 c̆(ξ̆t,a)π̆(da|ω̆,t)dt].

Definition 3.1 Consider the canonical sample space of the marked point process (t̆n, xn, in), and a
sample path

ω̆ = ((x0, i0), θ̆1, (x1, i1), θ̆2, . . . , (xn−1, in−1), θ̆n, (xn, in), . . . ).

We say a mark (xl, il) (l ≥ 1) is immediately after a fictitious jump if il = −il−1, or equivalently,
xl = φ(xl−1, θ̆l), where θ̆l is the sojourn time before the mark (xl, il). A mark that is not immediately
after a fictitious jump is called immediately after an honest jump. We regard (x0, i0) as a mark
immediately after an honest jump.

Using the notation in the above definition, we may consider out of (t̆n, xn, in) another marked point
process (τ(m), x(m), i(m)) with τ(0) := 0 by counting only the points with marks immediately after
honest jumps. Since (x0, i0) is regarded as a mark immediately after an honest jump, x0 = x(0) and
i0 = i(0). Since i(m) = i(0) for all m ≥ 0 almost surely in (τ(m), x(m), i(m)), with i(0) being fixed we
may simply consider the marked point process (τ(m), x(m)) instead of (τ(m), x(m), i(m)).

Theorem 3.1 Suppose Condition 2.1 is satisfied. For each policy π = (πn) in the original PDMDP
model, there is a policy π̆ = (π̆n) in the auxiliary PDMDP model such that for all x ∈ S and i ∈ {−1, 1}:

(a) The distribution of the marked point process (τ(m), x(m)) under P̆ π̆
(i,x) coincides with the distribu-

tion of the marked point process (tm, xm) under P π
x . In other words, the marked point process in

the original model (under P π
x ) may be thinned out of (t̆n, xn, in) in the auxiliary model (under

P̆ π̆
(x,i0)

) by counting only the points with marks immediately after honest jumps.

(b) V (x, π) = V̆ ((x, i), π̃).

Proof. We will make use of the notation in Definition 3.1 freely.
(a) Let a policy π = (πn) for the original model be fixed. Consider the corresponding policy

π̆ = (π̆n) in the auxiliary model defined as follows. For the n-history

h̆n = ((x0, i0), θ̆1, (x1, i1), θ̆2, . . . , (xn−1, in−1), θ̆n, (xn, in))

in the auxiliary model, let m = m(h̆n) be the number of honest jumps over (0, tn] within h̆n, so that
if we count the initial mark (i0, x0) as immediately after an honest jump, then there are m+1 marks
immediately after honest jumps within h̆n. Then we define

π̆n(da|h̆n, t) = πm(da|x0, τ(1), x(1), τ(2) − τ(1), . . . , τ(m) − τ(m−1), x(m), t+ t̆n − τ(m)) (6)

for t > 0.
Consequently, for each n,m ≥ 0 and for each t ∈ (0,∞) satisfying t ∈ (t̆n, t̆n+1] ⊆ (τ(m), τ(m+1)],

we have

π̆(da|ω̆, t) = π̆n(da|h̆n, t− t̆n)

= πm(da|x0, τ(1), x(1), τ(2) − τ(1), . . . , τ(m) − τ(m−1), x(m), t− τ(m)), (7)

where the first equality is by (3) applied to π̆.
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For brevity, below we put

q̃(dy|φ(x(m), t), πm) :=

∫

A

q̃(dy|φ(x(m), t), a)πm(da|x(0), τ(1), x(1), τ(2) − τ(1), . . . , x(m), t);

q(dy|φ(x(m), t), πm) :=

∫

A

q(dy|φ(x(m), t), a)πm(da|x(0), τ(1), x(1), τ(2) − τ(1), . . . , x(m), t);

qφ(x(m),t)(πm) := q̃(S|φ(x(m), t), πm). (8)

Now let us show that the distribution of the marked point process (τm, xm) under P̆ π̆
(x,i0)

coincides
with the distribution of the marked point process in the original model under P π

x . To this end, in view
of (4), x(0) = x0 and τ(0) = 0, it is sufficient to show that

P̆ π̆
(x,i)(x(m+1) ∈ Γ, τ(m+1) − τ(m) ∈ [0, T ]|x(0), τ(1), x(1), . . . , τ(m) − τ(m−1), x(m))

=

∫ T

0
q̃(Γ|φ(x(m), t), πm)e

−
∫ t
0 qφ(x(m),s)

(πm)ds
dt (9)

on {τ(m) < ∞} for each T > 0, Γ ∈ B(S) and m ≥ 0. Note that

P̆ π̆
(x,i)(x(m+1) ∈ Γ, τ(m+1) − τ(m) ∈ [0, T ]| x(0), τ(1), x(1), . . . , τ(m) − τ(m−1), x(m))

=

∞
∑

n=0

P̆ π̆
(x,i)(x(m+1) ∈ Γ, τ(m+1) − τ(m) ∈ [0, T ],

exactly n ficticious jumps over [τ(m), τ(m+1)]| x(0), τ(1), x(1), . . . , τ(m) − τ(m−1), x(m)).

Since
∑

n≥0
λntn

n! = eλt, equality (9) would be justified once we show that

P̆ π̆
(x,i)(x(m+1) ∈ Γ, τ(m+1) − τ(m) ∈ [0, T ],

exactly n ficticious jumps over [τ(m), τ(m+1)]| x(0), τ(1), x(1), . . . , τ(m) − τ(m−1), x(m))

=

∫ T

0

λntn

n!
q̃(Γ|φ(x(m), t), πm)e−λte−

∫ t

0
qφ(xm,s)(πm)ds. (10)

For this, let us verify for each T > 0 and y ∈ S that

f(T, y, n− 1) :=

∫ T

0

∫ T−r1

0

∫ T−
∑2

i=1 ri

0
· · ·

∫ T−
∑n−1

i=1 ri

0
q̃(Γ|φ(y,

n−1
∑

i=1

ri + t), πm)

×e
−

∫ t
0 (qφ(y,

∑n−1
i=1

ri+s)
(πm)+λ)ds

λn−1e−
∫∑n−1

i=1
ri

0 (qφ(y,s)(πm)+λ)dsdtdrn−1 . . . dr1

=

∫ T

0

λn−1tn−1

(n− 1)!
q̃(Γ|φ(y, t), πm)e−

∫ t

0
(qφ(y,s)(πm)+λ)dsdt (11)

for each n ≥ 1, where the notation in (8) is in use with x(m) being replaced by y. This would yield the
desired relation (10) because by (7)

f(T, x(m), n − 1) = P̆ π̆
(x,i)(x(m+1) ∈ Γ, τ(m+1) − τ(m) ∈ [0, T ],

exactly n− 1 ficticious jumps over [τ(m), τ(m+1)]| x(0), τ(1), x(1), . . . , τ(m) − τ(m−1), x(m)).

Relation (11) holds trivially when n = 1 because

f(T, y, 0) =

∫ T

0
q̃(Γ|φ(y, t), πm)e−

∫ t
0 (qφ(y,s)(πm)+λ)dsdt

6



by definition. Suppose (11) holds. Then

f(T, y, n) =

∫ T

0
λ

∫ T−r1

0

∫ T−
∑2

i=1 ri

0
· · ·

∫ T−
∑n−1

i=1 ri

0

∫ T−
∑n

i=1 ri

0
q̃(Γ|φ(y,

n
∑

i=1

ri + t), πm)

×e
−

∫ t
0 (qφ(y,

∑n
i=1

ri+s)(πm)+λ)ds
λn−1e−

∫∑n
i=1 ri

0 (qφ(y,s)(πm)+λ)dsdtdrn . . . dr2dr1

=

∫ T

0
λe−

∫ r1
0 (qφ(y,s)(πm)+λ)ds

×

{

∫ T−r1

0

∫ T−r1−r2

0
· · ·

∫ T−r1−
∑n

i=2 ri

0
q̃(Γ|φ(φ(y, r1),

n
∑

i=2

ri + t), πm)

×e
−

∫ t

0
(qφ(φ(y,r1),

∑n
i=2

ri+s)(πm)+λ)ds
λn−1e−

∫∑n
i=2 ri

0 (qφ(φ(y,r1),s)(πm)+λ)dsdtdrn . . . dr2

}

dr1

where the second equality holds because of (1) and that

e−
∫∑n

i=1 ri
0 (qφ(y,s)(πm)+λ)ds = e−

∫ r1
0 (qφ(y,s)(πm)+λ)dse

−
∫∑n

i=1 ri
r1

(qφ(y,s)(πm)+λ)ds

= e−
∫ r1
0 (qφ(y,s)(πm)+λ)dse−

∫∑n
i=2 ri

0 (qφ(φ(y,r1),s)(πm)+λ)ds.

Now after applying the induction supposition (11) (with y being replaced by φ(y, r1), T being
replaced by T − r1, and

∑n
i=2 ri playing the same role as

∑n−1
i=1 ri therein) to the previous inner

integral, we see that

f(T, y, n) =

∫ T

0
λe−

∫ r1
0 (qφ(y,s)(πm)+λ)ds

×

{
∫ T−r1

0

λn−1tn−1

(n− 1)!
q̃(Γ|φ(φ(y, r1), t), πm)e−

∫ t
0 (qφ(φ(x,r1),s)(πm)+λ)dsdt

}

dr1

=

∫ T

0

{
∫ T−r1

0

λntn−1

(n− 1)!
q̃(Γ|φ(y, r1 + t), πm)e−

∫ t+r1
0 (qφ(x,s)(πm)+λ)dsdt

}

dr1

=

∫ T

0

∫ t

0

λn(t− r1)
n−1

(n− 1)!
q̃(Γ|φ(y, t), πm)e−

∫ t

0
(qφ(x,s)(πm)+λ)dsdr1dt

=

∫ T

0

λntn

n!
q̃(Γ|φ(y, t), πm)e−

∫ t

0
(qφ(x,s)(πm)+λ)dsdt,

as desired, where the second equality follows from (1) and that

e−
∫ r1
0 (qφ(y,s)(πm)+λ)dse−

∫ t
0 (qφ(φ(x,r1),s)(πm)+λ)ds = e−

∫ t+r1
0 (qφ(y,s)(πm)+λ)ds,

and the third equality is by a change of variable and interchanging legitimately the order of integration.
Part (a) is thus proved.

(b) It follows from part (a) that

V̆ ((x, i0), π̆) = Ĕπ̆
(x,i0)

[e
∫∞

0
c̆(ξ̆t,a)π̆(da|ω̆,t)dt]

= Ĕπ̆
(x,i0)

[

e
∑∞

m=0

∫ τ(m+1)
τ(m)

∫
A
c(φ(x(m),s),a)πm(da|x,τ(1),x(2),τ(2)−τ(1),...,τ(m)−τ(m−1),x(m),s−τ(m))ds

]

= Eπ
(x,i0)

[

e
∑∞

m=0

∫ tm+1
tm

∫
A
c(φ(xm,s),a)πm(da|x,t1,x2,t2−t1,...,tm−tm−1,xm,s−tm)ds

]

= V (x, π),

where the second equality holds by (7) and the definition of c̆. The proof is completed. ✷

7



Remark 3.1 (a) By Theorem 3.1(b), V̆ ∗(x) ≤ V ∗(x) for each x ∈ S.

(b) By inspecting the proof of Theorem 3.1 (see especially (6) and (7) therein), one can tell that for a
deterministic stationary policy in the auxiliary model, which depends on (x, i) ∈ S×{−1, 1} only
through x ∈ S, and is identified by a measurable mapping ϕ from S to A, V̆ ((x, i), ϕ) = V (x, ϕ)
for all x ∈ S and i ∈ {−1, 1}. Therefore, if such a deterministic stationary policy ϕ is optimal
in the auxiliary model, then so is it in the original model, and V ∗(x) = V̆ ∗(x) = V̆ ((x, i), ϕ) =
V (x, ϕ) for each x ∈ S.

(c) By Theorem 3.1(a) and the second equality in (5), we see V (x, π) = V̆ ((x, i), π̆) for the same
policies π and π̆ in Theorem 3.1, too.

Let us introduce a natural set of compactness-continuity conditions on the original PDMDP.

Condition 3.1 (a) For each bounded measurable function f on S and each x ∈ S,
∫

S
f(y)q̃(dy|x, a)

is continuous in a ∈ A.

(b) For each x ∈ S, the (nonnegative) function c(x, a) is lower semicontinuous in a ∈ A.

(c) The action space A is a compact Borel space.

The usefulness of the auxiliary PDMDP also partially lies in the next observation.

Lemma 3.1 If the original PDMDP model satisfies Conditions 3.1 and 2.1, then the auxiliary model
satisfies the corresponding versions of Conditions 3.1 and 2.1, too.

Proof. We only verify the version of Condition 3.1(a). For any bounded measurable function f on S̆,
it holds that

∫

S̆

f(y, j)˜̆q(d(y, j)|(x, i), a) =

∫

S̆

f(y, j)q̆(d(y, j)|(x, i), a) + f(x, i)q̆(x,i)(a)

=

∫

S

f(y, i)(q(dy|x, a) − λδx(dy)) +

∫

S

f(y,−i)λδx(dy) + f(x, i)(λ + qx(a))

=

∫

S

f(y, i)q̃(dy|x, a)− qx(a)f(x, i)− λf(x, i) + λf(x,−i) + f(x, i)(λ+ qx(a))

=

∫

S

f(y, i)q̃(dy|x, a) + λf(x,−i),

which is clearly continuous in a ∈ A when the original model satisfies Condition 3.1. ✷

The following statement was obtained in Theorem 3.1 and Remark 3.1 of [7].

Proposition 3.1 Suppose Conditions 2.1 and 3.1 are satisfied. In addition2, inf(x,a)∈S×A qx(a) > 0.
Then the following assertions hold.

(a) The value function V ∗ is the minimal [1,∞]-valued measurable solution to the following opti-
mality equation:

−(V (φ(x, t)) − V (x)) (12)

=

∫ t

0
inf
a∈A

{
∫

S

V (y)q̃(dy|φ(x, τ), a) − (qφ(x,τ)(a)− c(φ(x, τ), a))V (φ(x, τ))

}

dτ

∀ t ∈ [0,∞), x ∈ S∗ := {x ∈ S : V ∗(x) < ∞}; V (x) < ∞ ∀ x ∈ S∗; V (x) = ∞ ∀ x /∈ S∗.

In particular, V ∗(φ(x, t)) is absolutely continuous in t for each x ∈ S∗.

2See the footnote in Proposition A.1.
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(b) Any measurable mapping ϕ from S to A such that

inf
a∈A

{
∫

S

V ∗(y)q̃(dy|x, a)− (qx(a)− c(x, a))V ∗(x)

}

=

∫

S

V ∗(y)q̃(dy|x, ϕ(x)) − (qx(ϕ(x)) − c(x, ϕ(x)))V ∗(x), ∀ x ∈ S∗.

defines a deterministic stationary optimal policy in the original model. Such measurable selectors
ϕ exist.

As an application of Theorem 3.1 (more precisely, Remark 3.1 drawn from it), we may remove the
redundant condition on the strong positivity of the transition intensities from Proposition 3.1.

Corollary 3.1 Under Conditions 2.1 and 3.1, the assertions stated in Proposition 3.1 all hold without
requiring inf(x,a)∈S×A qx(a) > 0.

Proof. The statement follows from Remark 3.1 and applying Proposition 3.1 to the auxiliary model,
which is legitimate in view of Lemma 3.1 and that the transition intensities in the auxiliary model are
strongly positive. The details are as follows.

Step 1. We show that the value function V̆ ∗((x, i)) in the auxiliary PDMDP model depends on
(x, i) only through x, and can thus be identified as V̆ ∗(x).

For this, we will apply the following result from [7]: under the conditions in Proposition 3.1,
including that the transition intensities are strongly positive:

• The value function V ∗ in the original model is the minimal [1,∞]-valued measurable solution to
the optimality equation V = T ◦ V , where

T ◦ V (x) := inf
ρ∈R

{
∫ ∞

0
e−

∫ τ
0 (qφ(x,s)(ρs)−c(φ(x,s),ρs))ds

(
∫

S

V (y)q̃(dy|φ(x, τ), ρτ )

)

dτ

+e−
∫∞
0 qφ(x,s)(ρs)dse

∫ ∞
0 c(φ(x,s),ρs)ds

}

, ∀ x ∈ S, (13)

Here and below, R is the space of P(A)-valued measurable mappings ρ = (ρt(da)) on (0,∞)3,

and e−
∫ ∞

0
qφ(x,s)(ρs)dse

∫∞
0 c(φ(x,s),ρs)ds := 0 whenever e−

∫∞

0
qφ(x,s)(ρs)ds = 0.

• The value function V ∗ can be obtained from the successive approximation: V ∗(x) = limn→∞ T ◦
V0(x) with V0(x) ≡ 1.

According to Lemma 3.1 and that the transition intensities in the auxiliary model are strongly
positive (as infx∈S,a∈A q̆(x,i)(a) ≥ λ > 0), we may apply the result just quoted above to the auxiliary

model and conclude that V̆ ∗ is the minimal [1,∞]-valued measurable function to the following equation

V̆ ((x, i))

= inf
ρ∈R

{
∫ ∞

0
e
∫ θ

0
c̆(φ̆((x,i),s),ρs)dse

−
∫ θ
0 q̆

φ̆((x,i),s)
(ρs)ds

(
∫

S̆

V̆ ((y, j))˜̆q(d(y, j)|φ̆((x, i), θ), ρθ)

)

dθ

}

= inf
ρ∈R

{
∫ ∞

0
e
∫ θ
0 c(φ(x,s),ρs)dse−

∫ θ
0 (qφ(x,s)(ρs)+λ)ds

×

(
∫

S

q̃(dy|φ(x, θ), ρθ)V̆ ((y, i)) + λV̆ ((φ(x, θ),−i))

)

dθ

}

.

3Two elements in R that coincide almost everywhere are not distinguished.
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Moreover, V̆ ∗ is the pointwise limit of the sequence of functions {V̆n}
∞
n=0 with

V̆0((x, i)) :≡ 1,

V̆n+1((x, i)) := inf
ρ∈R

{
∫ ∞

0
e
∫ θ

0
c(φ(x,s),ρs)dse−

∫ θ

0
(qφ(x,s)(ρs)+λ)ds

(
∫

S

q̃(dy|φ(x, θ), ρθ)V̆n((y, i)) + λV̆n((φ(x, θ),−i))

)

dθ

}

.

An inductive argument reveals that V̆n+1((x, i)) does not depend on i for all n ≥ 0 and thus V̆ ∗((x, i))
does not depend on i. Below, we write V̆ ∗(x) for V̆ ∗((x, i)).

Step 2. Again by Lemma 3.1 and that the transition intensities in the auxiliary model are strongly
positive, we apply Proposition 3.1(b) to the auxiliary model to obtain a deterministic stationary
optimal policy ϕ. It is possible to take ϕ, which only depends on x ∈ S (independent on i ∈ {−1, 1})
because for each (x, i) ∈ S̆∗ := {x ∈ S : V̆ ∗(x) < ∞}× {−1, 1},

∫

S̆

V̆ ∗(y)˜̆q(d(y, j)|(x, i), a) − (q̆(x,i)(a)− c̆((x, i), a))V̆ ∗(x))

=

∫

S

V̆ ∗(y)q̃(dy|x, a) − (qx(a)− c(x, a))V̆ ∗(x))

does not involve i ∈ {−1, 1}, where the equality holds by the definition of q̆ and c̆ and a similar
calculation as the one in the proof of Lemma 3.1.

Step 3. Step 2 and Remark 3.1(b) imply V̆ ∗(x) = V ∗(x). Note that the optimality equations for
both the original model and the auxiliary model are the same and given by (12), the statement of this
corollary follows from applying again Proposition 3.1 to the auxiliary model. ✷

A Appendix: Induced DTMDP

We shall formulate a DTMDP model induced from the PDMDP model with total cost criteria by
inspecting the PDMDP at each of its jump moments and regarding the relaxed control functions used
during a sojourn time as the actions in the DTMDP. The first coordinate in the state space of the
induced DTMDP records the most recent sojourn time, and the second coordinate records the state in
the PDMDP immediately after the corresponding jump. This is to serve the formulation of Example
A.1 below.

The DTMDP induced by the PDMDP {S,A, q, φ, c} is specified by the following system primitives:

• The state space is X := ((0,∞)×S)
⋃

{(∞, x∞)}. Whenever the topology is concerned, (∞, x∞)
is regarded as an isolated point in X.

• The action space is A := R, where R was defined in the proof of Corollary 3.1. We endow R
with the Young topology.4

4The Young topology on R is the weakest topology with respect to which the function ρ ∈ R →
∫∞

0

∫
A
f(t, a)ρt(da)dt

is continuous for each strongly integrable Carathéodory function f on (0,∞)×A . Here a real-valued measurable function
f on (0,∞)×A is called a strongly integrable Carathéodory function if for each fixed t ∈ (0,∞), f(t, a) is continuous in
a ∈ A, and for each fixed a ∈ A, supa∈A |f(t, a)| is integrable in t, i.e.,

∫∞

0
supa∈A |f(t, a)|dt < ∞.
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• The transition kernel p on B(X) from X×A is given for each ρ = (ρt(da))t>0 ∈ A by

p(Γ1 × Γ2|(θ, x), ρ) :=

∫

Γ2

e−
∫ t
0 qφ(x,s)(ρs)dsq̃(Γ1|φ(x, t), ρt)dt,

∀ Γ1 ∈ B(S), Γ2 ∈ B((0,∞)), x ∈ S, θ ∈ (0,∞),

p({(∞, x∞)}|(θ, x), ρ) := e−
∫∞
0 qφ(x,s)(ρs)ds, ∀ x ∈ S, θ ∈ (0,∞);

p({(∞, x∞)}|(∞, x∞), ρ) := 1.

(Recall that the notation q(dy|x, ρt) =
∫

A
q(dy|x, a)ρt(da) is in use.)

• The cost function l is a [0,∞]-valued measurable function on X×A×X given by

l((θ, x), ρ, (τ, y)) :=

∫ ∞

0
I{s < τ}c(φ(x, s), ρs)ds, ∀ ((θ, x), ρ, (τ, y)) ∈ X×A×X.

For the induced DTMDP {X,A, p, l}, following the reasoning in the proof of Lemma 3.2 of [3] and
Chapter 4 of [4], one can see the following statement.

Proposition A.1 Under Conditions 2.1 and 3.1, for each (θ, x) ∈ X and (τ, y) ∈ X, ρ ∈ A →
l((θ, x), ρ, (τ, y)) is lower semicontinuous, and A is a compact Borel space. If in addition, the transition
intensities are strongly positive5, then for each (θ, x) ∈ X, the function ρ ∈ A →

∫

X
f(z)p(dz|(θ, x), ρ)

is continuous for each bounded measurable function f on X.

The next example shows that if the transition intensities are not strongly positive, then it can
happen that ρ ∈ A →

∫

X
f(z)p(dz|(θ, x), ρ) is not continuous for some bounded measurable function

f on X.

Example A.1 Suppose S is any finite set (endowed with discrete topology), and A = [0, 1], which
is a compact Borel space, qx(a) = a and c(x, a) ≡ 0, and φ(x, t) ≡ x. Evidently, Conditions 2.1
and 3.1 are satisfied by this PDMDP model. Consider ρ ∈ A and (ρ(n)) ⊆ A defined as follows: for

each t ≥ 0, ρ
(n)
t (da) = δ 1

n
(da), and ρt(da) = δ0(da). Then for each strongly integrable Carathéodory

function g(t, a),

∫ ∞

0
g(t, ρ

(n)
t )dt−

∫ ∞

0
g(t, ρ

(0)
t )dt =

∫ ∞

0
(g(t,

1

n
)− g(t, 0))dt → 0

as n → ∞, by using the dominated convergence theorem. Thus, ρ(n) → ρ as n → ∞. (Recall that A is
endowed with the Young topology.) Now for f(t, x) ≡ 0 on (0,∞) × S and f(∞, x∞) = 1,

∫

X

f(z)p(dz|(θ, x), ρ(n)) = e−
∫∞
0 qx(ρ

(n)
s )ds = e−

∫∞
0

1
n
ds = 0 < 1 = e−

∫∞
0 0ds =

∫

X

f(z)p(dz|(θ, x), ρ).
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