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Ergodic inventory control with diffusion demand and

general ordering costs

Bo Wei Dacheng YaoB

Abstract

In this work, we consider a continuous-time inventory system where the demand process
follows an inventory-dependent diffusion process. The ordering cost of each order
depends on the order quantity and is given by a general function, which is not even
necessarily continuous and monotone. By applying a lower bound approach together
with a comparison theorem, we show the global optimality of an (s, S) policy for this
ergodic inventory control problem.
Keywords: stochastic inventory model, general ordering costs, diffusion process, (s, S)
policy, impulse control.

1 Introduction

This paper is a sequel to [6], which investigates a continuous-time inventory system with a

Brownian demand process and a quantity-dependent setup cost. In this setting, an (s, S)

replenishment policy turns out to be optimal under the average cost criterion. In [6], the

setup cost function is only required to be a nonnegative, bounded, and lower semicontinuous

function of the order quantity. It is necessary to consider such a general ordering cost

structure, because in practice, expenses arising from administration and transportation may

not be continuous in the order quantity. Furthermore, general ordering cost structure was

studied by [12, 13] in inventory models with deterministic demand and renewal demand,

respectively.

In this work, we establish the global optimality of an (s, S) policy for ergodic inventory

control with an inventory-dependent diffusion demand process under a general ordering cost

structure. One may refer to [3, 2] for state-dependent inventory models and their applica-

tions. Ergodic inventory control with a diffusion demand process has been studied in two

recent papers by Helmes et al. [7, 8]. More specifically, an (s, S) policy is proved to be

optimal in a subset of admissible policies in [7], in which the authors assume the ordering

cost is continuous with respect to the order quantity. In [8], the authors proposed a weak

1

http://arxiv.org/abs/2012.02912v1


convergence approach, which allow them to further show the global optimality of an (s, S)

policy among all admissible policies. Our work complements their papers by allowing for a

more general ordering cost function that may have discontinuities.

The main results in this paper provide a rigorous justification for the following intuitive

interpretation of the optimality of (s, S) policies for ergodic inventory control: If the demand

process has almost sure continuous sample paths, the inventory administrator is allowed to

replenish inventory at any level as she wants. Moreover, if the demand process is also

Markovian, the distribution of future demand can be determined based on the current state

(inventory level). In this case, an (s, S) policy would be optimal to minimize the average

cost, even a general ordering cost function is involved. Such a simple optimal policy stands in

stark contrast with optimal ergodic control in discrete-time inventory models: the inventory

administrator is only allowed to replenish the inventory at the start of each period, the

reorder level would be different from period to period. Thus, if the setup cost function is not

a constant, this dynamic optimization problem would be generally difficult to tackle (see,

e.g., [5, 4, 18]).

The remainder of this paper is organized as follows. The diffusion inventory model is

introduced and the main results are presented in Section 2. An (s, S) policy is selected and

is proven to be the best one in a subset of admissible policies by a lower bound theorem in

Section 3. A comparison theorem is provided to establish the global optimality of the (s, S)

policy among all admissible policies in Section 4. Finally, Section 5 concludes the study.

2 Problem Formulation and Main Results

2.1 Diffusion Inventory Model

Consider a single-item inventory model, where the inventory level process is governed by

Z(t) = x−D(t) +Q(t), t ≥ 0, (1)

where Z(0−) = x denotes the initial inventory level, D(t) and Q(t) represent the cumulative

demand process and cumulative order quantity up to time t, respectively. The inventory-

dependent demand process {D(t)}t≥0 is represented as

D(t) =

∫ t

0

µ(Z(s)) ds+

∫ t

0

σ(Z(s)) dB(s),

where {B(t)}t≥0 denotes a standard Brownian motion on (Ω,F ,P;Ft, t ≥ 0). We assume

that the drift coefficient µ(·) and the diffusion coefficient σ(·) satisfy the following conditions.
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Assumption 1. (a) µ(·) is continuously differentiable, nondecreasing with µ := limz→−∞ µ(z) >

0 and µ̄ := limz→∞ µ(z) < ∞.

(b) σ(·) is continuous, and σ(·) ∈ [σ, σ̄], where σ, σ̄ > 0 are two finite constants.

Without any replenishment, the inventory level process turns out to be a diffusion process

{X(t)}t≥0 given by

X(t) = x−

∫ t

0

µ(X(s)) ds−

∫ t

0

σ(X(s)) dB(s). (2)

For later use, we denote the scale function of X by

S(x) =

∫ x

a

exp
(

∫ y

a

2µ(v)

σ2(v)
dv

)

dy for x ∈ R,

where a is an arbitrary real number, and the speed measure of X by

M(dx) =
1

σ2(x)
exp

(

−

∫ x

a

2µ(v)

σ2(v)
dv

)

dx.

We represent the ordering policy by a cumulative order process Q = {Q(t)}t≥0, which is

called admissible if it satisfies the three conditions as follows: (i) Q(t) is nonnegative for all

t ≥ 0; (ii) The sample paths of Q are nondecreasing and right-continuous with left limits

(RCLL); (iii) Q is adapted.

In this work, the ordering cost function c(·) is assumed to satisfy the following conditions.

Assumption 2. The function c : R+ → R+ is subadditive1 and lower semicontinuous2 with

c(0) = 0 and c(0+) := limξ↓0 c(ξ) > 0.

The ordering cost function satisfies the condition above is very general, and it is not even

necessarily continuous (cf. [7, 9] for continuous ordering cost) and monotone. In particular,

it includes the classical linear cost (cf. [16, 10]), all unit quantity discount cost (cf. [1]),

incremental quantity discounted cost (cf. [14, 17]), and quantity-dependent setup cost (cf.

[5, 4]) as special cases.

Since c(0+) = limξ↓0 c(ξ) > 0, we only need to consider impulse control policies, which

can be specified by {(τn, ξn) : n = 0, 1, 2, · · · } with that τn and ξn denote the time and the

amount of nth order, respectively. For convenience, we assume that τ0 = 0 and ξ0 ≥ 0,

i.e., no order is placed when ξ0 = 0. Then, an admissible policy Q can be denoted as

1A function c : R+ → R+ is subadditive if c(ξ1 + ξ2) ≤ c(ξ1) + c(ξ2) for ξi ≥ 0, i = 1, 2.
2A function c : R+ → R+ is lower semicontinuous if c(ξ′) ≤ lim infξ→ξ′ c(ξ) for each ξ′ > 0.
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Q(t) =
∑N(t)

n=0 ξn, where N(t) = max{n ≥ 0 : τn ≤ t}. We define Φ as the set including all

such admissible policies.

In addition, let h(z) represent the holding and shortage cost rate for inventory level

z ∈ R.

Assumption 3. The function h : R → R+ is polynomially bounded, convex, continuously

differentiable except at z = 0 with h(0) = 0. Further, h′(z) > 0 if z > 0, and h′(z) < 0 if

z < 0.

Remark 1. (a) The boundedness of the coefficient in Assumption 1 and polynomial bound-

edness of h in Assumption 3 imply that

∫ ∞

x

h(y)M(dy) < ∞.

(b) Assumption 3 implies lim|x|→∞ h(x) = ∞.

We need to find an admissible policy Q ∈ Φ to minimize the following long-run average

cost:

C(x,Q) = lim sup
t→∞

1

t
Ex

[

∫ t

0

h(Z(u)) du+

N(t)
∑

n=0

c(ξn)
]

, (3)

where Ex[·] := Ex[·|Z(0−) = x].

2.2 Main Results

Under an (s, S) policy, a cycle is defined as the duration from S to s. Then, the controlled

process Z can be regarded as a regenerative process. Using the regenerative process theory,

we have

α(s, S) := C(S, (s, S)) =
ES[

∫ τsS
0

h(Z(u)) du] + c(S − s)

ES[τ
s
S]

,

where τ sS is the duration time of one cycle. Under Assumptions 1 and 3, we have

ES

[

∫ τsS

0

h(Z(u)) du
]

= 2

∫ S

s

∫ ∞

x

h(y)M(dy) dS(x) and ES

[

τ sS
]

= 2

∫ S

s

∫ ∞

x

M(dy) dS(x);

(4)

see Proposition 2.6 in [7]. Therefore,

α(s, S) =
2
∫ S

s

∫∞

x
h(y)M(dy) dS(x) + c(S − s)

2
∫ S

s

∫∞

x
M(dy) dS(x)

. (5)
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Under (s, S) policy, for any initial state x ∈ R, level S can be reached in finite expected

time due to strictly positive demand drift. Actually, α(s, S) is the average cost which is

independent of the initial state x ∈ R, i.e., α(s, S) = C(x, (s, S)) for any x ∈ R. In the

following lemma, we claim the existence of the best (s, S) policy in minimizing α(s, S).

Lemma 1. Under Assumptions 1-3, there exists a finite pair (s⋆, S⋆) with s⋆ < S⋆ satisfying

(s⋆, S⋆) = arg inf
s<S

α(s, S). (6)

Our main results are as follows.

Theorem 1. Suppose Assumptions 1-3 hold. The (s⋆, S⋆) policy given by (6) is optimal

for the ergodic inventory control problem (3) and α⋆ := α(s⋆, S⋆) is the optimal cost, where

α(s, S) is defined in (5).

Theorem 1 will be proven by two steps. First, in Section 3, by a lower bound theorem,

we show that the (s⋆, S⋆) policy is the best one in a subset of Φ. Then in Section 4, we show

its global optimality in Φ by a comparison theorem.

3 Optimality of the (s,S) Policy in A Subset

In this section, by a lower bound theorem, we show that the (s⋆, S⋆) policy is the best one in

a subset of admissible policies. Specifically, in Proposition 1, we show that if some function

f with certain properties and a constant α satisfy the lower bound conditions (7)-(9), then

the cost under any policy in a subset Φf is larger than α. We construct a function V and

in Proposition 2 check that f = V and α = α⋆ satisfy all lower bound conditions. Thus,

α⋆ = α(s⋆, S⋆) is a lower bound of the cost under any Q ∈ ΦV , i.e., (s
⋆, S⋆) policy is optimal

in ΦV . Finally, in Proposition 3, we show that ΦV is large enough to include a class of

admissible policies with order-up-bounds.

Let A f(z) = 1
2
σ2(z)f ′′(z)−µ(z)f ′(z). The following proposition provides a lower bound

theorem. See Proposition 2 in [6] for a similar proof.

Proposition 1 (Lower Bound Theorem). Suppose Assumption 3 holds. Let f be a real-value

function with absolutely continuous f ′, and let α be a positive number. If

A f(z) + h(z) ≥ α for any z ∈ R when f ′′(z) exists, (7)
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with

f(z2)− f(z1) ≥ −c(z2 − z1) for any z2 > z1, and (8)

|f ′(z)| < a0 for all z < 0 and some positive number a0, (9)

then we have C(x,Q) ≥ α for each Q ∈ Φf and each x ∈ R, where Φf ⊂ Φ consists of those

policies Q such that their resulting inventory process Z satisfying

(i) Ex

[

∫ t

0

(

f ′(Z(s))σ(Z(s))
)2

ds
]

< ∞ for t ≥ 0; (10)

(ii) Ex[|f(Z(t))|] < ∞ for t ≥ 0; and (11)

(iii) lim
t→∞

1

t
Ex[|f(Z(t))1{Z(t)≥0}|] = 0. (12)

We next construct a function, embodied by V , which together with α⋆ = α(s⋆, S⋆),

satisfies all conditions in Proposition 1. Define

g(z) = 2S ′(z)

∫ ∞

z

h(u)M(du) and ℓ(z) = 2S ′(z)

∫ ∞

z

M(du),

Note that g and ℓ satisfy

σ2(z)

2
g′(z)− µ(z)g(z) + h(z) = 0 and

σ2(z)

2
ℓ′(z)− µ(z)ℓ(z) + 1 = 0. (13)

Lemma 2. If Assumptions 1-3 hold, then there is an s with s ≤ s⋆ such that

α(s, S) :=

∫ S

s
g(y ∨ s) dy + c(S − s)

∫ S

s
ℓ(y ∨ s) dy

≥ α⋆ and (14)

g′(z)− α⋆ℓ′(z) < 0 for all z ≤ s. (15)

Now we are ready to construct the function V as follows.

V (z) =

∫ z

s

g(max(y, s)) dy − α⋆

∫ z

s

ℓ(max(y, s)) dy =

{

∫ z

s
g(y) dy − α⋆

∫ z

s
ℓ(y) dy for z ≥ s,

[g(s)− α⋆ℓ(s)](z − s) for z < s.

(16)

Next, we show that V and α⋆ satisfy conditions (7)-(9), and then Proposition 1 implies that

α⋆ = α(s⋆, S⋆) ≤ C(x,Q) for Q ∈ ΦV , i.e., (s
⋆, S⋆) policy is optimal in ΦV .

Proposition 2. If Assumptions 1-3 hold, we have that C(x,Q) ≥ α⋆ holds for each Q ∈ ΦV

and x ∈ R.
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Proof of Proposition 2. We will claim that (V, α⋆) satisfies all conditions of Proposition 1.

First, V defined in (16) is continuously differentiable in whole R and f ′′ exists except at s,

thus V is continuously differentiable with absolutely continuous V ′.

We next verify (7). From (13) and (16), we have that for z ≥ s, A V (z) + h(z) = α⋆

holds. Further, for z < s, we have

A V (z) + h(z) = −µ(z)
[

g(s)− α⋆ℓ(s)
]

+ h(z)

≥
σ2(z)

2

[

g′(z)− α⋆ℓ′(z)
]

− µ(z)
[

g(z)− α⋆ℓ(z)
]

+ h(z)

= α⋆,

where the inequaly holds due to (15), and the last equality is derived from (13).

Now we check (8). It follows from (14) that for z1 < z2,

V (z2)− V (z1) =

∫ z2

z1

g(max(y, s)) dy − α⋆

∫ z2

z1

ℓ(max(y, s)) dy ≥ −c(S − s).

Finally, we prove (9). It follows from (16) that for z < 0,

|V ′(z)| < max{g(s)− α⋆ℓ(s), max
z∈[s,0]

(g(z)− α⋆ℓ(z))} + 1.

To the end, we study how large is the subset ΦV . We define another subset of admissible

policies as follows and then show that it is included in ΦV . For j ∈ N, let

Φ(j) = {Q ∈ Φ : Z(τn) ≤ j for all n ≥ 0},

i.e., under Q ∈ Φ(j), the inventory level after ordering at any ordering time does not exceed

level j. Let

Φ̄ = ∪∞
j=1Φ(j).

We will show that Φ̄ ⊆ ΦV . To achieve that, we first provide some properties of V which

will be used in proving Proposition 3.

Lemma 3. If Assumptions 1-3 hold, then there exist a z̄ with 0 < z̄ < ∞ such that

V (z) > 0 and V ′(z) > 0 for all z ≥ z̄. (17)

Furthermore, both V and V ′ are polynomially bounded, i.e.,

|V ′(z)| ≤ b1 + b2|z|
n and |V (z)| ≤ b1 + b2|z|

n+1, (18)

for some positive constants bi, i = 1, 2, and a positive integer n.
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Proposition 3. If Assumptions 1-3 hold, then Φ̄ ⊆ ΦV .

Proof of Proposition 3. For any given Q ∈ Φ̄, i.e., Q ∈ Φj for some j, we need to show that

the controlled process Z = {Z(t)}t≥0 under Q as well as function V defined in (16) satisfy

conditions (10)-(12).

Let zb = z̄∨ j∨x (x is the initial level) and Zb = {Zb(t)}t≥0 be the reflected process with

lower barrier zb and any initial level z ∈ [zb,∞), then it follows from Remark 3.3 in [7] that

Zb has a stationary distribution with density

π(z) = 0 for z < zb and π(z) =

1
σ2(z)

exp(−
∫ z

zb

2µ(u)
σ2(u)

du)
∫∞

zb

1
σ2(z)

exp(−
∫ z

zb

2µ(u)
σ2(u)

du) dz
for z ≥ zb. (19)

Note that the boundedness of µ and σ in Assumption 1 implies that
∫ ∞

z̄

f(z)π(z) dz < ∞ for any polynomially bounded function f. (20)

Denote Z̄b = {Z̄b(t)}t≥0 as the reflected process with lower barrier zb and a initial level

given by a random variable with distribution (19). Then, for any t ≥ 0, Z̄b(t) has the same

distribution with density (19). We next show

Z(t) ≤ Z̄b(t) a.s. for any t ≥ 0. (21)

At time zero, it follows from zb = z̄ ∨ j ∨ x that Z(0−) = x ≤ zb ≤ Z̄b(0) a.s.. Also, at

any ordering time τ of Z, zb ≥ j and Q ∈ Φj imply that Z(τ) ≤ j ≤ zb ≤ Z̄b(τ) a.s..

Furthermore, during any two successive ordering times, the process Z cannot move above

Z̄b through diffusion on each sample path since once Z and Z̄b become same at certain time,

they will keep same thereafter until the next ordering time. Thus, (21) holds.

We first prove (10). In fact, we have

Ex

[

∫ t

0

(

V ′(Z(s))σ(Z(s))
)2

ds
]

≤ σ̄2
Ex

[

∫ t

0

(

V ′(Z(s))
)2(

1{Z(s)<s} + 1{s≤Z(s)<z̄} + 1{Z(s)≥z̄}

)

ds
]

.

It follows from (16) that the first two terms are finite. For the last term, we have

Ex

[

∫ t

0

(

V ′(Z(s))
)2
1{Z(s)≥z̄} ds

]

≤ Ex

[

∫ t

0

(

b1 + b2|Z(s)|
n
)2
1{Z(s)≥z̄} ds

]

≤ Ex

[

∫ t

0

(

b1 + b2Z̄b(s)
n
)2

ds
]

= t ·

∫ ∞

zb

(

b1 + b2z
n
)2
π(z) dz

< ∞,

8



where the first inequality is from (17)-(18), the second inequality is from (21) and Z̄b(t) ≥

zb ≥ z̄ a.s., and the equality holds because Z̄b(t) has the same distribution with density (19)

for any t ≥ 0. Therefore, we have proven (10).

We next prove (12). We have

Ex

[

|V (Z(t))|1{Z(t)≥0}

]

= Ex

[

|V (Z(t))|1{0≤Z(t)<z̄}

]

+ Ex

[

V (Z(t))1{Z(t)≥z̄}

]

≤ max
z∈[0,z̄]

V (z) + Ex

[

V (Z̄b(t))
]

(22)

where the inequality holds due to (17) and Z̄b(t) ≥ zb ≥ z̄ a.s.. Note that Ex

[

V (Z̄b(t))
]

=
∫∞

zb
V (z)π(z) dz, thus it follows from (18) and (20) that the right side of (22) is a finite

constant and independent of t. Thus we obtain (12).

Finally, we prove (11). We first notice

|V (Z(t))| = |V (Z(t))|
(

1{Z(t)<s} + 1{s≤Z(t)<0} + 1{Z(t)≥0}

)

.

The definition of V in (16) implies that the first two terms are finite, and (22) implies that

the last term is also finite. Thus, (11) holds.

4 Proof of Theorem 1

We, in this section, will prove that the (s⋆, S⋆) policy is optimal among all admissible policies

(i.e., Theorem 1) by a comparison theorem. Specifically, for any admissible policy Q ∈ Φ, if

we can find a sequence {Qj ∈ Φ(j) ⊆ Φ̄ : j = 1, 2, · · · } satisfying

lim sup
j→∞

C(x,Qj) ≤ C(x,Q) for x ∈ R, (23)

then the optimal policy in Φ̄ = ∪∞
j=1Φ(j) must be optimal in Φ. From Propositions 2 and

3, we have proven that the (s⋆, S⋆) policy defined in (6) is the best one in Φ̄. To eventually

establish the global optimality of the (s⋆, S⋆) policy in Φ, what remains is to construct a

sequence of {Qj ∈ Φ(j) : j = 1, 2, · · · } for each Q ∈ Φ and prove (23).

For any given admissible policy Q ∈ Φ(j) (with Z as the controlled inventory process

under policy Q), the construction of the sequence of policies {Qj ∈ Φ(j) : j = 1, 2, · · · } is

same as that in [6]. However, a more general argument is required to tackle the technical

issues arising from the general diffusion demand process. Let Qj(t) denote the total order

amount of policy Qj in [0, t], and Zj = {Zj(t) : t ≥ 0} be the resulting inventory process

under Yj , i.e.,

Zj(t) = x−Dj(t) +Qj(t), t ≥ 0, (24)

9



where Dj(t) =
∫ t

0
µ(Zj(s)) ds+

∫ t

0
σ(Zj(s)) dB(s). We define the jumps of Qj as follows; see

[6].

(J 1) ∆Qj(t) = 0 for t satisfying ∆Q(t) > 0 and Zj(t−) > j/2;

(J 2) ∆Qj(t) = ∆Q(t) for t satisfying ∆Q(t) > 0, Zj(t−) ≤ j/2, and Zj(t−) + ∆Q(t) ≤ j;

(J 3) ∆Qj(t) = j−Zj(t−) for t satisfying ∆Q(t) > 0, Zj(t−) ≤ j/2, and Zj(t−)+∆Q(t) > j;

(J 4) ∆Qj(t) = max(min(Z(t), j), 0) for t satisfying Zj(t−) = 0.

Proposition 4 (Comparison Theorem). Suppose Assumption 1-3 hold. For any admissible

policy Q ∈ Φ, the policy sequence {Qj ∈ Φj : j = 1, 2, · · · } constructed by (J 1)-(J 4) satisfies

(23).

Proof of Proposition 4. To prove (23), we need to compare the holding/shortage cost and

ordering cost under Q and {Qj ∈ Φ(j) : j = 1, 2, · · · }.

Consider the holding/shortage cost. It follows from the construction of Qj by (J 1)-(J 4),

we can easily have that on each sample path,

Zj(t) ≤ Z(t) if Zj(t) ≥ 0 and Zj(t) = Z(t) if Zj(t) < 0. (25)

By (25) and the properties of holding/shortage cost function h in Assumption 3, we have

that the holding/shortage cost incurred under Qj is no greater than that under Q.

Consider the ordering cost. We first show some properties of function c. Since c is a sub-

additive function in R+, the limit limξ→∞ c(ξ)/ξ must exist and limξ→∞ c(ξ)/ξ = infξ>0 c(ξ)/ξ

(cf. Theorem 16.2.9 in [11]). Let

k := inf
ξ>0

c(ξ)

ξ
and K(ξ) := c(ξ)− kξ.

Then we have

K(ξ) ≥ 0 and lim
ξ→∞

K(ξ)

ξ
= 0. (26)

Thus, k can be treated as the proportional cost and K(ξ) as the setup cost for an order

with quantity ξ, and the cumulative ordering cost up to time t under Q can be rewritten as
∑N(t)

n=0 K(ξn) + kQ(t).

We next consider the proportional cost. The cumulative proportional costs up to time t

under Q and Qj are kQ(t) and kQj(t), respectively. We claim that for any j = 1, 2, · · · ,

lim sup
t→∞

Ex[Q(t)]/t ≥ lim sup
t→∞

Ex[Qj(t)]/t. (27)
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Suppose (27) does not hold, i.e.,

a := lim sup
t→∞

Ex[Q(t)]/t < lim sup
t→∞

Ex[Qj(t)]/t := b, (28)

which, implies that we can find a subsequence of ordering times {θn}n≥1 satisfying

lim
n→∞

Ex[Qj(θn)]/θn = b. (29)

For this subsequence, we have

lim sup
n→∞

Ex[Q(θn)]/θn ≤ lim sup
t→∞

Ex[Q(t)]/t = a. (30)

Thus, it follows from (28)-(30) that there must exists a n̄ such that

Ex[Q(θn)] < Ex[Qj(θn)] for all n ≥ n̄. (31)

Moreover, from (25) and the fact that µ(·) is non-decreasing (see Assumption 1(a)), we have

Ex[D(t)] ≥ Ex[Dj(t)], for all t ≥ 0, (32)

where Dj(t) =
∫ t

0
µ(Zj(s)) ds+

∫ t

0
σ(Zj(s)) dB(s). Furthermore, it follows from (1) and (24)

that Z(t) = x−D(t) +Q(t) and Zj(t) = x−Dj(t) +Qj(t), which, together with (31)-(32),

imply that

Ex[Z(θn)] < Ex[Zj(θn)] for all n ≥ n̄,

contradicting with (25). Therefore, (27) holds.

It remains to consider the setup cost. For function K(·), we can further claim

lim
j→∞

supξ∈[0,j]K(ξ)

j
= 0. (33)

In fact, it follows from the second part in (26) that for any ǫ > 0, there is a nǫ such that

K(ξ)/ξ < ǫ for all ξ ≥ nǫ. Further, there exits an jǫ ≥ nǫ such that supξ∈[0,nǫ]K(ξ)/j < ǫ

for all j ≥ jǫ. Therefore, for all j ≥ jǫ,

supξ∈[0,j]K(ξ)

j
= max

{supξ∈[0,nǫ]K(ξ)

j
,
supξ∈[nǫ,j]K(ξ)

j

}

< ǫ.

Since ǫ is arbitrary, (33) holds.

Now we consider the setup cost incurred by the orders under policy Qj in (J 2)− (J 4).

For the order in (J 2), Qj and Q incur the same setup cost.

11



Consider the orders under policy Qj in (J 3). Let t1 and t2 denote any two consecutive

ordering times with t1 < t2. Let Xj(t) = x−
∫ t

0
µ(Zj(u)) du+

∫ t

0
σ(Zj(t)) dB(u). Recall the

definition of Zj in (24), we have

Zj(t1) = Xj(t1) +Qj(t1) and Zj(t2−) = Xj(t2) +Qj(t2−),

which, together with Qj(t1) ≤ Qj(t2−), imply

Xj(t1)−Xj(t2) ≥ Zj(t1)− Zj(t2−) = j − Zj(t2−) = Zj(t2)− Zj(t2−) = ∆Qj(t2) ≥
j

2
,

where the first two equalities follow from Zj(t1) = Zj(t2) = j. Let τ = inf{s ∈ (0, t2 − t1] :

Xj(t1 + s) = Xj(t1)− j/2 = j/2}. It follows from the second part in (4) and Assumption 1

that

Ex[τ ] = 2

∫ j

j

2

∫ ∞

u

M(dv) dS(u)

= 2

∫ j

j

2

∫ ∞

u

1

σ2(v)
exp

(

−

∫ v

u

2µ(z)

σ2(z)
dz

)

dv du

≥
2

σ̄2

∫ j

j

2

∫ ∞

u

exp
(

−
2µ̄

σ2
(v − u)

)

dv du

=
σ2j

2µ̄σ̄2
. (34)

Let Nj,1(t) be the number of ordering in (J 3) under Qj up to time t. Since t2 − t1 ≥ τ , we

have

Ex[Nj,1(t)] ≤
1

Ex[τ ]
t+ 1 =

2µ̄σ̄2

σ2j
t+ 1.

Now consider the orders under Qj in (J 4). Let t̃1 and t̃2 denote any two consecutive

ordering times with t̃1 < t̃2. In this case, we claim that there must exist some t̃3 ∈ [t̃1, t̃2)

satisfying Zj(t̃3) > j/2. If Zj(t̃1) 6= Z(t̃1), we must have Zj(t̃1) = j and then choose t̃3 = t̃1.

If Zj(t̃1) = Z(t̃1), assume that such t̃3 does not exist in [t̃1, t̃2), then the cases in (J 1), (J 3),

and (J 4) can not happen in (t̃1, t̃2). This implies Zj(t̃2−) = Z(t̃2−), contradicting with the

fact Zj(t̃2−) 6= Z(t̃2−). Let τ̃ = inf{s ∈ (0, t̃2 − t̃3] : Xj(t̃3 + s) = Xj(t̃3) −
j

2
}. Using the

same derivations as in (34), we have

Ex[τ̃ ] ≥
σ2j

2µ̄σ̄2
.

Let Nj,2(t) be the number of ordering in (J 4) under Qj in [0, t]. Since t̃2 − t̃1 ≥ t̃2 − t̃3 ≥ τ̃ ,

we have

Ex[Nj,2(t)] ≤
2µ̄σ̄2

σ2j
t + 1.

12



To sum up the holding/shortage cost, proportional cost, and setup cost discussed above,

we have

C(x,Qj)− C(x,Q) ≤ lim sup
t→∞

1

t
Ex

[

Ex[Nj,1(t)] + Ex[Nj,2(t)]
]

sup
ξ∈[0,j]

K(ξ)

≤
4µ̄σ̄2

σ2

supξ∈[0,j]K(ξ)

j
,

which, together with (33), implies that (23).

5 Concluding Remarks

In this paper, we used a two-step approach to prove the global optimality of an (s, S) policy in

an ergodic inventory control problem with inventory-dependent diffusion demand and general

ordering costs. Specifically, we first applied a lower bound theorem to show the optimality

of the selected policy in a subset of admissible policies, and then used a comparison theorem

to establish the global optimality among all admissible policies.

A Proof of Lemma 1

Let

γ(s, S) =
2
∫ S

s

∫∞

x
h(y)M(dy) dS(x)

2
∫ S

s

∫∞

x
M(dy) dS(x)

. (35)

It follows from Assumptions 1 and 3 (as well as Remark 1 (a)) that the conditions in Lemma

2.1 in [8] hold. Then, we have

lim
s→−∞

γ(s, S) = lim
(s,S)→(−∞,−∞)

γ(s, S) = lim
z→−∞

h(z) = ∞ and (36)

lim
S→∞

γ(s, S) = lim
(s,S)→(∞,∞)

γ(s, S) = lim
z→∞

h(z) = ∞,

which, together with the non-negativity of c in Assumption 2, imply

lim
s→−∞

α(s, S) = lim
(s,S)→(−∞,−∞)

α(s, S) = ∞ and lim
S→∞

α(s, S) = lim
(s,S)→(∞,∞)

α(s, S) = ∞.

Thus, we can find a finite positive number B1 satisfying

inf
s<S

α(s, S) = inf
−B1≤s<S≤B1

α(s, S). (37)

Let ∆ = S − s, then α(s, S) can be rewritten as

η(s,∆) =
2
∫ s+∆

s

∫∞

x
h(y)M(dy) dS(x) + c(∆)

2
∫ s+∆

s

∫∞

x
M(dy) dS(x)

.

13



From lim∆↓0 c(∆) > 0 (see Assumption 2), we have lim∆↓0 η(s,∆) = ∞, thus we can find a

finite positive number B2 such that (37) becomes

inf
s<S

α(s, S) = min
−B1≤s≤B1,B2≤∆≤2B1

η(s,∆).

Since η(s,∆) is continuous in s, there exists an s(∆) ∈ [−B1, B1] such that

η(s(∆),∆) = min
−B1≤s≤B1

η(s,∆) for each ∆ ∈ [B2, 2B1].

Further, since c(∆) is low semicontinuous and other parts in η(s(∆),∆) is continuous in ∆,

by the extreme value theorem (see Theorem B.2 in [15]), there exists a ∆⋆ ∈ [B2, 2B1] such

that

η(s(∆⋆),∆⋆) ≤ η(s(∆),∆) for all ∆ ∈ [B2, 2B1].

Let s⋆ = s(∆⋆) and S⋆ = s⋆ +∆⋆, then we complete the proof.

B Proof of Lemma 2

We show the existence of s satisfying (14) and (15) as follows: First, in part (a), we show

that there exists an s1 ∈ (−∞, s⋆] such that (14) holds for any s ∈ (−∞, s1]; and in part

(b), we show that we can find an s2 ∈ (−∞, s⋆] such that g′(z)− α⋆ℓ′(z) < 0 for any z ≤ s2.

Then, we let s = s1 ∧ s2, then both (14) and (15) hold.

(a) First, by Assumption 1, we have

lim
z→−∞

∫ ∞

z

M(du) = lim
z→−∞

∫ ∞

z

1

σ2(u)
exp

(

−

∫ u

c

2µ(y)

σ2(y)
dy

)

du

≥ lim
z→−∞

∫ c

z

1

σ2(u)
exp

(

−

∫ u

c

2µ(y)

σ2(y)
dy

)

du

≥ lim
z→−∞

∫ c

z

1

σ̄2
exp

(2µ

σ̄2
(c− u)

)

du

= ∞.

Similarly, we have

lim
z→−∞

∫ ∞

z

h(u)M(du) = ∞.

Therefore, by L’ Hôpital’s rule, we have

lim
z→−∞

g(z)

ℓ(z)
= lim

z→−∞

∫∞

z
h(u)M(du)

∫∞

z
M(du)

= lim
z→−∞

h(y) = ∞,

14



which yields that we can find an s† with s† ≤ s⋆ such that

g(y)

ℓ(y)
≥ α⋆ for any y ∈ (−∞, s†]. (38)

Also, by L’ Hôpital’s rule, we have

lim
z→∞

g(z)

ℓ(z)
= lim

z→∞

∫∞

z
h(u)M(du)

∫∞

z
M(du)

= lim
y→∞

h(y) = ∞, (39)

which yields that there exists an s‡ with s‡ ≥ s⋆ such that

g(z)

ℓ(z)
≥ α⋆ for any y ∈ [s‡,∞). (40)

In addition, it follows from (35) and (36) that

lim
s→−∞

∫ S

s
g(y) dy

∫ S

s
ℓ(y) dy

= lim
y→−∞

h(y) = ∞ for any fixed S ∈ R.

Then, there exists an s1 with s1 ≤ s† such that

∫ S

s
g(y) dy

∫ S

s
ℓ(y) dy

≥ α⋆ for S ∈ [s†, s‡] and s ≤ s1. (41)

Now we can show that (14) holds for any s ∈ (−∞, s1]. If s ≥ s, we have

α(s, S) = α(s, S) ≥ α⋆,

where the inequality follows from (6). Next, we prove the case when s < s in three subcases:

S ≤ s†, s† < S < s‡, and S ≥ s‡. If S ≤ s†, we have

α(s, S) ≥

∫ S

s
g(y ∨ s) dy

∫ S

s
ℓ(y ∨ s) dy

≥

∫ S

s
α⋆ · ℓ(y ∨ s) dy
∫ S

s
ℓ(y ∨ s) dy

= α⋆,

where the first inequlity follow the non-negativity of c(·) in Assumption 2, and the second

inequality follows (38) with s < S ≤ s†. If s† < S < s‡, we have

α(s, S) ≥

∫ S

s
g(y ∨ s) dy

∫ S

s
ℓ(y ∨ s) dy

=
g(s)(s− s) +

∫ S

s
g(y ∨ s) dy

ℓ(s)(s− s) +
∫ S

s
ℓ(y ∨ s) dy

≥ α⋆,

the the last inequality is derived from (38) and (41) with s ≤ s1 ≤ s† < S < s‡. If S ≥ s‡,

we have

α(s, S) ≥

∫ S

s
g(y ∨ s) dy

∫ S

s
ℓ(y ∨ s) dy

=
g(s)(s− s) +

∫ s‡

s
g(y ∨ s) dy +

∫ S

s‡
g(y ∨ s) dy

ℓ(s)(s− s) +
∫ s‡

s
ℓ(y ∨ s) dy +

∫ S

s‡
ℓ(y ∨ s) dy

≥ α⋆,

15



where the last inequality holds due to (38), (40), and (41).

(b) To prove that we can find an s2 ∈ (−∞, s⋆] such that g′(z) − α⋆ℓ′(z) < 0 for any

z ≤ s2, we will claim that

lim
z→−∞

[g′(z)− α⋆ℓ′(z)] < 0.

It follows from the convexity of h in Assumption 3 that there exist c0 > 0 and z0 < 0 such

that for all z < z0,

h′(z) < −c0. (42)

Then, for z < z0, we rewrite g′(z)− α⋆ℓ′(z) as

g′(z)− α⋆ℓ′(z)

=
2µ(z)

σ2(z)

[

g(z)− α⋆ℓ(z)−
h(z)− α⋆

µ(z)

]

=
2µ(z)

σ2(z)

∫ ∞

0

[ 2

σ2(y + z)
exp

(

−

∫ y+z

z

2µ(u)

σ2(u)
du

)(

(

h(y + z)− α⋆
)

−
(

h(z)− α⋆
)µ(y + z)

µ(z)

)]

dy

=
2µ(z)

σ2(z)

(

Λ1(z)− Λ2(z) + Λ3(z)
)

,

where the second equality holds because

∫ ∞

0

2µ(y + z)

σ2(y + z)
exp

(

−

∫ y+z

z

2µ(u)

σ2(u)
du

)

dy = 1,

and in the last equality,

Λ1(z) =

∫ ∞

z0−z

[ 2

σ2(y + z)
exp

(

−

∫ y+z

z

2µ(u)

σ2(u)
du

)

(

h(y + z)− α⋆
)

]

dy,

Λ2(z) =

∫ ∞

z0−z

[ 2

σ2(y + z)
exp

(

−

∫ y+z

z

2µ(u)

σ2(u)
du

)

(

h(z)− α⋆
)µ(y + z)

µ(z)

]

dy, and

Λ3(z) =

∫ z0−z

0

[ 2

σ2(y + z)
exp

(

−

∫ y+z

z

2µ(u)

σ2(u)
du

)(

(

h(y + z)− α⋆
)

−
(

h(z)− α⋆
)µ(y + z)

µ(z)

)]

dy.

If we can prove

lim
z→−∞

Λ1(z) = lim
z→−∞

Λ2(z) = 0 and lim
z→−∞

Λ3(z) < 0, (43)

then it follows from the positiveness of µ and the boundedness of µ and σ (see Assumption

1) that

lim
z→−∞

[g′(z)− α⋆ℓ′(z)] = lim
z→−∞

2µ(z)

σ2(z)

(

Λ1(z)− Λ2(z) + Λ3(z)
)

< 0.

Thus, it remains to prove (43).
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First, for z < z0, we rewrite Λ1 as

Λ1(z) = exp
(

−

∫ z0

z

2µ(u)

σ2(u)
du

)

∫ ∞

z0

[ 2

σ2(y)
exp

(

−

∫ y

z0

2µ(u)

σ2(u)
du

)

(

h(y)− α⋆
)

]

dy.

Since lim|z|→∞ h(z) = ∞ (Remark 1 (b)), there exist a z1 > 0 such that for |z| > z1

h(z) ≥ α⋆, (44)

which, together with the polynomial boundedness of h (Assumption 3) , implies

∫ ∞

z1

[ 2

σ2(y)
exp

(

−

∫ y

z0

2µ(u)

σ2(u)
du

)

(

h(y)− α⋆
)

]

dy > 0 and

∫ ∞

z1

[ 2

σ2(y)
exp

(

−

∫ y

z0

2µ(u)

σ2(u)
du

)

(

h(y)− α⋆
)

]

dy ≤

∫ ∞

z1

[ 2

σ2
exp

(

−
2µ

σ̄2
(y − z0)

)

(

h(y)− α⋆
)

]

dy

< ∞.

Thus,
∫ ∞

z0

[ 2

σ2(y)
exp

(

−

∫ y

z0

2µ(u)

σ2(u)
du

)

(

h(y)− α⋆
)

]

dy

=
(

∫ z1

z0

+

∫ ∞

z1

)[ 2

σ2(y)
exp

(

−

∫ y

z0

2µ(u)

σ2(u)
du

)

(

h(y)− α⋆
)

]

dy

is a finite number. Furthermore, the boundedness of µ and σ in Assumption 3 implies

lim
z→−∞

exp
(

−

∫ z0

z

2µ(u)

σ2(u)
du

)

= 0.

Therefore, we have

lim
z→−∞

Λ1(z) = lim
z→−∞

exp
(

−

∫ z0

z

2µ(u)

σ2(u)
du

)

∫ ∞

z0

[ 2

σ2(y)
exp

(

−

∫ y

z0

2µ(u)

σ2(u)
du

)

(

h(y)−α⋆
)

]

dy = 0.

Second, (44) and the boundedness of µ and σ imply that for z < −z1,

Λ2(z) =
h(z)− α⋆

µ(z)

∫ ∞

z0−z

2µ(y + z)

σ2(y + z)
exp

(

−

∫ y+z

z

2µ(u)

σ2(u)
du

)

dy

≤
h(z)− α⋆

µ(z)

∫ ∞

z0−z

2µ̄

σ2
exp

(

−
2µ

σ̄2
y
)

dy

=
µ̄σ̄2

µσ2

h(z)− α⋆

µ(z)
exp

(

−
2µ

σ̄2
(z0 − z)

)

.

Therefore,

0 ≤ lim
z→−∞

Λ2(z) ≤ lim
z→−∞

µ̄σ̄2

µσ2

h(z)− α⋆

µ(z)
exp

(

−
2µ

σ̄2
(z0 − z)

)

= 0,
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where the equality follows from the polynomial boundedness of h. Thus, we have

lim
z→−∞

Λ2(z) = 0.

Finally, we have

lim
z→−∞

Λ3(z) ≤ lim
z→−∞

∫ z0−z

0

[ 2

σ2(y + z)
exp

(

−

∫ y+z

z

2µ(u)

σ2(u)
du

)

(

h(y + z)− h(z)
)

]

dy

≤ lim
z→−∞

∫ z0−z

0

2

σ2
exp

(

−
2µ

σ̄2
y
)

(−c0)y dy

= −
c0σ̄

4

2µ2σ2

< 0,

where the first inequality holds due to (44) and that µ(·) is non-decreasing (see Assumption

1(a)), the second inequality is derived from (42).

C Proof of Lemma 3

To prove (17), we only need to prove

lim
z→∞

V ′(z) > 0, (45)

which yields limz→∞ V (z) = ∞, and then (17) holds. We next prove (45). First, we have

lim
z→∞

g(z) = lim
z→∞

2

∫ ∞

z

1

σ2(u)
h(u) exp

(

−

∫ u

z

2µ(y)

σ2(y)
dy

)

du

≥ lim
z→∞

2

σ̄2
h(z)

∫ ∞

z

exp
(

−
2µ̄

σ2
(u− z)

)

du

= lim
z→∞

σ2

µ̄σ̄2
h(z)

= ∞,

where the inequality follows from h′(z) > 0 for z > 0 (Assumption 3) and the boundedness

of µ and σ in Assumption 1. This, together with (39) and the definition of V in (16), implies

that

lim
z→∞

V ′(z) = lim
z→∞

[g(z)− α⋆ℓ(z)] = ∞.

Finally, (18) can be implied by the polynomial boundedness of h.
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