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Abstract

We consider a fairness problem in resource allocation where multiple groups demand resources
from a common source with the total fixed amount. The general model was introduced by Elzayn
et al. [FAT*’19]. We follow Donahue and Kleinberg [FAT*’20] who considered the case when the demand
distribution is known. We show that for many common demand distributions that satisfy sharp lower tail
inequalities, a natural allocation that provides resources proportional to each group’s average demand
performs very well. More specifically, this natural allocation is approximately fair and efficient (i.e., it
provides near maximum utilization). We also show that, when small amount of unfairness is allowed, the
Price of Fairness (PoF), in this case, is close to 1.

1 Introduction

Resource allocation has been a central problem in computer science and operation research [8, 10, 14].
Typically, to distribute resources well, there are many requirements to be considered. One of the most
fundamental and important requirements is fairness [3, 13, 6]. When fairness is a factor, in a pioneering
work, Elzayn et al. [5] proposed a setting where N groups of people would like to obtain shared common
resources, with limited amount R. There is an unknown distribution for the number of candidates in each
group in need of the resource. They would like to allocate the resources so that the possibility for anyone
in any group to access the resource is relatively equal, i.e., access to the distributed resource is fair. In their
setting, the distributions are unknown and they would like to learn how to allocate fairly and efficiently.
At each step, their learning algorithm provides an allocation and later receives feedback, for a particular
group, on the number of candidates who received the resource. They also showed that when the unknown
distributions are Poisson or “single-parameter Lipschitz-continuous distributions”, their learning algorithm,
based on MLE, after a logarithmic number of rounds, outputs an approximately fair allocation with an almost
maximum utility. As a subroutine to their learning algorithm, they presented an algorithm for computing
an optimal approximately fair allocation, assuming that candidate distributions are known.

Leaving out the learning aspect of the problem, Donahue and Kleinberg [4] considered the settings where
the candidate distributions are already known and focused mostly on the trade-offs between fairness and
utilization under different probability distributions, and under different allocation versions, e.g., integral and
fractional allocations. They showed many interesting results. When the fairness is relaxed to α-fair, they
gave an upper bound on the Price of Fairness to 1/α under fractional allocation. They proved that when the
family of distributions contains distribution that can be scaled to one another, e.g., exponential and Weibull
distributions, there is no gap in fairness and utilization, i.e., PoF is 1. They also established the bound on
the Price of Fairness for Power Law distributions.
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This paper follows the approach by Donahue and Kleinberg [4]. We consider fractional resource allocation,
i.e., we allow allocations where resources are distributed fractionally (or, similarly, probabilistically). We
show that when the candidate distribution Ci for each group satisfies lower deviation tail bound, the natural
way to allocate resource based on each group’s mean provides both fairness and good utilization. More
specifically, when the total amount of resource is R, the amount of resource allocated to group i is

R · µi∑
j µj

,

where, for each group i, µi is the expected number of candidates belonging to the group. We refer to this
allocation as the mean-weighted allocation. In contrast to Donahue and Kleinberg’s results [4] that provided
many examples of distributions arising from modern applications such as the Power Law distributions where
the fairness-utilization gap is significant, our work shows that for many classic distributions, the natural
allocation works just fine. More over, our proofs are mostly elementary.

We would like to point out that our work is also very closely related to the results presented in Elzayn et
al. [5]. On the surface, what we show here seems to be implicit in or be “part” of their learning algorithms that
outputs approximately fair allocation with almost maximum utilization for Poisson and other distributions.
However, we note that for distributions satisfying our assumption we do not need to compute the allocations,
we can just explicitly use the mean-weighted allocation. Our fairness and utilization analysis is based on
this natural allocation. We believe that, as in the work of Donahue and Kleinberg [4], our work simplifies
the analysis and essentially shed some lights on the trade-off between the fairness and utilization for this
problem.

In the next section, we review formal definitions and results of Donahue and Kleinberg [4]. Section 3
demonstrates our intuition on why mean-weighted allocation works for distributions with mean concentration.
We specify the tail assumption in Section 4 and show the fairness and utilization analysis. Section 5 provides
examples on many common distributions satisfying the assumption in Section 4.

2 Problem definitions and reviews of Donahue and Kleinberg’s
results

We follow a two-stage probabilistic model of Elzayn et al. [5], and Donahue and Kleinberg [4].
There are K groups. Each group i has a distribution Ci over the number of candidates Ci in need of

the resource. We assume that ECi∼Ci [Ci] > 0 and all Ci’s are independent. When the context is clear, we
use E[Ci] instead of ECi∼Ci [Ci] for simplicity. We let fi be the probability density function and Fi be the
cumulative distribution function for Ci.

We have R units of resource that can be distributed for these K groups. We assume that the resource is
discrete; therefore, each unit of resource can be allocated to one and only one candidate.

We would like to find allocation vi of resource for each group i such that
∑
vi = R (i.e., we are required

to allocate all the resource). When vi units of resource is allocated, we assume that each candidate of group
i has the same opportunity to receive the resource. Therefore, the probability of receiving the resource for
each candidate is min(vi/Ci, 1). Let vector v = [v1, v2, . . . , vK ].

There are two (somewhat) competing goals. The utilization of v is defined as

U(v, {Ci}) :=

K∑
i=1

ECi∼Ci [min(Ci, vi)].

Let q(v, C) be the availability of the resource for a group with distribution C when v units of resource is
allocated, defined as the opportunity of a candidate receiving the resource. Formally, if x is a member of the
group, the availability is

q(v, C) := Pr[x receives the resource |x is a candidate].
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In the paper of Donahue and Kleinberg [4], they showed that

q(v, C) =
EC∼C [min(C, v)]

EC∼C [C]
.

Inspired from equality of opportunity proposed by Hardt et al. [9], we define the fairness of v to be the
maximum difference of the availability, i.e., the fairness of v is

Q(v, {Ci}) := max
i,j
|q(vi, Ci)− q(vj , Cj)|.

If the fairness of v is less than or equal to α, we say that the allocation v is α-fair.
Since there are two objectives, one approach is to guarantee a certain fairness with parameter α, i.e., we

would like to find an allocation v (with
∑
i vi = R) such that Q(v, {Ci}) ≤ α that maximizes the utilization

U(v, {Ci}). This motivates the notion of Price of Fairness (PoF), defined to be

PoF(α) :=
maxv:

∑
i vi=R

U(v, {Ci})
maxv:

∑
i vi=R

(U(v, {Ci}) s.t. Q(v, {Ci}) ≤ α )
.

Donahue and Kleinberg [4] consider two versions of the allocations: one where the allocations vi must
be integer and one where vi can be fractional. For integer allocation, they showed that PoF is unbounded.
When fractional or probabilistic allocations are allowed, they showed that PoF is bounded by 1/α. Moreover,
they showed, in the next theorem, that PoF is 1 for candidate distributions satisfying some condition.

Theorem 1 (Theorem 2 from [4]). Consider candidate distributions with Fi(0) = 0 and fi(v) > 0, for v ≥ 0.
Suppose the set of candidate distributions {Ci} has the following property:

Fi(v) = Fj

(
v · E[Cj ]

E[Ci]

)
,

for v ≥ 0, for all i, j. Then, under the fractional allocation of resources, the max-utilization allocation is
0-fair.

3 Illustrative examples

To see how availability and utilization change with various allocation levels, it is useful to start with an easy
case with constant candidate distribution. For simplicity assume that the number of candidates is scaled
down to be exactly 1, so that the availability and utilization are equal. See Figure 1 (left). The figure also
shows the accumulative density function F ; note that in this case it is a step function that changes from 0
to 1 at the mean µ. As the plot shows, the availability keeps increasing up to the point when the resource
is enough for all candidates.

Note that this case falls into the case of Theorem 1 by Donahue and Kleinberg, and we know that PoF is
1. However, it serves as an introduction to our approach to prove that directly here. For this case, we have
a simple way to allocate all R units of resource showing that PoF is 1. We allocate

vi = R · µi∑
j µj

units to each group i.

Lemma 1. The allocation gives PoF = 1 for constant candidates.

Proof. If R ≥
∑
i µi, we allocate vi ≥ µi to each group. The utilization will be

∑
i µi, which is maximum.

The availability of each group is
min(µi, vi)

µi
=
µi
µi

= 1.
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Figure 1: Availability for constant demand (left) and for normally-distributed demand (right)

Since the availability of all groups are equal, this allocation is 0-fair.
If R <

∑
i µi, we have vi < µi. The allocation gives us R utilization which also maximum. The availability

of each group is
min(µi, vi)

µi
=
vi
µi

=
R∑
j µj

.

We can see that the availability of all groups are equal as well. Hence the allocation is 0-fair.
In both case, the allocation is 0-fair and gives us maximum utilization. Therefore, the PoF is 1.

When dealing with non-constant demand distribution highly concentrated around its mean, we see a
similar picture (See Figure 1 (right), for the case with normally distributed demands). When the level
of allocated resource is far from the mean µ, the utilization and availability behave roughly as in the
previous case. Things get more interesting around the mean (highlighted in yellow in the figure). If we
keep distributing resource proportionally to each group’s mean, we might observe the price of fairness here.
Intuitively, if the range is small, we would expect small penalty. This is what we shall prove in Section 4.

Notably we do not need that the distribution symmetrically concentrates around its mean, we only need
that the lower tail is very small. To see that this lower concentration is crucial when using mean-weighted
allocation, we provide another example where the random variable C for the number candidates is defined
to be such that Pr[C = 0] = (k − 1)/k and Pr[C = k] = 1/k. Note that E[C] = 1, but the probability that
C is less than its expectation is very large, i.e., Pr[C < E[C]] = 1 − 1/k. In this case, allocating resource
v ≤ k to the group only yields the availability and utilization of v/k.

Another example is the exponential distribution considered by Donahue and Kleinberg, who showed that
PoF is always 1. In stark contrast, our approach cannot show any good bounds for this case.

4 General assumptions and fairness analysis

In this section, we provide analysis of availability, utilization and fairness for classes of candidate distributions
satisfying certain concentration property. We show in Section 5 that many common distributions satisfy
this condition using well-known concentration inequalities (see, e.g., a survey by Boucheron, Lugosi, and
Bousquet [1]).

We say that a random variable X satisfies an (ε, δ)-lower deviation inequality for 0 < ε, δ < 1 if

Pr[X ≤ (1− ε)E[X]] ≤ δ.

We say that a distribution satisfies an (ε, δ)-lower deviation inequality if a random variable from that distri-
bution is with (ε, δ)-lower deviation inequality. Before we continue, we note that typically the parameter ε
is usually a small constant (say 1%, or 10%), and δ is a very small number, usually polynomially small.
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In what follows, we assume that distributions {Ci} satisfies an (ε, δ)-lower deviation inequality. Also, let

µi = E[Ci]. Let Z =
∑K
i=1 µi be the total expected number of candidates over all groups. We will use a

mean-weighted allocation based on groups’ mean, i.e., we let

vi = R · µi
Z
,

for 1 ≤ i ≤ K. We would show that this allocation is very fair (the fairness value is closed to 0) and gives
almost optimal utilization. We shall use this to prove the bound on the price of fairness (PoF).

4.1 Fairness

We analyze the fairness in two regions based on the total resources R and Z:

1. when R ≤ (1− ε)Z, and

2. when R ≥ (1− ε)Z.

4.1.1 When R ≤ (1− ε)Z

In this case, our allocation set

vi = R · µi
Z
≤ (1− ε)µi.

We will prove the upper bound and the lower bound on the expected availability in this case.

Lemma 2. The allocation ensures

vi
µi

(1− δ) ≤ q(vi, Ci) ≤
vi
µi
≤ 1− ε.

Proof. First consider the upper bound. For each group i, let Ui = min(Ci, vi) represents the utilization of
the group. Since E[Ui] ≤ vi, the availability of group i can be bounded by

q(vi, Ci) =
E[Ui]

µi
≤ vi
µi
≤ 1− ε.

To show the lower bound, recall that

E[Ui] = E[Ui|Ci < vi] Pr[Ci < vi] + E[Ui|Ci ≥ vi] Pr[Ci ≥ vi]
≥ E[Ui|Ci ≥ vi] Pr[Ci ≥ vi].

Given that the number of candidates Ci ≥ vi, we get Ui = min(Ci, vi) = vi. Moreover, since Ci satisfies
(ε, δ)-lower deviation inequality, we know that

Pr[Ci ≥ vi] ≥ Pr[Ci ≥ (1− ε)µi] ≥ 1− δ.

Using these facts, we get
E[Ui] ≥ vi(1− δ)

and the availability q(vi, Ci) of group i can be bounded by

q(vi, Ci) =
E[Ui]

µi
≥ vi
µi

(1− δ),

as required.

Lemma 3. When R ≤ (1− ε)Z, the mean-weighted allocation gives

Q(v, {Ci}) ≤ (1− ε)δ = δ − εδ.
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Proof. From Lemma 2, we know that for each group i,

vi
µi

(1− δ) ≤ q(vi, Ci) ≤
vi
µi
.

Hence the fairness is bounded by

Q(v, {Ci}) ≤ max
i

vi
µi
−min

j

vj
µj

(1− δ).

However, by the definition of vi, we know that the ratio vi/µi = R/Z for all i and does not depend on
groups. So,

Q(v, {Ci}) ≤
R

Z
− R

Z
(1− δ)

=
R

Z
δ

≤ (1− ε)δ.

4.1.2 When R ≥ (1− ε)Z

When R ≥ (1− ε)Z, our allocation will set

vi = R · µi
Z
≥ (1− ε)µi.

Lemma 4. In this case,
(1− ε)(1− δ) ≤ q(vi, Ci) ≤ 1.

Proof. Consider the lower bound. Since vi ≥ (1− ε)µi, we get that

E[Ui] = E[min(Ci, vi)] ≥ E[min(Ci, (1− ε)µi)].

and the availability of each group i can be bounded by

q(vi, Ci) ≥
E[min(Ci, (1− ε)µi)]

µi
.

As in the proof of Lemma 2, recall that

E[min(Ci, (1− ε)µi)]
≥ E[min(Ci, (1− ε)µi|Ci ≥ (1− ε)µi] Pr[Ci ≥ (1− ε)µi]
= (1− ε)µi Pr[Ci ≥ (1− ε)µi]
≥ (1− ε)(1− δ)µi

since Ci satisfies (ε, δ)-lower deviation inequality. Therefore,

q(vi, Ci) ≥ (1− ε)(1− δ).

For the upper bound, note that from

E[Ui] = E[min(Ci, vi)] ≤ E[Ci] = µi,

we know that q(vi, Ci) ≤ 1.

6



Therefore, we have the following corollary.

Corollary 1. When R ≥ (1− ε)Z, we have that

Q(v, {Ci}) ≤ 1− (1− ε)(1− δ) = ε+ δ − εδ.

From both cases of R, we can conclude as followed.

Lemma 5. When the distributions {Ci} have (ε, δ)-lower deviation inequality, the mean-weighted allocation
gives the fairness within ε+ δ − εδ.

4.2 Utilization

This section shows that the mean-weighted allocation also gives a very good utilization bound. Before we
start, recall that the maximum expectation of total utilization is at most min(R,Z). We first consider the
case when R ≤ (1− ε)Z.

Lemma 6. If R ≤ (1− ε)Z, the utilization is at least (1− δ)R.

Proof. Recall that the utilization is defined as

U(v, {Ci}) =

K∑
i=1

E[Ui].

From our proof of Lemma 2, we have E[Ui] ≥ (1− δ)vi for each i. Therefore, the utilization is at least

U(v, {Ci}) ≥
K∑
i=1

(1− δ)vi = (1− δ)R.

On the other hand, when R ≥ (1− ε)Z, we show that the utilization is at least (1− ε− δ)Z.

Lemma 7. If R ≥ (1− ε)Z, the utilization is at least

(1− ε− δ)Z.

Proof. From the proof of Lemma 4, we have

E[Ui] ≥ (1− ε)µi Pr[Ci ≥ (1− ε)µi] ≥ (1− ε)(1− δ)µi

in this case. Therefore, the utilization is

U(v, {Ci}) =

K∑
i=1

E[Ui] ≥
K∑
i=1

(1− ε)(1− δ)µi

= (1− ε)(1− δ)Z
≥ (1− ε− δ)Z.

These two lemmas imply the following key lemma.

Lemma 8. When the candidate distributions satisfy the (ε, δ)-lower deviation inequality, the utilization for
the mean-weighted allocation is at least

min(1− δ, 1− ε− δ) = 1− ε− δ

of the maximum utilization.
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4.3 The bound on PoF

Assume that ε+ δ < 1. We use the bounds from Lemma 5 and Lemma 8 to show that when

ε+ δ ≤ α < 1,

the Price of Fairness is at most
1

1− ε− δ
≤ 1

1− α
.

Moreover, if ε+ δ ≤ 1/2, we have

1

1− ε− δ
= 1 +

ε+ δ

1− ε− δ
≤ 1 + 2(ε+ δ) ≤ 1 + 2α.

Thus, we have the following main theorem.

Theorem 2. If candidate distributions {Ci} satisfy the (ε, δ)-lower deviation inequality for ε, δ such that
ε+ δ < 1, the Price of Fairness (PoF) when α ≥ ε+ δ is at most 1/(1− α). In addition, if ε+ δ ≤ 1/2 the
PoF is at most 1 + 2α.

5 Results for specific distributions

In this section, we show that many common distributions, for demand modeling, satisfies the (ε, δ)-lower
deviation inequality. We only provide a few examples.

5.1 Binomial distribution

Assume that there are ni people in group i, and independently each person in group i would be a candidate
with probability pi. The number of candidates in group i, Ci, is a binomial random variable with parameter
ni and pi. We have, for an integer x such that 0 ≤ x ≤ ni,

Pr[Ci = x] =

(
ni
x

)
px(1− p)ni−x,

with µi = nipi. For this type of random variables, we can apply the Chernoff bound to get that

Pr[Ci ≤ (1− ε)µi] ≤ e−µiε
2/2.

Note that the term e−µiε
2/2 specifies the parameter δ and is dependent on µi. Thus, if we take ε, δ, and pi

to be fixed, we have the following lemma.

Lemma 9. Assume that the candidate distributions are all binomial. For any ε, δ such that ε + δ ≤ 1/2,
and for any pi, The number of candidates Ci satisfies the (ε, δ)-lower deviation inequality when

ni ≥
2

ε2pi
ln

1

δ
.

Proof. When ni ≥ 2
ε2pi

ln 1
δ , we have e−µiε

2/2 ≤ δ. This fact implies that Pr[Ci ≤ (1 − ε)µi] ≤ δ, which is

the definition of (ε, δ)-lower deviation inequality.
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5.2 Normal distribution

Normal distribution or Gaussian distribution is a continuous distribution whose random variable C with
parameter mean µ and standard deviation σ has the density probability distribution f defined as

f(x) =
1

σ
√

2π
e−

1
2 ( x−µσ )

2

.

Normal distributions are catch-all distributions, used in numerous modelings calculations when the distri-
butions is not clear or unknown.

In the context of this problem, the number of candidates Ci for each group i is a normal random variable
with mean µi and standard deviation σi. Using the Chernoff bound, we have that

Pr[Ci ≤ (1− ε)µi] ≤ e
− ε

2µ2i
2σ2
i .

Again, with the same argument as in Lemma 9, this implies that Normal random variable Ci satisfies the

(ε, δ)-lower deviation inequality when δ ≥ e
− ε

2µ2i
2σ2
i , which implies

µi ≥
√

2σ2
i

ε2
ln

1

δ
.

5.3 Poisson distribution

Poisson distribution is a discrete distribution typically used to express the number of events occurring in the
particular time period (usually for rare events). A Poisson random variable C with parameter λ satisfies

Pr[C = x] =
λxe−λ

x!
,

for integer x = 0, 1, . . .. The expectation E[C] is λ. It can be viewed as the limit of the binomial distribution
(i.e., fixing λ = np, and take n → ∞). To quote Feller [7], examples of observations fitting the Poisson
distribution are radioactive disintegrations, flying-bomb hits on London, chromosome interchanges in cells,
connections to wrong number, and bacteria and blood counts.

In the context of this problem, we consider the situation when the number of candidates Ci for each
group i is a Poisson random variable with parameter λi. It is folklore that Poisson random variables have
sub-exponential concentration bounds. The following is from Canonne’s note [2]:

Pr[Ci < (1− ε)λi] ≤ e−
ε2λi

2 h(−ε),

where h(x) = 2 (1+x) ln(1+x)−x
x2 . Thus, when each λi is large enough, i.e., when

λi ≥
2

ε2h(−ε)
ln

1

δ
,

we obtain our required assumption.
When each Ci is a random variable of one of these three specific distributions, we can see that if the mean

is large enough, Ci satisfies the (ε, δ)-lower deviation inequality for any ε and δ. Thus, given α > 0, we can
choose ε and δ such that ε + δ ≤ min(α, 1/2). Then, combined with Lemma 5, Lemma 8, and Theorem 2,
we can conclude as followed.

Theorem 3. Assume that the distribution of each Ci is binomial, normal, or Poisson. Given that all the
mean E[Ci] are large enough, for any α ∈ (0, 1), the mean-weighted allocation is α-fair and gives us at least
(1− α) of the maximum utilization. The PoF of this case is at most 1 + 2α.
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5.4 Other examples

There are many other experiments that result in random variables satisfying the required (ε, δ)-lower devi-
ation inequality, e.g., sub-Gaussian random variables and those random variables which are applicable to
strong classic tail inequalities, such as the Chernoff’s bound, Hoeffding’s bound, Azuma’s inequality, and
McDiarmid’s inequality. For examples, the number of empty bins in a balls-and-bins experiment. See more
from classic probability textbooks, e.g.,[12, 11], or surveys [1].
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