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Abstract

An independent set game is a cooperative game dealing with profit sharing in the maximum

independent set problem. A population monotonic allocation scheme is a rule specifying how to

share the profit of each coalition among its participants such that every participant is better off

when the coalition expands. In this paper, we provide a necessary and sufficient characterization

for independent set games admitting population monotonic allocation schemes. Moreover, our

characterization can be verified efficiently.
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1 Introduction

An independent set game is a cooperative game with graph structure. The players are edges and

the value of each coalition is defined to be the maximum size of independent sets induced by

the coalition. The following scenario captures the essence of independent set games. There are

projects and participants. Every participant is suitable for two projects but only allowed to join

one. Every project requires all suitable participants to cooperate to be done. The aim is to finish

as many projects as possible. We may introduce a graph to represent projects, participants and

their relations, where every vertex is a project and every edge is a participant joining two suitable

projects. Then the aim becomes finding a maximum independent set. And the independent set

game deals with profit sharing in this scenario.
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The core is a central concept in profit sharing, which contains all possible ways of distributing

the total worth of a game among individual participants such that no participant derives a better

payoff by leaving either individually or as a group. Thus the core emphasizes the stability of the

game. However, the core does not necessarily guarantee the unhindered formation of a coalition,

as a new member may decrease the profit shared by participants in the current coalition. To retain

stability in an expanding coalition, population monotonic allocation schemes (PMASes for short)

were introduced [17], under which no participant derives a worse payoff when a new member joins

the coalition. Thus, PMASes can be viewed as a refinement of the core, where the latter emphasizes

the static stability and the former emphasizes the dynamic stability.

Combinatorial optimization games take an important part in cooperative game theory and draw

a lot of attention from researchers. Faigle and Kern [7] studied the approximate core. Deng et

al. [3] provided a unified characterization for the core non-emptiness. Universal characterizations

for the core non-emptiness of each subgame were studied in [4, 6, 5]. Immorlica et al. [8] studied

approximate PMASes. Research efforts have also been made for individual combinational opti-

mization games, including matching games [15, 10, 12, 18, 19], flow games [9, 2], spanning tree

games [14, 11], etc. For independent set games, core non-emptiness conditions for the game itself

and every subgame were successfully settled in [3, 6, 5]. In addition, Xiao et al. [20] provided

a necessary and sufficient characterization for convexity and Liu et al. [13] gave a combinatorial

characterization for PMASes in convex instances. By investigating the interplay of PMASes and

underlying structures, we provide a necessary and sufficient characterization for PMASes in inde-

pendent set games. Our characterization identifies a larger class of independent set games than

the work of Xiao et al. [20], since every convex game is also population monotonic [17] but the

converse is not necessarily true. Moreover, our characterization can be verified efficiently.

The remainder of this paper is organized as follows. In Section 2, some notions and notations

used in this paper are introduced. Section 3 develops a necessary and sufficient characterization

for PMASes of independent set games. Section 4 compares the characterizations for convexity and

population monotonicity of independent set games and discusses the direction of further research.

2 Preliminaries

2.1 Game theory

A cooperative game Γ = (N, γ) consists of a player set N and a characteristic function γ : 2N → R
with convention γ(∅) = 0. We call N the grand coalition and call S a coalition for any S ⊆ N . The

game Γ is convex if γ(S) + γ(T ) ≤ γ(S ∩ T ) + γ(S ∪ T ) for any S, T ⊆ N .

An allocation of the game Γ is a non-negative vector x = (xi)i∈N specifying how to distribute
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the profit among players in the grand coalition N . The core of the game Γ is the set of allocations

x = (xi)i∈N satisfying efficiency and coalitional rationality conditions,

– efficiency :
∑

i∈N xi = γ(N);

– coalitional rationality :
∑

i∈S xi ≥ γ(S) for any S ⊆ N .

An allocation scheme of the game Γ is a collection of non-negative vectors {xS}S∈2N\{∅} with

xS = (xS,i)i∈S specifying how to distribute the profit among players in every coalition S ∈ 2N\{∅}.
A population monotonic allocation scheme (PMAS) is an allocation scheme {xS}S∈2N\{∅} satisfying

efficiency and monotonicity conditions,

– efficiency :
∑

i∈S xS,i = γ(S) for any S ∈ 2N\{∅};

– monotonicity : xS,i ≤ xT,i for any S, T ∈ 2N\{∅} with S ⊆ T and any i ∈ S.

The game Γ is population monotonic if it admits a PMAS. Sprumont [17] proved that every convex

game is population monotonic by providing an incremental procedure for constructing a PMAS

from any convex game.

2.2 Graph theory

All graphs considered in this paper are finite, undirected and simple. Let G = (V,E) be a graph.

For any vertex v in G, we use δ(v) to denote the set of edges incident to v and use N(v) to denote

the set of vertices adjacent to v. For any two vertices u and v in G, we use N(u, v) to denote the

set of vertices that are only adjacent to u and v, i.e., N(u, v) =
{
w ∈ V : N(w) = {u, v}

}
. A vertex

is isolated if it has degree zero. A vertex is pendant if it has degree one. An edge is pendant if it

has a pendant endpoint. A vertex covers all the edges incident to it. For U ⊆ V , G[U ] denotes the

induced subgraph of G on U . For F ⊆ E, V 〈F 〉 denotes the set of vertices incident only to edges

in F . An independent set of G is a vertex set U ⊆ V such that G[U ] has no edge. We use α(G) to

denote the size of maximum independent sets in G.

3 Population monotonicity of independent set games

The independent set game on a graph G = (V,E) is a cooperative game ΓG = (N, γ) such that

N = E and γ(S) = α(G[V 〈S〉]) for any S ⊆ N . Throughout this paper, we always assume that the

underlying graph G has no isolated vertex. In the following, we develop a complete characterization

for the population monotonicity of ΓG via the structure of G.
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3.1 A glimpse of PMASes

Notice that any independent set naturally yields an edge set decomposition. Consider the under-

lying graph G = (V,E) of the independent set game ΓG = (N, γ). Let I ⊆ V be an independent

set and Ē(I) ⊆ E be the set of edges not covered by I. Then {δ(v) : v ∈ I} yields a partition for

E\Ē(I) since δ(u)∩ δ(v) = ∅ for any two vertices u, v ∈ I. The edge set decomposition induced by

independent sets offers a basic observation for PMASes in independent set games.

Lemma 1. Let {xS}S∈2N\{∅} be a PMAS of ΓG. Let I be a maximum independent set of G. Then∑
i∈δ(v) xN,i = γ

(
δ(v)

)
= 1 for any v ∈ I.

Proof. Let Ē(I) be the set of edges not covered by I. By definition of PMASes, we have

γ(N) =
∑
i∈Ē(I)

xN,i +
∑
v∈I

∑
i∈δ(v)

xN,i

≥
∑
v∈I

∑
i∈δ(v)

xδ(v),i

=
∑
v∈I

γ
(
δ(v)

)
= |I|.

(1)

The first equality in (1) is from the edge set decomposition induced by I. The last equality in (1)

is because γ
(
δ(v)

)
= 1 for any v ∈ I. It follows that∑

i∈δ(v)

xN,i = γ
(
δ(v)

)
= 1

for any v ∈ I.

Lemma 1 implies the following corollary directly.

Lemma 2. Let {xS}S∈2N\{∅} be a PMAS of ΓG. Then 0 ≤ xS,i ≤ 1 for any S ⊆ N with i ∈ S.

Moreover, if edge i is not covered by some maximum independent set of G, then xS,i = 0 for any

S ⊆ N with i ∈ S.

Proof. Let I be a maximum independent set. Let v be a vertex in I. Lemma 1 implies that

0 ≤ xN,i ≤ 1 for any i ∈ δ(v). Let Ē(I) be the set of edges not covered by I. Lemma 1 also implies

that xN,i = 0 for any i ∈ Ē(I) as∑
i∈Ē(I)

xN,i = γ(N)−
∑
v∈I

∑
i∈δ(v)

xN,i

= γ(N)− |I|

= 0.
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By monotonicity of PMASes, 0 ≤ xS,i ≤ xN,i ≤ 1 for any S ⊆ N with i ∈ S. In particular, if

i ∈ Ē(I), then xS,i = xN,i = 0 for any S ⊆ N with i ∈ S. Consequently, if edge i is not covered by

some maximum independent set of G, then xS,i = 0 for any S ⊆ N with i ∈ S.

Lemma 2 suggests that an edge is a null player in the independent set game if it is not covered

by some maximum independent set. Indeed, the game has the same value with or without the edge

that is not covered by some maximum independent set. Consequently, any core allocation defined

from a PMAS yields a null payoff to a null player. In contrast, every pendant edge is covered by

all maximum independent sets, which suggests that pendant edges are essential in independent set

games. Next, we study pendant edges in PMASes of independent set games.

3.2 Pendant edges in PMASes

We have the following observation for pendant edges in PMASes.

Lemma 3. Let {xS}S∈2N\{∅} be a PMAS of ΓG. If edge i is pendant in G, then xS,i = 1 for any

S ⊆ N with i ∈ S.

Proof. Let v be a pendant endpoint of edge i in G. There exists a maximum independent set I of G

with v ∈ I. To see this, consider any maximum independent set I. If v 6∈ I, the other endpoint u of

edge i is in I. It follows that I−u+ v is a desired maximum independent set of G. By efficiency of

PMASes, we have γ
(
δ(v)

)
= xi,i = 1. Lemma 2 and monotonicity of PMASes imply that xS,i = 1

for any S ⊆ N with i ∈ S.

Lemma 3 shows that pendant edges are important in the independent set game. Indeed, every

maximum independent set covers all pendant edges and the game value decreases when pendant

edges are removed. It turns out that, for population monotonic independent set games, not only

pendant edges are necessary, but also every non-pendant edge has to be close to pendant edges.

Lemma 4. If ΓG is population monotonic, then every vertex has distance at most two to a pendant

vertex in G.

Proof. Assume to the contrary that vertex v∗ has distance larger than two to pendant vertices in

G.

We first show that there is at most one neighbor u ∈ N(v∗) with |N(u, v∗)| ≤ 1. Let u ∈ N(v∗)

be a vertex with |N(u, v∗)| ≤ 1. Let {xS}S∈2N\{∅} be a PMAS of ΓG. By definition of PMASes,

we have

γ
(
δ(u) ∪ δ(v∗)

)
+ xδ(v∗),uv∗ ≥ γ

(
δ(u)

)
+ γ
(
δ(v∗)

)
. (2)
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Since δ(u) ∪ δ(v∗) contains no pendant edge, γ
(
δ(u)

)
= γ

(
δ(v∗)

)
= 1. Moreover, |N(u, v∗)| ≤ 1

implies γ
(
δ(u)∪δ(v∗)

)
= 1 as V 〈δ(u)∪δ(v∗)〉 induces either an edge or a triangle. Then xδ(v∗),uv∗ ≥ 1

follows from (2). Since γ
(
δ(v∗)

)
= 1, efficiency of PMASes implies that there is at most one vertex

u ∈ N(v∗) with |N(u, v∗)| ≤ 1.

Notice that |N(v∗)| ≥ 2, as vertex v∗ is not pendant. Since at most one neighbor u ∈ N(v∗) sat-

isfies |N(u, v∗)| ≤ 1, there is a neighbor u∗ ∈ N(v∗) with |N(u∗, v∗)| ≥ 2. Notice that |N(w, v∗)| ≤ 1

for any w ∈ N(u∗, v∗), implying that there is more than one neighbor u ∈ N(v∗) with |N(u, v∗)| ≤ 1.

A contradiction occurs. Hence, every vertex has distance at most two to a pendant vertex in G.

Figure 1: A minimal counterexample for the converse of Lemma 4.

Example 1. Let Γ = (N, γ) be the independent set game defined on the graph in Figure 1. Clearly,

every vertex in the underlying graph has distance at most two to a pendant vertex. However, Γ is

not population monotonic. Assume to the contrary that {xS}S∈2N\{∅} is a PMAS of Γ. Notice that

γ(23) = γ(2346) = γ(45) = γ(3456) = 1.

By definition of PMASes, we have

0 ≤ x2346,4 + x2346,6 ≤ γ(2346)− γ(23) = 0,

and

0 ≤ x3456,3 + x3456,6 ≤ γ(3456)− γ(45) = 0.

By monotonicity of PMASes, we have x346,3 = x3456,3 = 0, x346,4 = x2346,4 = 0 and x346,6 =

x2346,6 = x3456,6 = 0. It follows that

0 = x346,3 + x346,4 + x346,6 < γ(346) = 1,

which contradicts efficiency of PMASes. C

Example 1 shows that Lemma 4 is not sufficient for the population monotonicity of independent

set games. It also suggests that the obstruction might lie in non-pendant edges. Next, we turn to

study non-pendant edges in PMASes of independent set games.
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3.3 Non-pendant edges in PMASes

Before proceeding, we decompose non-pendant edges into two categories according to whether they

are incident to pendant edges. A non-pendant edge is said of type I if it is not incident to any

pendant edge, and of type II if it is incident to a pendant edge. Clearly, every non-pendant edge

is either of type I or of type II, but not both. We have the following observations for non-pendant

edges in PMASes.

Lemma 5. Let {xS}S∈2N\{∅} be a PMAS of ΓG. If i is a non-pendant edge of type I with endpoints

u and v, then xS,i = 1 for any S ⊆ N with δ(u) ⊆ S or δ(v) ⊆ S.

Proof. By Lemma 4, every vertex has distance at most two to pendant vertices in G . Since i is

a non-pendant edge of type I, both endpoints u and v have distance two to pendant vertices. It

follows that N(u, v) = ∅ as every vertex in N(u, v) has distance larger than two to pendant vertices.

Hence γ
(
δ(u) ∪ δ(v)

)
= 1. Further notice that γ

(
δ(u)

)
= γ

(
δ(v)

)
= 1. By definition of PMASes,

we have

γ
(
δ(u) ∪ δ(v)

)
+ xδ(u),i ≥ γ

(
δ(u)

)
+ γ
(
δ(v)

)
.

It follows that xδ(u),i = 1. Similarly, we have xδ(v),i = 1. By monotonicity of PMASes, xS,i = 1 for

any S ⊆ N with δ(u) ⊆ S or δ(v) ⊆ S.

Lemma 6. Let {xS}S∈2N\{∅} be a PMAS of ΓG. If i is a non-pendant edge of type II that is

incident to a non-pendant edge of type I, then xS,i = 0 for any S ⊆ N with i ∈ S.

Proof. Without loss of generality, we may assume that edge i is covered by every maximum inde-

pendent set of G, since otherwise the assertion follows from Lemma 2 directly. Let u and v be the

endpoints of edge i. Further assume that u has distance one and v has distance two to pendant

vertices. Let I be a maximum independent set of G that contains as many pendant vertices as

possible. It follows that u 6∈ I as u is adjacent to a pendant vertex in G. Since edge i is covered

by I, u 6∈ I implies v ∈ I. Let i∗ be a non-pendant edge of type I that is incident to i. Clearly,

i∗ ∈ δ(v). Lemma 5 implies xN,i∗ = 1. Then xN,i = 0 follows from Lemma 1. By monotonicity of

PMASes, xS,i = 0 for any S ⊆ N with i ∈ S.

With Lemmas 5 and 6, we are able to deduce the value in PMASes for special non-pendant

edges. Another minimal counterexample for the converse of Lemma 4 was detected with those

observations for non-pendant edges. Moreover, the counterexample suggests another necessary

condition for the population monotonicity of independent set games.

Example 2. Let Γ = (N, γ) be the independent set game defined on the graph in Figure 2. Clearly,

every vertex in the underlying graph has distance at most two to a pendant vertex. However, Γ is
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Figure 2: A minimal example suggesting Lemma 7.

not population monotonic. Assume to the contrary that {xS}S∈2N\{∅} is a PMAS of Γ. Notice that

edges 3 and 4 are non-pendant edges of type I, and edge 2 is a non-pendant edge of type II. Lemma

5 implies that x234,3 = x234,4 = 1 and Lemma 6 implies that x234,2 = 0. It follows that

2 = x234,2 + x234,3 + x234,4 > γ(234) = 1,

which contradicts efficiency of PMASes. C

Based on Example 2, we introduce another structural characterization for population monotonic

independent set games.

Lemma 7. If ΓG is population monotonic, then non-pendant edges of type I are not incident in G.

Proof. Assume to the contrary that i1 and i2 are non-pendant edges of type I incident to the same

vertex v in G. By Lemma 4, v has distance two to pendant vertices in G, suggesting γ
(
δ(v)

)
= 1.

Lemma 5 implies that xδ(v),i1 = xδ(v),i2 = 1. It follows that

∑
i∈δ(v)

xδ(v),i ≥ xδ(v),i1 + xδ(v),i2 > γ
(
δ(v)

)
= 1,

which contradicts efficiency of PMASes.

3.4 A necessary and sufficient characterization

Both Lemmas 4 and 7 are necessary conditions for the population monotonicity of independent set

games. We show that combining these two conditions yields a sufficient condition for the population

monotonicity of independent set games.

Lemma 8. If G satisfies the following two conditions:

(i) every vertex has distance at most two to pendant vertices;

(ii) non-pendant edges of type I are not incident,

then ΓG is population monotonic.
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Proof. Assume that G satisfies conditions (i) and (ii). Let E0, E1 and E2 denote the set of pendant

edges, non-pendant edges of type I, and non-pendant edges of type II, respectively. For any non-

empty S ⊆ N , define xS = {xS,i}i∈S by

xS,i =



1 if i ∈ E0,

1 if i ∈ E1 with δ(u) ⊆ S or δ(v) ⊆ S,

1
|δ(u)| if i ∈ E2 with δ(u) ⊆ S ∩ E2,

1
|δ(v)| if i ∈ E2 with δ(v) ⊆ S ∩ E2,

0 otherwise,

(3)

where u and v are the endpoints of edge i. Notice that δ(u) ⊆ S ∩ E2 and δ(v) ⊆ S ∩ E2 never

occur simultaneously when i ∈ E2. Hence every xS is well-defined. We show that {xS}S∈2N\{∅} is

a PMAS of ΓG.

It is easy to verify the monotonicity condition. Let S ⊆ T ⊆ N and i ∈ S. It is trivial that

xS,i ≤ xT,i when xS,i = 0. Hence assume that xS,i > 0. By definition, either i ∈ E0 or i ∈ E1

implies xS,i = xT,i = 1. If i ∈ E2, then xS,i = xT,i = 1
|δ(v)| follows from definition, where v is an

endpoint of edge i. Hence xS,i = xT,i when xS,i > 0. Therefore, the monotonicity follows.

It remains to check the efficiency condition. Let S ⊆ N and IS be a maximum independent

set of G[V 〈S〉] that contains as many pendant vertices of G as possible. We claim that every

non-pendant vertex from IS has distance two to pendant vertices in G. Assume to the contrary

that there exists a non-pendant vertex v ∈ IS adjacent to a pendant vertex u in G. Notice that

v ∈ IS implies u ∈ V 〈S〉\IS . Then IS − v+u is a maximum independent set of G[V 〈S〉] with more

pendant vertices than IS , which contradicts the selection of IS . In the following, we show∑
i∈S

xS,i =
∑
v∈IS

∑
i∈δ(v)

xS,i = |IS | = γ(S). (4)

We first prove
∑

i∈δ(v) xS,i = 1 for any v ∈ IS . Let v ∈ IS . Clearly, δ(v) ⊆ S. It is trivial that∑
i∈δ(v) xS,i = 1 if v is pendant in G. Hence assume that v is non-pendant in G. It follows that v

has distance two to pendant vertices in G. We show
∑

i∈δ(v) xS,i = 1 by distinguishing two cases of

δ(v). If δ(v) ⊆ E2, then xS,i = 1
|δ(v)| for any i ∈ δ(v), implying that

∑
i∈δ(v) xS,i = 1. Otherwise, let

i∗ ∈ δ(v) be a non-pendant edge of type I. By definition, xS,i∗ = 1 and xS,i = 0 for any i ∈ δ(v)\i∗.
It follows that

∑
i∈δ(v) xS,i = 1.

We now prove xS,i = 0 for any i ∈ S not covered by IS . Let i ∈ S be an edge not covered by IS .

Let u and v be the endpoints of edge i. Clearly, u, v 6∈ IS . By definition, xS,i = 0 follows trivially if

neither δ(u) ⊆ S nor δ(v) ⊆ S. Hence without loss of generality, assume that δ(v) ⊆ S. According
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to the selection of IS , edge i is non-pendant since every pendant edge in S is covered by IS . We

claim that i ∈ E2, i.e., i is a non-pendant edge of type II. Assume to the contrary that i ∈ E1.

Then both u and v have distance two to pendant vertices in G. Moreover, u is the unique neighbor

of v that has distance two to pendant vertices in G. Since every non-pendant vertex from IS has

distance two to pendant vertices in G, IS + v is an independent set of G[V 〈S〉], which contradicts

the maximality of IS . Hence we have i ∈ E2 as asserted. Without loss of generality, assume that v

has distance two to pendant vertices in G. It is trivial that δ(u) 6⊆ E2, as u is adjacent to pendant

vertices in G. To prove xS,i = 0, it suffices to show that δ(v) 6⊆ E2. Assume to the contrary

that δ(v) ⊆ E2. Then every neighbor of v is adjacent to pendant vertices in G. According to the

selection of IS , IS + v is an independent set of G[V 〈S〉], which contradicts the maximality of IS .

Hence we have δ(v) 6⊆ E2. By definition, xS,i = 0.

Therefore, the efficiency follows from (4).

Figure 3: An illustrative example.

Example 3. Let Γ = (N, γ) be the independent set game defined on the graph in Figure 3. It

is easy to verify that the underlying graph satisfies both conditions of Lemma 8. Let E0, E1, E2

denote the set of pendant edges, non-pendant edges of type I and non-pendant edges of type II,

respectively. Note that E0 = {1, 6, 7, 11, 12}, E1 = {3}, E2 = {2, 4, 5, 8, 9, 10}. For any S ⊆ N ,

define xS = (xS,i)i∈S according to (3), i.e., xS,i = 1 if i ∈ S∩{1, 6, 7, 11, 12}; xS,3 = 1 if {2, 3} ⊆ S
or {3, 4, 5} ⊆ S; xS,8 = xS,9 = xS,10 = 1

3 if {8, 9, 10} ⊆ S; and xS,i = 0 otherwise. We may verify

that {xS}S∈2N\{∅} defined above is indeed a PMAS of Γ. C

Finally, we come to our main result. Combining Lemmas 4, 7 and 8 gives a necessary and

sufficient characterization for the population monotonicity of independent set games.

Theorem 9. An independent set game is population monotonic if and only if the underlying graph

satisfies the following two conditions:
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(i) every vertex has distance at most two to pendant vertices;

(ii) non-pendant edges of type I are not incident.

Both conditions of Theorem 9 can be verified efficiently. The first condition can be verified with

the BFS algorithm. Indeed, a vertex has distance at most two to pendant vertices if and only if

there is a pendant vertex in the first two levels of the BFS tree rooted at the vertex. Moreover, the

class of a non-pendant edge is determined after BFS searching both endpoints of the edge. Hence

the second condition can be verified easily after checking the first condition for every vertex with

the BFS algorithm. Therefore, we have the following corollary.

Corollary 10. The population monotonicity of an independent set game can be determined effi-

ciently.

4 Discussion

It is well-known that convex games are population monotonic [17], but the converse may not be

true. Xiao et al. [20] show that independent set games are convex if and only if every non-pendant

edge is incident to a pendant edge in the underlying graph. In fact, the condition of convexity given

by Xiao et al. [20] is a special case of the first condition of population monotonicity in Theorem

9. Indeed, pendant edges/vertices are necessary for both convexity and population monotonicity.

And a graph meeting the condition of convexity clearly satisfies the first condition of population

monotonicity. However, population monotonicity allows non-pendant edges not to be incident to

pendant edges provided that both endpoints of every such non-pendant edge have distance at most

two to pendant vertices.

One possible direction for future work is to characterize the PMASes of other combinatorial

optimization games such as flow games and linear production games. Besides, related concepts of

PMASes, such as link monotonic allocation schemes [16] and monotonic core allocation paths [1]

are also worth studying.
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