
ar
X

iv
:2

11
1.

07
48

1v
1

 [
cs

.D
S]

 1
5

N
ov

 2
02

1

On a Partition LP Relaxation for Min-Cost 2-Node Connected

Spanning Subgraphs

Logan Grout∗ Joseph Cheriyan† Bundit Laekhanukit‡

Abstract

Our motivation is to improve on the best approximation guarantee known for the problem of
finding a minimum-cost 2-node connected spanning subgraph of a given undirected graph with
nonnegative edge costs. We present an LP (Linear Programming) relaxation based on partition
constraints.

The special case where the input contains a spanning tree of zero cost is called 2NC-TAP.
We present a greedy algorithm for 2NC-TAP, and we analyze it via dual-fitting for our partition
LP relaxation.

Keywords: 2-node connected graphs, approximation algorithms, connectivity augmentation, greedy
algorithm, network design, partition relaxation

1 Introduction

Two of the key problems in the area of approximation algorithms for network design are the min-
cost 2ECSS (2-edge connected spanning subgraph) problem, and the the min-cost 2NCSS (2-node
connected spanning subgraph) problem. The latter problem is as follows: Given an undirected
graph G = (V,E) and nonnegative costs on the edges, denoted by either cost ∈ RE

+ or c ∈ RE
+,

find a minimum-cost spanning subgraph that is 2-node connected. Throughout, we use n := |V | to
denote the number of nodes of G. Recall that a graph is 2-node connected if it has ≥ 3 nodes, it is
connected, and the deletion of any one node leaves a connected graph. This problem is NP-hard,
see [10].

Approximation algorithms for the min-cost 2NCSS problem have been studied for several
decades, see [8, 9, 14]. The best approximation guarantee known is 2 (see [13, 6], though there
are earlier references). Most of these algorithms are based on LP relaxations, and the analysis of
the approximation guarantee shows that the integrality ratio of the standard LP relaxation, the
so-called set-pairs LP, is ≈ 2 (see [6]). The set-pairs LP (for the min-cost 2NCSS problem) can be

∗(lcg58@cornell.edu) Operations Research and Information Engineering, 206 Rhodes Hall, Cornell University,
Ithaca, NY 14853-3801, USA

†(jcheriyan@uwaterloo.ca) Department of Combinatorics & Optimization, University of Waterloo, Canada
‡(lbundit@gmail.com) Institute for Theoretical Computer Science, Shanghai University of Finance and Economics,

China

1

http://arxiv.org/abs/2111.07481v1

viewed as a generalization of the cut LP relaxation of the min-cost 2ECSS problem. Recall that
the cut LP relaxation of the min-cost 2ECSS problem is:

(Pcut) min

{
∑

e∈E

cost(e)xe : x(δ(S)) ≥ 2, ∀∅ (S (V ; 0 ≤ x ≤ 1

}
.

(See Section 2 for definitions and notation.) The set-pairs LP is obtained from the LP (Pcut) by
adding the following family of constraints for each node w ∈ V :

∑
(xe : e = uv ∈ E, u ∈ S, v ∈

(V − w)− S) ≥ 1, ∀∅ (S (V − w. Informally speaking, the additional constraints require that
the deletion of any node w results in a subgraph that is “fractionally connected”. An interesting
special case of the problem is the Tree Augmentation Problem for 2-node connectivity (2NC-TAP),
where the instance (G, c) contains a spanning tree of zero cost; thus, (V, {e ∈ E : cost(e) = 0})
contains a spanning tree, denoted by T . The edges of E(G) − T are called links.

Recent research in the area has focused on the design and analysis of approximation algorithms
that beat the “natural threshold” of 2 for the approximation guarantee. The Weighted Tree Aug-
mentation Problem (WTAP) is a special case of the min-cost 2ECSS problem where the instance
(G, c) contains a spanning tree of zero cost. Cohen and Nutov [3] designed an approximation
algorithm for a special case of WTAP with a guarantee of (1 + ln 2) < 1.7, based on earlier work
by Zelikovsky on the Steiner Tree problem [19]. Recently, Traub and Zenklusen [17] presented an
approximation algorithm for WTAP with guarantee 1 + (ln 2) + ǫ < 1.7, via a so-called relative
greedy algorithm. Subsequently, they improved on the approximation guarantee for WTAP via
local search, see [18].

Nutov [15] recently presented a 1.91-approximation algorithm for unweighted 2NC-TAP, thus
beating the threshold of 2; this result does not use any LP relaxation.

One obstacle for beating the approximation threshold of 2 for the min-cost 2NCSS problem and
for (weighted) 2NC-TAP is that the set-pairs LP relaxation has integrality ratio ≥ 2 − ǫ. There
is a simple family of examples of (unweighted) 2NC-TAP such that the integrality ratio of the
set-pairs LP relaxation is ≥ 2− ǫ (where ǫ is a small positive number), see Proposition 4.1.

One of the main contributions of this paper is a stronger LP relaxation for the min-cost 2NCSS
problem, that we call the partition LP relaxation. The partition LP relaxation (P) of the min-cost
2NCSS problem is obtained from the cut LP relaxation of the min-cost 2ECSS problem by adding
the family of constraints

∑

e∈eG−w(P)

xe ≥ |P| − 1, ∀P ∈ Π̂(Comp(G0 − w))

for each node w ∈ V , where G0 denotes (V, {e ∈ E : cost(e) = 0}), and P denotes a partition of
V −w such that (the node-set of) each connected component of G0 −w is contained in one of the
sets of P.

Moreover, based on our partition LP relaxation, we design a simple greedy algorithm for
(weighted) 2NC-TAP that achieves approximation guarantee H(λ− 1), where λ denotes the maxi-
mum length over all the tree-paths T (ℓ) of the links ℓ of the instance, and H(k) denotes the k-th
harmonic number. For example, our algorithm achieves an approximation guarantee of H(3) = 11

6
for instances of 2NC-TAP such that each link ℓ induces a tree-path T (ℓ) of length ≤ 4, regardless
of the diameter of the initial tree. (See Figure 2 for an example of such an instance.) Fredrickson
and JáJá [8] showed that such instances of 2NC-TAP are NP-hard. Our algorithm and analysis are

2

based on two well-known results: (1) the greedy algorithm for SCP (the Set Covering Problem) and
its analysis via “dual fitting” (i.e., charging the cost incurred by the greedy algorithm to a feasible
solution of the dual of the standard LP relaxation), and (2) the analysis of the greedy algorithm
for the minimum spanning tree (MST) problem via “dual fitting” with respect to the well-known
partition LP formulation of MST, see [2], [12, Sec. 2].

Recall that the input to SCP consists of a set U ofm points p1, . . . , pm, n subsets S1, . . . , Sn of U ,
and a non-negative weight cost(Sj) for each subset Sj, j = 1, . . . , n. The goal is to find a minimum
weight collection of the subsets Sj that contains U . The standard LP relaxation has a variable xj
for each subset Sj, and a linear constraint for each point pi: min{

∑
cost(Sj)xj :

∑
Sj :Sj∋pi

xj ≥

1, ∀pi ∈ U ; x ≥ 0}. The dual LP has a non-negative variable yi for each point pi ∈ U :
max{

∑
pi∈U

yi :
∑

pi∈Sj
yi ≤ cost(Sj), j = 1, . . . , n; y ≥ 0}. The greedy algorithm iteratively

picks a subset of the minimum cost-coverage ratio, where the cost-coverage ratio of a set Sj (at

any time t in the execution) is cost(Sj)/|S
(t)
j |, where |S

(t)
j | denotes the number of as-yet-uncovered

points in Sj. It is well known that if each set Sj in an instance of SCP contains ≤ k points, then
the greedy algorithm for SCP achieves an approximation guarantee of H(k).

We note that the connection to SCP is obvious for the well-known (weighted) Tree Augmentation
Problem for 2-edge connectivity (WTAP). The input for WTAP is the same as for 2NC-TAP,
namely, G, c, T (where T is a spanning tree of G of cost zero), and the goal is to find a set of
links F of minimum cost such that T ∪ F is 2-edge connected. To view a TAP instance as an
SCP instance, let U = T , thus, the points of the SCP instance correspond to the edges of T ,
and let the subsets Sj of the SCP instance correspond to the tree-paths T (ℓ) of the links ℓ of the
TAP instance. For example, consider a TAP instance on K4 (the complete graph on four nodes)
where T is a claw (the star K1,3 with three leaves). The SCP instance has three points (that map
to the three edges of the claw), and it has three subsets Sj of size two each (corresponding to the
three links of E(K4)−T). Clearly, the greedy algorithm for SCP gives an approximation algorithm
for WTAP with a guarantee of H(λ). Based on this mapping between WTAP and SCP, Cohen
and Nutov [3] designed an approximation algorithm for a special case of WTAP with a guarantee
of (1 + ln 2) < 1.7. The major component of their algorithm is a local improvement algorithm for
SCP whose running time depends on the structure of the instance, and, an initial feasible solution.
Their analysis of the running time of their algorithm relies on some key properties of WTAP that
do not apply to 2NC-TAP. Cohen and Nutov start by rooting the tree T at an arbitrary node,
and then, in polynomial time, they find a 2-approximate feasible solution to WTAP that consists
only of so-called up-links; a link ℓ of a rooted tree is called an up-link if it connects a node and
its ancestor. Such feasible solutions do not exist for 2NC-TAP. (To illustrate this point, consider
the above example on K4, and suppose that the root r of the claw is the non-leaf node; to ensure
that K4 − {r} is connected, the solution has to pick two links that are not up-links.) Secondly,
for any feasible solution F of WTAP, Cohen and Nutov show (via the so-called shadow-complete
assumption) that there is an equivalent feasible solution F ′ such that the family of tree-paths
{T (ℓ) : ℓ ∈ F ′} is pair-wise (edge) disjoint; that is, every edge of the tree T is contained in
exactly one of the tree-paths T (ℓ), ℓ ∈ F ′. Clearly, this property does not apply to 2NC-TAP. (To
illustrate this point, again consider the above example on K4, and let r be the non-leaf node of the
claw; to ensure that K4 − {r} is connected, any solution F has to pick at least two links, hence,
one of the edges of the claw T is contained in two of the tree-paths T (ℓ), ℓ ∈ F .)

Some of the high-level ideas behind our analysis of the greedy algorithm for 2NC-TAP are as
follows. We map an instance of 2NC-TAP to an instance of SCP by mapping the relevant partitions

3

P (such that our partition LP has a constraint for P) to the points pi of SCP, and mapping the
links to the subsets Sj of SCP. If every link covers ≤ k relevant partitions, then the approximation
guarantee of H(k) would follow immediately (from the analysis of the greedy algorithm for SCP).
But, a link ℓ could be incident to many relevant partitions (since the variable xℓ could occur in
2θ(n) partition constraints). Informally speaking, we bypass this difficulty as follows: we maintain
a current partition Pi

u for each iteration i and each non-leaf node u of T , and we fix the “scaled”
dual variable yPi

u
of the partition Pi

u to be the difference between the cost-coverage ratio of the

link that covers Pi
u (for the first time in the execution) and the cost-coverage ratio of the link

that covers the “previous” partition P
(i−1)
u (for the first time in the execution). To derive the

approximation guarantee, we need to show that the dual solution is feasible, and it “recovers” the
cost of the links picked by the greedy algorithm (up to a factor of H(k)). This follows because
(1) the cost-coverage ratios of the links are non-decreasing over the execution, (2) for any “picked
link” ℓ, and any non-leaf node u (of T) such that ℓ covers the current partition Pj

u, the sum of the
“scaled” dual variables of the sequence of partitions P1

u, . . . ,P
j
u “telescopes” to the cost-coverage

ratio of ℓ, and (3) the “scaled” dual objective value
∑

P(|P|− 1)yP is equal to the sum of the costs
of the links picked by the greedy algorithm.

For example, suppose that T is a star; thus, λ = max{|T (ℓ)| : ℓ is a link} = 2. Then, our
greedy algorithm for 2NC-TAP is the same as Kruskal’s MST (minimum spanning tree) algorithm
applied to the subgraph induced on the leaves of T , and the dual solution found by our algorithm
is the same as the dual solution found by the algorithms of [2], [12, Sec. 2].

We mention that some of the results and constructions of this paper have appeared in prelimi-
nary form in the thesis of the first author, see [11].

2 Preliminaries

This section has definitions and preliminary results. Our notation and terms are consistent with
[4] or [7], and readers are referred to those texts for further information.

For a positive integer k, we use [k] to denote the set {1, . . . , k}. We denote the k-th harmonic
number by H(k).

Let G = (V,E) be a (loop-free, simple) graph with non-negative costs on the edges. We take
G to be the input graph, and we use n to denote |V (G)|. We denote the cost of an edge e of G
by cost(e). For a set of edges F ⊆ E(G), cost(F) :=

∑
e∈F cost(e), and for a subgraph G′ of G,

cost(G′) :=
∑

e∈E(G′) cost(e).
A multi-graph H is called k-edge connected if |V (H)| ≥ 2 and for every F ⊆ E(H) of size

< k, H − F is connected. A multi-graph H is called k-node connected if |V (H)| > k and for every
S ⊆ V (H) of size < k, H −S is connected. We use the abbreviations 2EC for “2-edge connected,”
and 2NC for “2-node connected.”

We use the standard notion of contraction of an edge, see [16, p.25]: Given a multi-graph H
and an edge e = vw, the contraction of e results in the multi-graph H/(vw) obtained from H by
deleting e and its parallel copies and identifying the nodes v and w. (Thus, every edge of H except
for vw and its parallel copies is present in H/(vw); we disallow loops in H/(vw).)

For a graph H and a set of nodes S ⊆ V (H), δH(S) denotes the set of edges that have one
end node in S and one end node in V (H) − S. (We omit subscripts such as H, when there is no
danger of ambiguity.) Moreover, H[S] denotes the subgraph of H induced by S, and H−S denotes
the subgraph of H induced by V (H) − S. For a graph H and a set of edges F ⊆ E(H), H − F

4

denotes the graph (V (H), E(H) − F). We may use relaxed notation for singleton sets, e.g., we
may use H − v instead of H − {v}. We may not distinguish between a subgraph and its node set;
for example, given a graph H and a set S of its nodes, we use E(S) to denote the edge set of the
subgraph of H induced by S.

For a spanning tree T and a link ℓ, we use T (ℓ) to denote the path of T between the two
end nodes of ℓ.

2.1 The min-cost 2NCSS problem

Given an undirected graph G and nonnegative edge costs c ∈ RE
+, the algorithmic goal in the

min-cost 2NCSS problem is to find a 2NC spanning subgraph of minimum cost. (For notational
convenience, we may denote an instance by G instead of (G, c).) This problem is NP-hard. We
assume that the input graph G is 2NC. For any instance H, we denote the minimum cost of a
2-NCSS of H by opt(H). When there is no danger of ambiguity, we use opt rather than opt(H).

2.2 Partitions

A partition P of a ground set W is a family of sets of W such that each element of W belongs to
exactly one set of P. The number of sets in P is denoted by |P|.

A partition is called proper if it consists of non-empty sets. A partition is called trivial if it
consists of a single set, namely, W . A partition that consists of singleton sets is called a point par-
tition of W . For example, if W = [4], then P = {{1}, {2}, {3}, {4}} is a point partition of W . Let
H = (W,F) be a graph, and let P be a partition of W . An edge e of H is said to cross P if the
two end nodes of e are in different sets of P. We use eH(P) to denote the set of edges of H that
cross P. For example, if H = K4 and P is the point partition of V (H), then eH(P) = E(H); if
H = K6 and P is a partition of V (H) into two sets of size 3, then eH(P) consists of 9 edges.

Let T be a tree, and let u be a non-leaf node of T . Let π(Comp(T −u)) denote the partition of
V (T)−u induced by the connected components of T −u; thus, for each connected component C of
T−u, there is a set V (C) in π(Comp(T −u)). Let Π̂(Comp(T−u)) denote the set of partitions P of
V (T)− u such that π(Comp(T −u)) is a refinement of P; thus, any partition that can be obtained
by “merging” some of the sets of π(Comp(T − u)) is an element of the set Π̂(Comp(T − u)). For
example, suppose that T is a tree with three leaves v1, v2, v3 and one non-leaf node u (of degree
three). Then, π(Comp(T − u)) = {{v1}, {v2}, {v3}}, and the set Π̂(Comp(T − u)) consists of the
five partitions π(Comp(T − u)), {{v1}, {v2, v3}}, {{v2}, {v1, v3}}, {{v3}, {v1, v2}}, {{v1, v2, v3}}.

2.3 A partition LP relaxation for the min-cost 2-NCSS problem

The partition LP relaxation (P) of the min-cost 2NCSS problem has been presented in Section 1,
and we recall it here for convenience. (P) is obtained from the cut LP relaxation of the min-cost
2ECSS problem by adding the family of constraints

∑

e∈eG−w(P)

xe ≥ |P| − 1, ∀P ∈ Π̂(Comp(G0 − w))

for each node w ∈ V , where G0 denotes (V, {e ∈ E : cost(e) = 0}), and P denotes a partition of
V −w such that (the node-set of) each connected component of G0 −w is contained in one of the
sets of P.

5

2.4 Polynomial-time computations

There are well-known polynomial time algorithms for implementing all of the basic computations
in this paper, see [16]. We state this explicitly in all relevant results, but we do not elaborate on
this elsewhere.

3 A greedy algorithm for min-cost 2NC-TAP

We present a greedy algorithm for 2NC-TAP that achieves an approximation guarantee of H(λ−1),
where λ denotes the maximum length over all the tree-paths T (ℓ) of the links ℓ of the instance.

3.1 A primal and dual LP relaxation for 2NC-TAP

We start by presenting the partition LP relaxation for 2NC-TAP. This LP has a non-negative
variable xℓ for each link ℓ of the instance G. We denote the set of links of G by L(G). For each
non-leaf node u of the given spanning tree T , we have a family of partition constraints for the graph
G. We denote the set of non-leaf nodes of T by Ψ(T). The family of partition constraints for u is
similar to the family of partition constraints for the partition LP for MST, and is as follows:
for each partition P ∈ Π̂(Comp(T − u)), there is a constraint x(eG−u(P)) ≥ |P| − 1 (i.e., the sum
of the x-values of the links crossing P is required to be at least |P| − 1).

The partition LP for 2NC-TAP, (P), and the dual of this LP, (D), are stated below.

(P)





min
∑

ℓ∈L(G) cost(ℓ)xℓ
s.t.

∑
ℓ∈L(G)∩eG−u(P) xℓ ≥ |P| − 1 ∀u ∈ Ψ(T),

∀P ∈ Π̂(Comp(T − u))
xℓ ≥ 0 ∀ℓ ∈ L(G).

(D)





max
∑

u∈Ψ(T)

∑
P∈Π̂(Comp(T−u))(|P| − 1)yP

s.t
∑

u∈Ψ(T)

∑
P∈Π̂(Comp(T−u))

s.t. ℓ∈eG−u(P)

yP ≤ cost(ℓ) ∀ ℓ ∈ L(G)

y ≥ 0.

Remark: Let x ∈ R
L(G)
+ be a feasible solution of (P). Let x̃ ∈ R

E(G)
+ be the vector such that x̃ℓ = xℓ

for each link ℓ ∈ L(G), and x̃e = 1 for each edge e ∈ T . Then, x̃ satisfies the cut constraints for
2-edge connectivity. To see this, consider any nonempty, proper set of nodes S (V . Clearly,
|T ∩ δ(S)| ≥ 1, since T is a spanning tree. If |T ∩ δ(S)| ≥ 2, then x̃(δ(S)) ≥ |T ∩ δ(S)| ≥ 2. Now,
suppose that |T ∩ δ(S)| = 1. Let vu be the unique edge in δT (S). At least one of v or u must
be a non-leaf node. We may assume that u is a non-leaf node and u 6∈ S. Observe that S is (the
node-set of) a connected component of T −vu, hence, S is (the node-set of) a connected component
of T − u. Thus, the partition {S, (V − S)− {u}} is in Π̂(Comp(T − u)), and, moreover, x satisfies
the constraint

∑
ℓ∈L(G)∩eG−u({S, (V−S)−{u}}) xℓ ≥ 1. Hence, we have

x̃(δ(S)) ≥ x̃uv + x(eG−u({S, (V − S)− {u}})) ≥ 2.

The following result shows that the constraints x ≤ 1 are redundant, whenever (P) has an
optimal solution.

6

Proposition 3.1. The extreme points of (P) are contained in [0, 1]E .

Proof. Suppose there exists an extreme point x such that for some ℓ̂ ∈ L(G), x
ℓ̂
= 1 + ǫ for some

ǫ > 0. Let χ
ℓ̂
be the standard basis vector corresponding to ℓ̂, let x′ = x−ǫχ

ℓ̂
, and let x′′ = x+ǫχ

ℓ̂
.

Clearly, x′′ is feasible for (P). But x′ is not feasible for (P) (otherwise, x would not be an extreme
point). Thus, there exists u ∈ V and P ∈ Π̂ (Comp(T − u)) such that ℓ̂ ∈ eG−u(P) and

∑

ℓ∈L(G)∩eG(P)

x′ℓ < |P| − 1 ≤
∑

ℓ∈L(G)∩eG(P)

xℓ.

Note that |P| ≥ 3. (Otherwise, if |P| = 2, then
∑

ℓ∈L(G)∩eG(P) x
′
ℓ ≥ x′

ℓ̂
≥ 1 = |P| − 1.) Let v and

w be the end nodes of ℓ̂, let Sv and Sw be the sets of P that contain v and w, respectively, and let
P(vw) be obtained from P by replacing Sv and Sw by the union Sv ∪Sw. Clearly, |P(vw)| = |P| − 1.
Finally, note that

∑

ℓ∈L(G)∩eG(P(vw))

xℓ ≤




∑

ℓ∈L(G)∩eG(P)

xℓ


− x

ℓ̂

=


 ∑

ℓ∈L(G)∩eG(P)

x′ℓ


+ ǫ− x

ℓ̂

< (|P| − 1)− (x
ℓ̂
− ǫ) = (|P| − 1)− 1 = |P(vw)| − 1.

Thus, x violates the constraint of P(vw), and this contradicts the assumption that x is feasible for
(P).

3.2 A greedy algorithm for 2NC-TAP

The algorithm applies a number of iterations, and constructs a set F of chosen links; initially, F
is the empty set. Each iteration picks one link according to a greedy rule and adds it to F . The
algorithm stops when T ∪F induces a 2-NCSS of G. Moreover, the algorithm assigns a non-negative
number, denoted wgt, to each partition in

⋃
{Π̂(Comp(T − u)) : u ∈ Ψ(T)}; initially, wgt(P) = 0

for each of these partitions P.
For each iteration i = 1, 2, . . . , let F i denote the set of links picked by the previous iterations

1, 2, . . . , i − 1; thus, |F i| = i − 1. At (the start of) each iteration i = 1, 2, . . . , for each non-
leaf node u of the given spanning tree T , the algorithm maintains the so-called current partition
Pi
u ∈ Π̂(Comp(T − u)); this partition corresponds to the connected components of (T ∪ F i) − u

(i.e., the sets of Pi
u correspond to the node-sets of the connected components of (T ∪ F i)− u).

Informally speaking, the working of the first iteration is the same as the first iteration of the
greedy algorithm for the following SCP instance: there are |Ψ(T)| points p1, p2, . . . , pj , . . . corre-
sponding to the partitions Pi

u, u ∈ Ψ(T), and there are |L(G)| sets S1, S2, . . . , Sk, . . . corresponding
to the links ℓ ∈ L(G); moreover, the point pj is in set Sk iff ℓk ∈ eG(P

i
uj
) where Pi

uj
denotes the

partition corresponding to pj and ℓk denotes the link corresponding to Sk.
Formally speaking, for each link ℓ ∈ L(G), let inci(ℓ) denote the set of partitions Pi

u crossed by
ℓ, that is, inci(ℓ) = {Pi

u : u ∈ Ψ(T), ℓ ∈ eG(P
i
u)}. The iteration picks a link ℓ∗ among the links ℓ

with inci(ℓ) 6= ∅ such that cost(ℓ∗)

|inci(ℓ∗)|
is minimum. Moreover, the iteration assigns the weight cost(ℓ∗)

|inci(ℓ∗)|

7

to each of the partitions in inci(ℓ); thus, wgt(Pi
u) = cost(ℓ∗)

|inci(ℓ∗)|
, ∀u ∈ Ψ(T) : ℓ∗ ∈ eG(P

i
u). Also,

the iteration applies the required updates, namely, F i+1 := F i ∪{ℓ∗}, and for each node u ∈ Ψ(T),
Pi+1
u is obtained from Pi

u by merging the two sets of Pi
u that each contain an end node of ℓ∗.

3.3 Analysis of the greedy algorithm for 2NC-TAP

Consider an arbitrary node u ∈ Ψ(T). Let ν(u) denote the number of connected components
of T − u; clearly, ν(u) = |π(Comp(T − u))|, where π(Comp(T − u)) denotes the partition of
V (T) − u induced by the connected components of T − u. Observe that |P1

u| = ν(u) (since P1
u =

π(Comp(T − u))), and after the i-th iteration of the greedy algorithm, either |Pi+1
u | = |Pi

u| or
|Pi+1

u | = |Pi
u| − 1; moreover, if iteration i is the last iteration (that picks a link), then |Pi+1

u | = 1.

Let P
(1)
u ,P

(2)
u , . . . ,P

(ν(u)−1)
u denote the sequence of partitions of Π̂(Comp(T −u)) that are assigned

a positive weight during the running of the greedy algorithm, ordered according to the sequence in

which the weights are assigned by the algorithm; thus, P
(1)
u is the first partition of Π̂(Comp(T −u))

(in the running of the greedy algorithm) that is crossed by the link picked in an iteration, P
(2)
u is

the second partition of Π̂(Comp(T − u)) (in the running of the greedy algorithm) that is crossed
by the link picked in an iteration, etc.

The dual solution (of the LP) corresponding to the run of the greedy algorithm is defined as
follows. For each node u ∈ Ψ(T),

y(P(1)
u) = wgt(P(1)

u)

y(P(j)
u) = wgt(P(j)

u)− wgt(P(j−1)
u), (j ∈ {2, 3, . . . , ν(u)− 1})

y(P) = 0 for all other partitions P ∈ Π̂(Comp(T − u)).

Lemma 3.2. For each node u ∈ Ψ(T) and each partition Pu ∈ Π̂(Comp(T −u)), we have yPu ≥ 0.

Proof. Essentially, this follows from two facts: (1) suppose that at (the start of) the i-th iteration,
the current partition Pi

u is crossed by a link ℓ; then ℓ crosses Ph
u for all h < i (that is, if ℓ is

a “candidate link” w.r.t. the current partition of u in iteration i, then in all previous iterations
h = 1, . . . , i − 1, ℓ is a “candidate link” w.r.t. the partition Ph

u of that iteration); (2) the ratios
cost(ℓ∗)

|inci(ℓ∗)|
cannot decrease during the running of the greedy algorithm (that is, the ratio for an

iteration is ≥ the ratio for any previous iteration).

In more detail, for any j ∈ {2, 3, . . . , ν(u) − 1}, we claim that wgt(P
(j)
u) ≥ wgt(P

(j−1)
u). This

can be seen as follows. Suppose that the greedy algorithm assigned the weight of the partition

P
(j−1)
u in the ij−1-th iteration, thus, P

(j−1)
u = P

ij−1
u ; moreover, let ℓj−1 denote the link picked by

that iteration. Similarly, suppose that the greedy algorithm assigned the weight of the partition

P
(j)
u in the ij-th iteration, and let ℓj denote the link picked by that iteration.

Then ℓj ∈ eG(P
ij−1
u); moreover, for each node w ∈ Ψ(T) such that P

ij
w ∈ incij(ℓj) note that

ℓj ∈ eG(P
ij−1
w) (that is, if ℓj crosses the partition P

ij
w of a non-leaf node w, then ℓj crosses the

partition P
ij−1
w). Hence, the ratio for the link ℓj in the ij−1-th iteration,

cost(ℓj)

|incij−1 (ℓj)|
, is ≤ the ratio

for the link ℓj in the ij-th iteration. Since the greedy algorithm picked the link ℓj−1 (rather than ℓj)

in the ij−1-th iteration, we have
cost(ℓj−1)

|incij−1 (ℓj−1)|
≤

cost(ℓj)

|incij (ℓj)|
. Hence, the ratio for the ij−1-th iteration

is ≤ the ratio for the ij-th iteration, and hence, wgt(P
(j)
u) ≥ wgt(P

(j−1)
u).

8

Lemma 3.3. 1
H(λ−1)y is a feasible solution to the dual LP (D).

Proof. Consider an arbitrary link ℓ ∈ L(G). Recall that T (ℓ) denotes the path of T between the
two end nodes of ℓ, and let Q denote the set of internal nodes of T (ℓ). Note that this implies
|Q| ≤ λ. We claim that

∑

u∈Ψ(T)

∑

{P∈Π̂(Comp(T−u)) : ℓ∈eG(P)}

yP ≤ H(|Q|) cost(ℓ).

First, consider any node u ∈ Ψ(T) − Q; thus, u is not incident to T (ℓ), For any partition
P ∈ Π̂(Comp(T − u)), note that ℓ does not cross P, hence,

∑
{P∈Π̂(Comp(T−u)) : ℓ∈eG(P)} yP = 0.

Now, consider any node u ∈ Q, and consider the partitions of Π̂(Comp(T − u)) that have

positive weights, namely, P
(1)
u ,P

(2)
u , . . . ,P

(ν(u)−1)
u . Observe that if ℓ crosses P

(j)
u , then ℓ also crosses

each of the partitions P
(1)
u , . . . ,P

(j−1)
u . Let ηu denote the highest index j such that ℓ crosses P

(j)
u .

We have
∑

{P∈Π̂(Comp(T−u)) : ℓ∈eG(P)}

yP =

ηu∑

j=1

y
P

(j)
u

= wgt(P(ηu)
u).

Let u1, u2, . . . , u|Q| be an ordering of the nodes inQ according to the reverse of the order in which

the greedy algorithm assigns weights to the partitions {P
(ηu)
u : u ∈ Q}; that is, P

(ηu1)
u1 is the last of

these partitions to be assigned a weight, P
(ηu2)
u2 is the second last of these partitions to be assigned

a weight, etc. We have wgt(P
(ηuj)
uj) ≤ cost(ℓ)/j, for each j = 1, . . . , |Q|, because at the iteration

when the greedy algorithms assigns the weight of P
(ηuj)
uj , the partitions P

(ηu1)
u1 , . . . ,P

(ηuj−1)
uj−1 ,P

(ηuj)
uj

are crossed by ℓ, hence the weight assigned in that iteration cannot exceed cost(ℓ)/j. Hence,∑
u∈Qwgt(P

(ηu)
u) ≤ (1 + 1

2 + · · · + 1
|Q|) cost(ℓ) ≤ H(|Q|) cost(ℓ). Therefore,

∑

u∈Ψ(T)

∑

{P∈Π̂(Comp(T−u)) : ℓ∈eG(P)}

yP =
∑

u∈Q

wgt(P(ηu)
u) ≤ H(|Q|) cost(ℓ).

Theorem 3.4. The cost of the set of links F̂ returned by the greedy algorithm, cost(F̂), is ≤
H(λ− 1) opt(P), where opt(P) denotes the optimal value of the LP (P).

Proof. The description of the greedy algorithm and the definition of the weights of the partitions
imply that for each iteration i and the link ℓ picked in that iteration,

cost(ℓ) =
∑

{wgt(Pi
u) : u is an internal node of T (ℓ) and Pi

u ∈ inci(ℓ)};

Furthermore, if wgt(Pi
u) > 0 then Pi+1

u 6= Pi
u because, in the i-th iteration, the end nodes of ℓ are

in different sets of Pi
u, whereas, in the (i + 1)-th iteration, the end nodes of ℓ are in the same set

of Pi+1
u . Hence, we have cost(F̂) =

∑|F̂ |
i=1

∑
u∈Ψ(T)wgt(P

i
u).

9

By the previous lemma, 1
H(λ−1) y is a feasible solution of the dual LP (D), hence, the objective

value of this feasible solution is ≤ opt(P). We rewrite this objective value:

1
H(λ−1)

∑
u∈Ψ(T)

∑
P∈Π̂(Comp(T−u))

(|P| − 1)yP

= 1
H(λ−1)

∑
u∈Ψ(T)

(∑ν(u)−1
j=1 wgt(P

(j)
u)

)

= 1
H(λ−1)

∑
u∈Ψ(T)

∑|F̂ |
i=1 wgt(P

i
u)

= 1
H(λ−1) cost(F̂).

To derive the first two equations, consider any non-leaf node u, and note that

∑
P∈Π̂(Comp(T−u))

(|P| − 1)yP =
∑ν(u)−1

j=1 (ν(u)− j)y
P

(j)
u

=
∑ν(u)−1

j=1 (ν(u)− j)wgt(P
(j)
u)

−
∑ν(u)−2

j=1 (ν(u)− j − 1)wgt(P
(j)
u)

=
∑ν(u)−1

j=1 wgt(P
(j)
u)

=
∑|F̂ |

i=1 wgt(P
i
u).

Therefore, cost(F̂) ≤ H(λ− 1) opt(P).

3.4 A tight example for the greedy algorithm for 2NC-TAP

The example of Figure 1 shows that our analysis of the greedy algorithm (in Theorem 3.4) is tight
when λ = 4. This can be generalized to any positive integer λ ≥ 2 as follows. The problem instance
has T being a path with vertex set [λ + 1] and edge set {{k, k + 1} : k ∈ [λ]}. For k ∈ [λ − 1]
let ℓk = {k, k + 2} and ℓ̃ = {1, λ + 1}. The link set is {ℓk : k ∈ [λ − 1]} ∪ {ℓ̃}. Finally, let the
cost of the links be given by cost(ℓk) =

1
k
for k ∈ [λ − 1] and cost(ℓ̃) = 1 + ǫ. For each non-leaf

node u, note that T − u has two connected components; hence, the LP has a unique constraint
of the form

∑
ℓ∈L(G)∩eG(Pu)

xℓ ≥ |Pu| − 1, where Pu is a partition of V − u with |Pu| = 2. For

each k ∈ [λ − 1], note that ℓk crosses Pk+1. Moreover, the link ℓ̃ crosses each of these λ − 1

partitions. At the start of the i-th iteration, the ratio cost(ℓ̃)

|inci(ℓ̃)|
= 1+ǫ

λ−1−(i−1) . However, even after

picking the first i − 1 links, there is still a link of cost 1
λ−1−(i−1) < 1+ǫ

λ−1−(i−1) , namely, ℓλ−1−(i−1),
so the greedy algorithm will pick that link. Thus, the greedy algorithm finds a solution of cost∑λ−1

i=1
1

λ−1−(i−1) =
∑λ−1

i=1
1
i
= H(λ−1). Observe that an optimal solution has cost 1+ǫ and consists

of the link ℓ̃.
Using links of cost 0, one can easily string together multiple copies of this example to obtain a

graph of arbitrary diameter, as shown in Figure 2. In particular, for λ ≥ 3, if we have k copies of

the above example, and the i-th copy has vertex set v
(i)
1 , . . . , v

(i)
λ+1, then adding tree edges v

(i)
1 v

(i+1)
1

and links v
(i)
2 v

(i+1)
2 , of cost 0, for i ∈ [k− 1], results in an instance that has diameter ≥ k+1; note

that λ is still the maximum of the lengths of the tree paths T (ℓ) defined by the links ℓ.

4 The integrality ratio of the partition LP relaxation of 2NCSS

In this section, we focus on the integrality ratio of the partition LP relaxation of 2NCSS. We show
that the integrality ratio is ≤ 2; this holds because the well-know set-pairs LP for 2NCSS has

10

v3

v2

v1

v4

v5

6
3

2

6 + ǫ

l∗

Figure 1: An instance of 2NC-TAP such that the greedy algorithm returns a solution of cost 11
6

times the optimal cost. Edges indicated by solid lines have cost 0 and edges indicated by dashed
lines are labelled with their costs.

integrality ratio ≈ 2, and the set-pairs LP is a relaxation of the partition LP. Next, we show (via
a simple construction) that the integrality ratio of the partition LP relaxation of 2NCSS is ≥ the
integrality ratio of the well-known cut LP relaxation of 2ECSS. The latter LP is known to have
integrality ratio ≥ 3

2 [1] (in fact, the ratio 3
2 is achieved on a family of instances of TAP, the tree

augmentation problem).
The instance of unweighted 2NC-TAP in Figure 3 shows that the partition LP for 2NC-TAP

has integrality ratio ≥ 4
3 ; an optimal solution of the instance has cost 4, whereas the partition LP

has a (fractional) solution of cost 3. This example has λ = 4. Theorem 3.4 gives an upper-bound
of H(λ−1) = H(3) = 11

6 on the integrality ratio of any instance of 2NC-TAP with λ = 4. Possibly,
the analysis of Theorem 3.4 could be improved for some special cases; it is not clear whether an
approximation ratio of 4

3 can be proved for instances of unweighted 2NC-TAP with λ = 4, see [5].
(Duh and Fürer [5] presented a 4

3 -approximation algorithm for unweighted 3-SCP via semi-local
optimization; 3-SCP is the special case of the Set Covering Problem where |Sj| ≤ 3 for each of the
sets Sj of the instance.)

Proposition 4.1. The set-pairs LP relaxation for the min-cost 2NCSS problem has integrality ratio
≈ 2.

Proof. The upper-bound of 2 on the integrality ratio (for the set-pairs LP) follows from the analysis
of the 2-approximation guarantee for the min-cost 2NCSS problem relative to the set-pairs LP by
Fleischer et al., see [6, Theorems 3.13, 3.14]. (In fact, Fleischer et al. prove the 2-approximation
guarantee for a more general problem, namely, VC-SNDP with requirements of {0, 1, 2} openly-
disjoint paths between pairs of nodes; the min-cost 2NCSS problem is a special case of VC-SNDP.)

A lower-bound of 2− Θ(1)
n

is implied by the following well-known example: Consider an instance
of unweighted 2NC-TAP that consists of the spanning tree T = K1,n−1 (thus, T is a star), and
n− 1 (unit-cost) links that form a cycle on the leaves of T . Any integer solution picks n− 2 links,
and has cost n− 2. There is a (fractional) solution x̂ to the set-pairs LP of cost (n− 1)/2 that fixes
x̂ℓ =

1
2 for each link ℓ.

4.1 A transformation from 2ECSS to 2NCSS

In this subsection, we show that the integrality ratio of our partition LP relaxation is ≥ 1.5 by
giving a transformation from TAP (the Tree Augmentation Problem for 2-edge connectivity) to the

11

v
(1)
1 v

(1)
2 v

(1)
3 v

(1)
4 v

(1)
5

6 3 2

6 + ǫ

v
(2)
1 v

(2)
2 v

(2)
3 v

(2)
4 v

(2)
5

6 3 2

6 + ǫ

v
(3)
1 v

(3)
2 v

(3)
3 v

(3)
4 v

(3)
5

6 3 2

6 + ǫ

0

0

Figure 2: An instance of 2NC-TAP with diameter ≥ k + 1 (shown with λ = 4 and k = 3). Edges
indicated by solid lines have cost 0 and edges indicated by dashed lines are labelled with their
costs. An optimal solution uses the links of cost 0 and the links of cost 6+ ǫ. The greedy algorithm
returns a solution that uses all of the links except those of cost 6 + ǫ.

min-cost 2NCSS problem that preserves the integrality ratio. There is a well-known construction
for TAP that has integrality ratio 1.5, see [1]. In this subsection, we denote the cost of an edge e
by ce or c′e.

Let G = (V,E) be a graph, and let each edge e have a cost ce ∈ R. Let PEC(G) denote the
feasible region of the cut LP relaxation of the min-cost 2ECSS problem:

min

{
∑

e∈E

cexe : x(δ(S)) ≥ 2, ∀∅ (S (V ; 0 ≤ x ≤ 1

}
.

Let PNC(G) denote the feasible region of the partition LP relaxation (P) of the min-cost 2NCSS
problem, see Section 2.3.

The following well-known construction (inflation) maps an instance (G, c) of the min-cost
2ECSS problem to an instance (G′, c′) of the min-cost 2NCSS problem. Each node u of G maps to
a distinct clique C ′

u on degG(u) nodes of G
′ (that is, C ′

u is a complete graph on degG(u) nodes and
C ′
u, C

′
w are node-disjoint for any two nodes u,w ∈ V (G), u 6= w), and each edge vw of G maps to an

edge v′w′ of G′ that has one end node v′ in C ′
v and has the other end node w′ in C ′

w such that each
node of a clique C ′

u ofG′ is incident to exactly one inter-clique edge; moreover, c′v′w′ = cvw, ∀vw ∈ E,
and for each edge e′ of a clique C ′

u of G′, the cost c′e′ is zero. Let F ′ =
⋃

u∈V (G)E(C ′
u); thus, F

′

consists of the edges of G′ that have both end nodes in the same clique C ′
u of G′, u ∈ V (G). Figure 4

illustrates this construction on an instance of TAP (note that the Tree Augmentation Problem is
a special case of the min-cost 2ECSS problem).

12

Proposition 4.2. Let
(
G = (V,E), c ∈ RE

)
be an instance of the min-cost 2ECSS problem, and

let
(
G′ = (V ′, E′), c′ ∈ RE′

)
denote the instance of the min-cost 2NCSS problem that is obtained

from (G, c) by the above construction. The integrality ratio of the cut LP for (G, c) is the same
as the integrality ratio of the partition LP for (G′, c′).

Proof. Our proof is based on two claims.

Claim 4.3. For x ∈ PEC(G), define x′ ∈ RE′

as follows:

x′e′ =

{
xvw if e′ ∈ E′ − F ′ and e′ = v′w′

1 if e′ ∈ F ′

Then x′ ∈ PNC(G
′) and c′⊤x′ = c⊤x.

Claim 4.4. Let x′ ∈ PNC(G
′) and define x ∈ RE as xvw = x′v′w′ ∀vw ∈ E. Then x ∈ PEC(G)

and c⊤x = c′⊤x′.

Let P̂NC(G
′) = {x ∈ PNC(G

′) : xe = 1, ∀e ∈ F ′}. Note that, if the partition LP for G′ has an
optimal solution, then there exists an optimal solution in P̂NC(G

′); this holds because c′e = 0,∀e ∈
F ′. Claims 4.3 and 4.4 give us a bijection ϕ : PEC(G) → P̂NC(G

′) such that c⊤x = c′⊤ϕ(x) for all
x ∈ PEC(G). Furthermore, ϕ maps integral vectors to integral vectors.

Let x∗ be an optimal (fractional) solution of the cut LP relaxation of the min-cost 2ECSS
instance (G, c), and let z∗ be an optimal integral solution of the same LP (thus, z∗ is a min-
cost 2ECSS of (G, c)). Similarly, let x′∗ be an optimal (fractional) solution of the partition LP
relaxation of the min-cost 2NCSS instance (G′, c′), and let z′∗ be an optimal integral solution of
the same LP (thus, z′∗ is a min-cost 2NCSS of (G′, c′)). Thus, we have c⊤x∗ = c′⊤x′∗, because(
c⊤x∗ = c′⊤ϕ(x∗) ≥ c′⊤x′∗

)
and

(
c⊤x∗ ≤ c⊤ϕ−1(x′∗) = c′⊤x′∗

)
. Similarly, we have c⊤z∗ = c′⊤z′∗.

Therefore,
c′⊤z′∗
c′⊤x′∗

=
c⊤z∗
c⊤x∗

. Hence, the two instances (G, c) and (G′, c′) have the same integrality

ratios with respect to their LP relaxations (namely, the cut LP and the partition LP).

Figure 4 illustrates Proposition 4.2 and our construction. Figure 4 (a) shows a TAP instance
from the family of TAP instances with integrality ratios converging to 3

2 , see [1]. The application
of our construction to this TAP instance results in the instance of the min-cost 2NCSS problem
in Figure 4 (b). Moreover, the integrality ratio of this particular TAP instance for the cut LP
relaxation is the same as the integrality ratio of the instance of the min-cost 2NCSS problem for
the partition LP relaxation.

13

p1 q1

p2 q2

p3 q3

r

Figure 3: An instance of 2NC-TAP such that the integrality ratio of the partition LP is 4
3 . Edges

indicated by solid lines have cost 0 and edges indicated by dashed lines have cost 1. An optimal
integer solution picks two of the three unit-cost links from each of the cycles p1, p2, p3, p1 and
q1, q2, q3, q1. An LP solution x̂ of cost 3 has x̂ℓ =

1
2 for each of the six unit-cost links ℓ.

1
3

1
3

1
3

2
31

3
1
3

2
3

(a) An instance of TAP.

1
3

1
3

1
3

2
31

3
1
3

2
3

(b) An instance of min-cost 2NCSS.

Figure 4: (a) An instance of TAP with integrality ratio 3k+3
2k+3 (k = 3) for the cut LP relaxation.

Edges indicated by solid lines have cost 0 and x-value 1. Edges indicated by dashed lines have
cost 1 and are labelled with their x-values.
(b) An instance of min-cost 2NCSS with integrality ratio 3k+3

2k+3 (k = 3) for the partition LP
relaxation. Edges indicated by solid lines or dotted lines have cost 0 and x-value 1. Edges indicated
by dashed lines have cost 1 and are labelled with their x-values.

14

References

[1] J. Cheriyan, H. J. Karloff, R. Khandekar, J. Könemann, On the integrality ratio for tree
augmentation, Oper. Res. Lett. 36 (4) (2008) 399–401. doi:10.1016/j.orl.2008.01.009.

[2] S. Chopra, On the spanning tree polyhedron, Oper. Res. Lett. 8 (1) (1989) 25–29.
doi:10.1016/0167-6377(89)90029-1.

[3] N. Cohen, Z. Nutov, A (1 + ln 2)-approximation algorithm for minimum-cost 2-edge-
connectivity augmentation of trees with constant radius, Theor. Comput. Sci. 489-490 (2013)
67–74. doi:10.1016/j.tcs.2013.04.004.

[4] R. Diestel, Graph Theory (4th ed.), Graduate Texts in Mathematics, Volume 173, Springer-
Verlag, Heidelberg, 2010.
URL http://diestel-graph-theory.com/

[5] R. Duh, M. Fürer, Approximation of k -set cover by semi-local optimization, in: F. T.
Leighton, P. W. Shor (Eds.), Proceedings of the Twenty-Ninth Annual ACM Symposium
on the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997, ACM, 1997, pp. 256–264.
doi:10.1145/258533.258599.

[6] L. Fleischer, K. Jain, D. P. Williamson, Iterative rounding 2-approximation algorithms for
minimum-cost vertex connectivity problems, J. Comput. Syst. Sci. 72 (5) (2006) 838–867.
doi:10.1016/j.jcss.2005.05.006.

[7] A. Frank, Connections in Combinatorial Optimization, Oxford Lecture Series in Mathematics
and its Applications, Volume 38, Oxford University Press, 2011.

[8] G. N. Frederickson, J. JáJá, Approximation algorithms for several graph augmentation prob-
lems, SIAM J. Comput. 10 (2) (1981) 270–283. doi:10.1137/0210019.

[9] G. N. Frederickson, J. JáJá, On the relationship between the biconnectivity aug-
mentation and traveling salesman problems, Theor. Comput. Sci. 19 (1982) 189–201.
doi:10.1016/0304-3975(82)90059-7.

[10] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman, 1979.

[11] Grout, Logan, Augmenting Trees to Achieve 2-Node-Connectivity, M.Math. Thesis, C&O
Department, UWSpace (University of Waterloo), 2020.
URL http://hdl.handle.net/10012/16229

[12] J. Könemann, D. Pritchard, K. Tan, A partition-based relaxation for Steiner trees, Math.
Program. 127 (2) (2011) 345–370. doi:10.1007/s10107-009-0289-2.

[13] G. Kortsarz, Z. Nutov, Approximating node connectivity problems via set covers, Algorithmica
37 (2) (2003) 75–92. doi:10.1007/s00453-003-1027-4.

[14] C. L. Monma, B. S. Munson, W. R. Pulleyblank, Minimum-weight two-connected spanning
networks, Math. Program. 46 (1990) 153–171. doi:10.1007/BF01585735.

15

https://doi.org/10.1016/j.orl.2008.01.009
https://doi.org/10.1016/0167-6377(89)90029-1
https://doi.org/10.1016/j.tcs.2013.04.004
http://diestel-graph-theory.com/
https://doi.org/10.1145/258533.258599
https://doi.org/10.1016/j.jcss.2005.05.006
https://doi.org/10.1137/0210019
https://doi.org/10.1016/0304-3975(82)90059-7
http://hdl.handle.net/10012/16229
https://doi.org/10.1007/s10107-009-0289-2
https://doi.org/10.1007/s00453-003-1027-4
https://doi.org/10.1007/BF01585735

[15] Z. Nutov, 2-node-connectivity network design, in: C. Kaklamanis, A. Levin (Eds.), Approx-
imation and Online Algorithms - 18th International Workshop, WAOA 2020, Virtual Event,
September 9-10, 2020, Revised Selected Papers, Vol. 12806 of Lecture Notes in Computer
Science, Springer, 2020, pp. 220–235. doi:10.1007/978-3-030-80879-2_15.

[16] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Algorithms and Combi-
natorics, Volume 24, Springer-Verlag, Berlin Heidelberg, 2003.
URL http://www.springer.com/gp/book/9783540443896

[17] V. Traub and R. Zenklusen. A better-than-2 approximation for weighted tree augmentation.
CoRR, abs/2104.07114, 2021. To appear in the proceedings of the 62nd IEEE FOCS 2021.

[18] V. Traub and R. Zenklusen. Local search for weighted tree augmentation and Steiner tree.
CoRR, abs/2107.07403, 2021. To appear in the proceedings of ACM-SIAM SODA 2022.

[19] A. Zelikovsky. Better approximation bounds for the network and Euclidean Steiner tree prob-
lems. Technical report, CS-96-06, Department of Computer Science, University of Virginia,
USA, 1996.

16

https://doi.org/10.1007/978-3-030-80879-2_15
http://www.springer.com/gp/book/9783540443896

	1 Introduction
	2 Preliminaries
	2.1 The min-cost 2NCSS problem
	2.2 Partitions
	2.3 A partition LP relaxation for the min-cost 2-NCSS problem
	2.4 Polynomial-time computations

	3 A greedy algorithm for min-cost 2NC-TAP
	3.1 A primal and dual LP relaxation for 2NC-TAP
	3.2 A greedy algorithm for 2NC-TAP
	3.3 Analysis of the greedy algorithm for 2NC-TAP
	3.4 A tight example for the greedy algorithm for 2NC-TAP

	4 The integrality ratio of the partition LP relaxation of 2NCSS
	4.1 A transformation from 2ECSS to 2NCSS

