
Risk-Averse Stochastic Optimal Control: an
efficiently computable statistical upper bound

Vincent Guigues
School of Applied Mathematics, FGV

Praia de Botafogo, Rio de Janeiro, Brazil
vincent.guigues@fgv.br

Alexander ShapiroResearch
Georgia Institute of Technology

Atlanta, Georgia 30332-0205, USA,
ashapiro@isye.gatech.edu

Yi Cheng
Georgia Institute of Technology

Atlanta, Georgia 30332-0205, USA,
cheng.yi@gatech.edu

Abstract. In this paper, we discuss an application of the Stochastic Dual Dynamic Program-
ming (SDDP) type algorithm to nested risk-averse formulations of Stochastic Optimal Control
(SOC) problems. We propose a construction of a statistical upper bound for the optimal value
of risk-averse SOC problems. This outlines an approach to a solution of a long standing problem
in that area of research. The bound holds for a large class of convex and monotone conditional
risk mappings. Finally, we show the validity of the statistical upper bound to solve a real-life
stochastic hydro-thermal planning problem.

Key Words: stochastic programming, stochastic optimal control, SDDP, dynamic program-
ming, risk measures, statistical upper bounds.

AMS subject classifications: 90C15, 90C90, 90C30.

1 Introduction

Multistage stochastic optimization problems are challenging to solve and have applications in
many areas, for instance in finance and engineering, see for instance [28]. Popular methods
to solve these problems often use decomposition techniques such as Stochastic Dual Dynamic
Programming (SDDP), proposed in [21], which is a sampling variant of the decomposition method
proposed in [8]. Initially described for risk-neutral linear problems, the SDDP method has
generated a rich literature and many variants in the past three decades, see, e.g., [12, 3, 13, 14,
16, 17, 18, 20, 22, 23, 25].

For risk-neutral problems and a finite sample space, a stopping criterion for SDDP is based on
estimated optimality gap determined by deterministic lower bound and a statistical upper bound
on the optimal value of the problem, computed during iterations of the method. For nested risk-
averse problems, a deterministic lower bound can be computed similar to the risk-neutral case,

1

ar
X

iv
:2

11
2.

09
75

7v
3 

 [
m

at
h.

O
C

] 
 2

 M
ay

 2
02

3



but to the best of our knowledge, no computationally feasible statistical upper bound has been
proposed so far for SDDP.

Of course, in theory the value of the constructed approximate policy can be computed by
evaluating the risk at each node of the scenario tree. However, this computation rapidly becomes
prohibitive with increase of the number of stages and the resulting exponential growth of the
number of possible realizations of the stochastic data process.

A deterministic upper bound on the value of the approximate risk-averse policy was proposed
in [24] on the basis of inner approximations of the value functions, which is a natural extension
of similar constructions for two stage programs (e.g., [7, section 9.5]). Recently, two variants of
Dual SDDP were introduced that also compute a deterministic upper bound, in [18] using conju-
gate duality and in [16] using Lagrangian duality. The bounds in [18] and [16] were developed for
risk-neutral problems, and recently extended to risk-averse problems in [9]. However, the com-
putational bulk required to compute the deterministic bounds from [24] and [9] for risk-averse
problems increases rapidly with increase of the number of stages, the number of realizations of
the stochastic data per stage, and the dimension of the state vectors. The goal of this paper
is to fill this gap proposing an efficiently computable statistical upper bound for SDDP applied
to nested-risk averse multistage stochastic problems. This will be possible for a large class of
monotone convex risk measures that will be studied.

Our developments will be derived for Stochastic Optimal Control (SOC) modeling, instead of
the Multistage Stochastic Programming approach often used in the SDDP and related methods.
The SOC is classical with applications documented in a large number of publications (e.g.,
[6]). We would like to emphasize that many problems discussed in the Stochastic Programming
(SP) literature, can be formulated in the SOC framework. One such example is the classical
inventory model (it is presented from both points of view, for example, in sections 1.2.3 and
7.6.3 in [28]). Another such example is the hydro-thermal planning problem discussed in section
5. One modification in applying an SDDP type algorithm to SOC problems is the fact that it is
not necessary anymore to solve the dual problems to compute the required subgradients of the
cost-to-go functions. Of course this is a minor point since the dual solution is often computed
by solvers anyway. More importantly, from the point of view of the SDDP type algorithms,
applied to risk-averse problems, there is an important difference between the SOC modeling, as
compared with the SP approach. A straightforward attempt for computation of statistical upper
bounds in the SP framework resulted in an exponential growth of the involved bias with increase
of the number of stages, which made it practically useless (cf., [29]). On the other hand, we
are going to demonstrate that in the SOC framework it is possible to construct such statistical
upper bound in a computationally feasible way for a large class of risk measures.

The outline of the paper is the following. In Section 2, we present the class of risk-neutral SOC
problems and describe the SDDP type approach for solving this class of problems. In Section
3, we present and study the risk measures which will be used for the risk-averse SOC problem.
In Section 4, we present the risk-averse SOC problem and describe the SDDP algorithm for this
problem. In Section 4.2, we derive our statistical upper bound. Finally, in Section 5 we present
numerical results where our upper bound is computed along iterations of SDDP type algorithm
to solve a risk-averse real-life hydro-thermal planning problem. Some additional material is given
in the Appendix.

We use the following notation. By ξ[t] := (ξ1, ..., ξt) we denote the history of a process (ξt) up

2



to time t. For a ∈ R, [a]+ := max{a, 0}. By IA(x) we denote the indicator function of a set A,
i.e., IA(x) = 0 if x ∈ A, and IA(x) = +∞ otherwise.

2 Risk-neutral Stochastic Optimal Control

Consider the Stochastic Optimal Control (SOC) (discrete time, finite horizon) model (e.g., [6]):

min
π∈Π

Eπ
[

T∑
t=1

ct(xt, ut, ξt) + cT+1(xT+1)

]
, (2.1)

where Π is the set of polices satisfying the constraints

Π =
{
π = (π1, . . . , πT ) : ut = πt(ξ[t−1]), ut ∈ Ut, xt+1 = Ft(xt, ut, ξt), t = 1, ..., T

}
. (2.2)

Here variables xt ∈ Rnt , t = 1, ..., T + 1, represent the state of the system, ut ∈ Rmt , t =
1, ..., T , are controls, ξt ∈ Rdt , t = 1, ..., T , are random vectors, ct : Rnt × Rmt × Rdt → R,
t = 1, ..., T , are cost functions, cT+1(xT+1) is a final cost function, Ft : Rnt×Rmt×Rdt → Rnt+1 are
(measurable) mappings and Ut is a (nonempty) subset of Rmt . Values x1 and ξ0 are deterministic
(initial conditions); it is also possible to view x1 as random with a given distribution, this is not
essential for the following discussion. The optimization in (2.1) is performed over policies π ∈ Π
determined by decisions ut and state variables xt considered as functions of ξ[t−1] = (ξ1, ..., ξt−1),
t = 1, ..., T , and satisfying the feasibility constraints (2.2). For the sake of simplicity, in order
not to distract from the main message of the paper, we assume that the control sets Ut do not
depend on xt. It is possible to extend the analysis to the general case, where the control sets are
functions of the state variables, we give a short discussion of that in section 7.2 of the Appendix.

With some abuse of the notation we use the same notation for xt and ut, and later for θt,
considered as functions of the random process ξt, and considered as vector variables, e.g., when
writing the respective dynamic programming equations. The particular meaning will be clear
from the context.

It is said that the random process ξt is stagewise independent if ξt does not depend on ξ[t−1]

for t = 1, ..., T . We make the following basic assumption.

(A) The random data process ξ1, ..., ξT is stagewise independent and its probability distribution
does not depend on our decisions.

Since it is assumed that the data process is stagewise independent, it suffices to consider policies
of the form πt = ut(xt), t = 1, ..., T (e.g, [6]).

We can consider problem (2.1)-(2.2) in the framework of Stochastic Programming (SP) if we
view yt = (xt, ut) as decision variables. In various applications it is possible to approach the
same problem using either the SOC or SP formulations. As it was already mentioned above,
for example the classical inventory model can be treated in both frameworks (e.g., [28, sections
1.2.3 and 7.6.3]). Another such example is discussed in section 5 below. However, there are
essential differences between the SOC and SP modeling approaches. In the SOC there is a
clear separation between the state and control variables. At every stage t the optimization is

3



performed over feasible controls (also called actions) ut and consequently the state at the next
stage is determined by the state equation xt+1 = Ft(xt, ut, ξt). This has important implications
for the SDDP algorithm, especially in the risk averse setting. We give a further discussion of the
SOC and SP modeling approaches in Remark 4.1 and section 7.3 of the Appendix.

The dynamic programming equations can be written as follows. At the last stage, the value
function VT+1(xT+1) = cT+1(xT+1) and, going backward in time for t = T, ..., 1, the value func-
tions

Vt(xt) = inf
ut∈Ut

E
[
ct(xt, ut, ξt) + Vt+1

(
Ft(xt, ut, ξt)

)]
, (2.3)

where the expectation is taken with respect to the (marginal) distribution of ξt, The optimal
policy is defined by the optimal controls ūt(xt) ∈ U∗t (xt), where

U∗t (xt) := arg min
ut∈Ut

E
[
ct(xt, ut, ξt) + Vt+1

(
Ft(xt, ut, ξt)

)]
. (2.4)

The optimal value of the SOC problem (2.1)-(2.2) is given by the first stage value function V1(x1),
and can be viewed as a function of the initial conditions x1. We make the assumptions.

(B) The sets U∗t (xt), t = 1, ..., T , are nonempty for every possible realization of state variables.

Assumption (B) holds under standard regularity conditions, e.g., if the sets Ut are compact
and the objective function in the right hand side of (2.4) is continuous in ut ∈ Ut.

We consider the convex case, by making the following assumption.

(C) For t = 1, ..., T : (i) the sets Ut are closed convex, (ii) the cost functions ct(xt, ut, ξt) are
convex in (xt, ut), and

Ft(xt, ut, ξt) := Atxt +Btut + bt, (2.5)

with matrices At = At(ξt), Bt = Bt(ξt) and vectors bt = bt(ξt) being functions of ξt.

It follows from Assumption (C) that the value functions Vt(·) are convex. Suppose further that

(D) Random vector ξt has a finite number of realizations ξti with respective probabilities pti,
i = 1, ..., N , t = 1, ..., T (for the sake of simplicity assume that the cardinality N is the
same for every time t).

Denote cti(xt, ut) := ct(xt, ut, ξti) and Ati = At(ξti), Bti = Bt(ξti), bti = bt(ξti), i = 1, ..., N , the
respective values of the parameters. In that case, the dynamic programming equations (2.3) can
be written as

Vt(xt) = inf
ut∈Ut

N∑
i=1

pti
[
cti(xt, ut) + Vt+1

(
Atixt +Btiut + bti

)]
︸ ︷︷ ︸

E[ct(xt, ut, ξt) + Vt+1(Atxt +Btut + bt)]

. (2.6)

The subdifferentials of the value functions are obtained from the dynamic programming equa-
tions (2.6). That is, consider function

Qt(xt, ut) := E
[
ct(xt, ut, ξt) + Vt+1

(
Atxt +Btut + bt

)]
.

4



Since ct(xt, ut, ξt) is convex in (xt, ut) and Vt+1 is convex, Qt(xt, ut) is convex. By (2.6) we have
that

Vt(xt) = inf
ut∈Ut

Qt(xt, ut) = inf
ut∈Rmt

{Qt(xt, ut) + IUt(ut)} . (2.7)

Consequently we have the following formula for the subdifferential of Vt(·) (cf., [26, Theorem
24(a)]):

∂Vt(xt) =
{
γt : (γt, 0) ∈ ∂[Qt(xt, ūt) + IUt(ūt)]

}
=
{
γt : (γt, 0) ∈ ∂Qt(xt, ūt)

}
, (2.8)

where ūt is any point of U∗t (xt) (the indicator function can be removed in the last term of (2.8)
since the second component of (γt, 0) is 0). It follows that if Qt(·, ·) is differentiable at (xt, ūt),
then

∇Vt(xt) = ∇Qt(xt, ūt), (2.9)

where the gradient in the right hand side of (2.9) is with respect to xt.
We obtain that for any ūt ∈ U∗t (xt), if functions cti(·, ·), i = 1, ..., N , are differentiable and

Vt+1(·) is differentiable at Atixt +Btiūt + bti, i = 1, ..., N , then

∇Vt(xt) =
N∑
i=1

pti
[
∇cti(xt, ūt) + A>ti∇Vt+1

(
Atixt +Btiūt + bti

)]
. (2.10)

Note that a real valued convex function is differentiable almost everywhere (e.g., [27, Theorem
25.5]).

Now suppose that value functions Vτ (·) are approximated by (lower bounding) piecewise affine
functions

V τ (xτ ) = max
j=1,...,M

`τj(xτ ), (2.11)

where `τj(xt) = a>τjxt+hτj, j = 1, ...,M . We need to compute a subgradient of V τ (·) for τ = t+1
when computing a subgradient of V t(·) using equation (2.10). A subgradient of V τ (·) at a point
xτ is given by ∇`τν(xt) = aτν , where ν ∈ {1, ...,M} is such that V τ (xτ ) = `τν(xτ ), i.e., ν is
the index where the maximum in the right hand side of (2.11) is attained and hence `τν(·) is a
supporting plane of V τ (·) at xτ .

This suggests a way for computing a subgradient of a current approximation of the value
functions in a cutting planes type algorithm discussed below. There is no need to solve dual
problems as in the classical SDDP method.

A cutting planes (SDDP type) algorithm for the SOC problem can be described as follows. In
the forward step at iteration k of the algorithm, for given convex piecewise affine lower bounding
approximations V k−1

t of the value functions and for a generated sample path (scenario) ξ̂1, ..., ξ̂T
of realizations of the random data process, starting with the initial value x̂1 = x1, compute a
minimizer in the right hand side of (2.6) for the current approximation of the value function,
that is

ût ∈ arg min
ut∈Ut

N∑
i=1

pti
[
cti(xt, ut) + V k−1

t+1

(
Atixt +Btiut + bti

)]
, (2.12)

for xt = x̂t, and set x̂t+1 = Ft(x̂t, ût, ξ̂t). If the set Ut is polyhedral and the cost functions
cti(xt, ut) are piecewise affine functions of ut, this minimization problem can be written as a linear

5



programming problem, and hence has an optimal solution unless it is unbounded from below. In
the next backward step of the algorithm, the cutting planes approximation of the value functions
are updated going backwards in time by adding the cuts at the computed trial points x̂t. These
cuts are computed using subgradients (at the trial points) of the current approximations of the
value functions.

3 Preliminaries on risk measures

Let (Ω,F , P ) be a probability space and let Z be a linear space of F -measurable functions
(random variables) Z : Ω → R. A risk measure is a function R : Z → R which assigns to a
random variable Z a real number representing its risk. Typical example of the linear space Z is
the space of random variables with finite p-th order moments, denoted Lp(Ω,F , P ), p ∈ [1,∞).
It is said that risk measure R is convex if it possesses the properties of convexity, monotonicity,
and translation equivariance. If moreover it is positively homogeneous, then it is said that risk
measure R is coherent (coherent risk measures were introduced in [2]). We can refer to [11] and
[28] for a thorough discussion of risk measures.

In this paper we consider a class of convex risk measures which can be represented in the
following parametric form:

R(Z) := inf
θ∈Θ

EP [Ψ(Z, θ)], (3.13)

where Θ is a subset of a finite dimensional vector space and Ψ : R × Θ → R is a real valued
function, called the generating function of R. The notation EP in (3.13) emphasizes that the
expectation is taken with respect to the probability measure (distribution) P of random variable
Z. We consider risk measures of the form (3.13) for every stage. That is, for every t = 1, ..., T ,
we consider a probability space (Ωt,Ft, Pt), and risk measure

Rt(Zt) := inf
θt∈Θ

EPt [Ψ(Zt, θt)], Zt ∈ Zt, (3.14)

defined on the respective linear space of random variables, say Zt := Lp(Ωt,Ft, Pt). For the
sake of simplicity, we consider the same set Θ and function Ψ at every stage, this is in line with
the examples below. On the other hand, the probability distributions Pt could be different for
different stages.

We make the following assumptions.

(E) (i) The set Θ is nonempty closed convex. (ii) For every Zt ∈ Zt, t = 1, ..., T , the expectation
in the right hand side of (3.14) is well defined and the infimum is finite valued. (iii) The
function Ψ(z, θ) is convex in (z, θ) ∈ R × Θ. (iv) For every θ ∈ Θ, the function Ψ(·, θ) is
monotone nondecreasing, i.e., if z1 ≤ z2 then Ψ(z1, θ) ≤ Ψ(z2, θ) for every θ ∈ Θ.

Assumption (E) implies that the functional R, defined in (3.13), possesses the properties of
convexity and monotonicity. Indeed, it follows from assumption (E)(iii) that E[Ψ(Z, θ)] is convex
in (Z, θ) ∈ Z × Θ, and hence its minimum over convex set Θ is convex. That is, the functional
R : Z → R is convex. By Assumption (E)(iv) the functional R is monotone, i.e., if Z,Z ′ ∈ Z
are such that Z ≤ Z ′ almost surely (a.s.), with respect to the measure P , then R(Z) ≤ R(Z ′).

6



Recall that Z,Z ′ ∈ Z are said to be distributionally equivalent (with respect to the reference
measure P ) if P (Z ≤ z) = P (Z ′ ≤ z) for all z ∈ R. It is said that a functional R : Z → R is law
invariant if R(Z) = R(Z ′) for any distributionally equivalent Z,Z ′ ∈ Z. It follows immediately
from the definition (3.14) that Rt, defined in (3.14), is a function of its cdf Ft(z) = Pt(Zt ≤ z),
and hence is law invariant. For every t, consider direct product P1 × · · · × Pt of probability
measures and the corresponding space Z1×· · ·×Zt. Conditional mapping Rt|ξ[t−1]

: Zt → Zt−1 is
defined as a counterpart of the law invariant functional Rt, t = 1, ..., T . Since ξ0 is deterministic,
R1|ξ0 = R. The associated nested functional is defined in the composite form

R(·) := R1|ξ0

(
R2|ξ[1]

(
· · ·RT |ξ[T−1]

(·)
))
. (3.15)

We refer to [28, section 7.6] for a detailed discussion of constructions of such conditional mappings
and nested functionals. Note that in this framework the process ξ1, ..., ξT , viewed as a random
process with respect to the reference probability distributions, is stagewise independent with Pt
being the marginal distribution of ξt.

There is a large class of risk measures which can be represented in the parametric form (3.13).

Example 3.1 The Average Value-at-Risk measure

AV@Rα(Z) = inf
θ∈R

E
[
θ + α−1[Z − θ]+

]
, α ∈ (0, 1), (3.16)

is of form (3.13) with generating function Ψ(z, θ) = θ+α−1[z−θ]+, and Θ = R, Z = L1(Ω,F , P ).
In several equivalent forms the Average Value-at-Risk was introduced over the years by different
authors in different contexts under different names, such as Expected Shortfall, Expected Tail
Loss, Conditional Value-at-Risk. In the variational form (3.16) it appeared in [?],[?]. �

Example 3.2 A convex combination of the expectation and of Average Value-at-Risk measures
is given by

R(Z) := λ0E[Z] +
k∑
i=1

λiAV@Rαi
(Z),

where λi are positive numbers with
∑k

i=0 λi = 1, and αi ∈ (0, 1). Here R is of form (3.13) with

Θ = Rk, Z = L1(Ω,F , P ), and generating function Ψ(z, θ) = λ0z +
∑k

i=1 λi
(
θi + α−1

i [z − θi]+
)
.

�

Example 3.3 (φ-divergence) Another example is risk measures constructed from φ-divergence
ambiguity sets (cf., [4],[5],[28, section 7.2.2]). Let φ : R → R+ ∪ {+∞} be a convex lower
semicontinuous function such that φ(1) = 0 and φ(x) = +∞ for x < 0. By duality arguments the
distributionally robust functional associated with the ambiguity set determined by the respective
φ-divergence constraint with level ε > 0 can be written in the form (3.13) with

Rε(Z) = inf
µ,λ>0

{λε+ µ+ λEP [φ∗((Z − µ)/λ)]} , (3.17)

θ = (µ, λ), λ > 0, and generating function Ψ(z, θ) = λε + µ + λφ∗((Z − µ)/λ), where φ∗ is
the Legendre-Fenchel conjugate of φ. In particular for the Kullback-Leibler (KL)-divergence,
φ(x) = x lnx− x+ 1, x ≥ 0, and

Rε(Z) = inf
µ,λ>0

{
λε− λ+ µ+ λEP [e(Z−µ)/λ]

}
. (3.18)

7



Thus it can be represented in the form (3.13) with Ψ(z, λ, µ) = λε− λ+ µ+ λ e(z−µ)/λ. It could
be noted that given λ > 0, the minimizer over µ in (3.18) is µ = λ lnEP [eZ/λ] and hence

Rε(Z) = inf
λ>0

{
λε+ λ lnEP [eZ/λ]

}
. (3.19)

However, the representation (3.19) is not of the form (3.13). �

Risk measures in the above examples are positively homogeneous, and hence are coherent.

Example 3.4 Let u : R → [−∞,+∞) be a proper closed concave and nondecreasing utility
function with nonempty domain. The functional

R(Z) := inf
θ∈R

{
θ − E[u(Z + θ)]

}
,

is of form (3.13) with Θ = R and generating function Ψ(z, θ) = θ − u(z + θ). This risk measure
is convex, but is not necessarily positively homogeneous. It can be viewed as the opposite of the
OCE (Optimized Certainty Equivalent (see [1]). �

Extended polyhedral risk measures, introduced in [15], are also of form (3.13).

4 Risk-averse Stochastic Optimal Control

4.1 Risk-averse Setting

Consider the risk averse setting in the nested form. That is, the expectation operator in the risk
neutral formulation (2.1) - (2.2) is replaced by the nested risk measure R, under the assump-
tion that the data process is stagewise independent with respect to the reference distributions.
Definition of R is given in equation (3.15), and briefly discussed in the text above that equation.

Suppose further that the state equations are affine of the form (2.5). This leads to the
following risk averse problem (recall that R1|ξ0 = R) in the nested form:

min
π∈Π
R1|ξ0

(
c1 +R2|ξ[1]

(
c2 + · · ·+RT |ξ[T−1]

(cT )
)

+ cT+1

)
, (4.20)

where we use notation ct := ct(xt, ut, ξt), t = 1, ..., T , and cT+1 := cT+1(xT+1). The optimization
(minimization) in (4.20) is over policies satisfying constraints (2.2) with Ft(xt, ut, ξt) being of the
form (2.5). The constraints (2.2) should be satisfied with probability one with respect to the
reference measures. In fact since the number of scenarios is assumed to be finite, the constraints
should be satisfied for all scenarios. Note that as in the risk neutral case, it suffices to consider
policies of the form πt = ut(xt), and that states xt and controls ut of the considered policies are
functions of ξ[t−1]. The assumption which guarantees this is Assumption (A).

The risk averse counterpart of dynamic equations (2.6) can be written as VT+1(xT+1) =
cT+1(xT+1) and for t = T, ..., 1,

Vt(xt) = inf
ut∈Ut

Rt

(
ct(xt, ut, ξt) + Vt+1(Atxt +Btut + bt)

)
(4.21)

= inf
ut∈Ut, θt∈Θ

EPt

[
Ψ
(
ct(xt, ut, ξt) + Vt+1(Atxt +Btut + bt), θt

)]
, (4.22)

8



where formulation (4.22) is obtained by applying definition (3.14) of Rt with generating function
Ψ. Note that it is possible to write dynamic equations (4.21) in terms of the (static) risk measures
Rt because of the basic assumption of stagewise independence of the process ξt (with respect
to the reference measures) (e.g., [28, section 6.5.4, Remark 39]). The respective optimal policy
πt = ūt(xt) is defined by the optimal controls

ūt(xt) ∈ arg min
ut∈Ut

Rt

(
ct(xt, ut, ξt) + Vt+1(Atxt +Btut + bt)

)
. (4.23)

As in the risk neutral setting, we assume that the set of minimizers in the right hand side of
(4.23) is nonempty for all possible realizations of state variables (Assumption (B)).

The developments of Section 2 can be adapted to this risk-averse framework. Under the
convexity assumption (C), the value functions Vt(·) are convex in the risk averse setting as well.
There are explicit formulas how to compute a subgradient of the functional R : Z → R for
various examples of risk measures (cf., [28, section 6.3.2]).

Recall definition (3.14) of risk measure Rt. For xt and the optimal control ūt = ūt(xt),
determined by (4.23), consider a minimizer

θ̄t ∈ arg min
θt∈Θ

EPt

[
Ψ
(
ct(xt, ūt, ξt) + Vt+1(Atxt +Btūt + bt), θt

)]
. (4.24)

Note that θ̄t can be computed in two equivalent ways. One way is to solve the minimization
problem (4.22) jointly in ut and θt. The other approach is to use (4.24) using computed optimal
controls ūt. In that case θ̄t is a function of ūt which in turn is a function of ξ[t−1]. In both cases θ̄t
can be viewed as a function of ξ[t−1]. In the following developments we use the second approach
since it is relatively easy to compute θ̄t using formula (4.24).

Then, similar to (2.10) and using the Chain rule, a subgradient ∇Vt(xt) of the value function
Vt at xt can be computed as

∇Vt(xt) = EPt

[
Ψ′(yt, θ̄t)

(
∇ct(xt, ūt, ξt) + A>t ∇Vt+1

(
Atxt +Btūt + bt

))]
, (4.25)

where Ψ′(yt, θ̄t) is a subgradient of Ψ(·, θ̄t) at yt, ∇ct(xt, ūt, ξt) is a subgradient of ct(·, ūt, ξt) at
xt, ∇Vt+1(Atxt +Btūt + bt) is a subgradient of Vt+1 at Atxt +Btūt + bt, and yt := ct(xt, ūt, ξt) +
Vt+1(Atxt +Btūt + bt). (If Ψ(·, θ̄t) is differentiable at yt, then Ψ′(yt, θ̄t) is given by the derivative
of Ψ(·, θ̄t) at yt.)

As a special case, consider Example 3.1 of the Average Value-at-Risk measure. In that case
the minimizer θ̄ in the right hand side of (3.16) is given by the (1 − α)-quantile of the con-
sidered distribution. That is, suppose that the reference distribution Pt has a finite number
of N realizations with equal probabilities 1/N . Then θ̄t can be computed by arranging values
cti(xt, ūt) + Vt+1(Atixt + Btiūt + bti), i = 1, . . . , N , in the increasing order and taking the re-
spective empirical (1− α)-quantile. Consequently, the required subgradient of the current lower
approximation of the value function can be computed in a straightforward way (cf., [30]).

4.2 Statistical upper bounds on the value of the policy

In this section, we discuss the construction of a statistical upper bound on the optimal value of
the risk averse problem. As before, all probabilistic statements and expectations are taken with

9



respect to the reference distributions. Let V t(xt), t = 1, ..., T , be current approximations of the
value functions. This defines the corresponding (approximate) policy (x̂t, ût) with

ût ∈ arg min
ut∈Ut

Rt

(
ct(x̂t, ut, ξt) + V t+1(Atx̂t +Btut + bt)

)
. (4.26)

Observe that by the construction, Vt(·) ≥ V t(·) for t = 1, ..., T , and hence value V 1(x1) gives a
lower bound for the optimal value of the considered problem.

For a given realization (scenario) ξ1, ..., ξT of the data process, x̂t and ût are computed in
the forward step of the SDDP algorithm, and can be viewed as functions x̂t = x̂t(ξ[t−1]) and
ût = ût(ξ[t−1]). When each reference probability distribution has a finite support (of N points),
i.e., for the discretized version of the problem, these values are computable.

Now let θ̂t ∈ Θ be a specified function of the data process, θ̂t = θ̂t(ξ[t−1]), t = 1, ..., T . Note

that θ̂t is non-anticipative in the sense that it does not depend on unobserved values ξt, ..., ξT at
time t. Denote ĉt := ct(x̂t, ût, ξt), t = 1, ..., T , and ĉT+1 := cT+1(x̂T+1). Consider the following
sequence of random variables (functions of the data process) defined iteratively going backward
in time: vT+1 := ĉT+1 and

vt := Ψ(ĉt + vt+1, θ̂t), t = T, . . . , 1. (4.27)

Of course, values vt depend on a choice of parameters θ̂t. We will discuss an appropriate choice
of θ̂t later. Our statistical upper bound on the value of a risk-averse approximate policy is given
in the following proposition.

Proposition 4.1 Consider the risk-averse problem (4.20) Let vt be the sequence of random vari-
ables (defined iteratively by (4.27)) associated with current approximations of the value functions.
Then for t = 1, ..., T ,

Rt|ξ[t−1]

(
ĉt + . . .+RT |ξ[T−1]

(ĉT + ĉT+1)
)
≤ E|ξ[t−1]

[vt], w.p.1. (4.28)

In particular, E[v1] is greater than or equal to the value of the policy defined by the considered
approximate value functions, and is an upper bound on the optimal value of the risk averse
problem.

Proof. For t = T , using the definition of ûT and since θ̂T ∈ Θ, we get

RT |ξ[T−1]
(ĉT + ĉT+1) = inf

uT∈UT
RT

(
cT (x̂T , uT , ξT ) + V̂T+1(AT x̂T +BTuT + bT )

)
≤ E|ξ[T−1]

[
Ψ
(
cT (x̂T , ûT , ξT ) + cT+1(AT x̂T +BT ûT + bT ), θ̂T

)]
= E|ξ[T−1]

[vT ].

We now use induction in t going backward in time. For t− 1 we have

Rt−1|ξ[t−2]

(
ĉt−1 +Rt|ξ[t−1]

(
ĉt + . . .+RT |ξ[T−1]

(ĉT + cT+1(x̂T+1))
))

≤ Rt−1|ξ[t−2]

(
ĉt−1 + E|ξ[t−1]

[vt]
)

(monotonicity and induction step)

≤ E|ξ[t−2]

[
Ψ
(
ĉt−1 + E|ξ[t−1]

[vt], θ̂t−1

)]
(because θ̂t−1 ∈ Θ)

= E|ξ[t−2]

[
Ψ
(
E|ξ[t−1]

[ĉt−1 + vt], θ̂t−1

)]
(since ĉt−1 is a function of ξ[t−1])

≤ E|ξ[t−2]
E|ξ[t−1]

[
Ψ
(
ĉt−1 + vt, θ̂t−1

)]
(by Jensen’s inequality)

= E|ξ[t−2]

[
Ψ
(
ĉt−1 + vt, θ̂t−1

)]
= E|ξ[t−2]

[vt−1].

(4.29)

10



This completes the induction step. �

Therefore, for a sample path (scenario) of the data process, an unbiased point estimate of
an upper bound on the corresponding policy value can be computed recursively starting with
vT+1 = cT+1(x̂T+1) and going backward in time using the iteration procedure (4.27). Finally v1

gives a point estimate of an upper bound on the corresponding value of the policy. Therefore by
generating a sample of scenarios, of the random data process, and averaging the corresponding
point estimates it is possible to construct the respective statistical upper bound for the optimal
value of the risk averse problem.

The quality of such statistical bound depends on the choice of the parameter function θ̂t. It
is natural to use the corresponding minimizer of the form (4.24). That is, to take

θ̂t ∈ arg min
θt∈Θ

E
[
Ψ
(
ct(x̂t, ût, ξt) + V t+1(Atx̂t +Btût + bt), θt

)]
. (4.30)

The so defined θ̂t is a function of x̂t and ût, which in turn are functions of ξ[t−1]. For example,

as it was pointed at the end of Section 4.1, in case of the Average Value-at-Risk measure such θ̂t
can be easily computed by using the respective quantile. Note that even for θ̂t of the form (4.30)
the inequality (4.28) can be strict. This is because Jensen’s inequality was used in derivations
(4.29). Nevertheless, this approach performed well in the numerical experiments discussed in the
next section.

Remark 4.1 We would like to point to the important difference between the corresponding SOC
and SP approaches to construction of the statistical upper bound for the risk averse problems.
Computation of the parameter θ̂t in (4.30) is based on the distribution of random vector ξt.
When ξt has a finite number of realizations ξti, i = 1, ..., N , the parameter θ̂t is a function of all
corresponding costs ĉti and all values Ati, Bti, bti, i = 1, ..., N , of random parameters at stage t.
This makes θ̂t, in a sense, to be a “consistent” estimate of θ̄t defined in (4.24). On the other
hand, in the SP setting it was not possible to construct a computationally feasible consistent
estimate of the respective parameter of the risk measure. As a result a straightforward attempt
for computation of such statistical upper bound in the SP framework resulted in an exponential
growth of the involved bias with increase of the number of stages, which made it practically
useless (cf., [29]). �

We close this section by presenting Algorithm 1 for computing the statistical upper bound
for a T -stage SOC problem.

5 Numerical Experiments

In this section numerical experiments are performed on the Brazilian Inter-connected Power Sys-
tem problem (we refer to [30] for more details on the problem description). All experiments were
run using Python 3.8.5 under Ubuntu 20.04.1 LTS operating system with a 4.20 GHz Intel Core
i7 processor and 32Gb RAM. We extended the MSPPy solver https://github.com/lingquant/
msppy [10] for the SDDP algorithm solving for the SOC problem. We report numerical results

11

https://github.com/lingquant/msppy
https://github.com/lingquant/msppy


Algorithm 1 SDDP-type Algorithm for SOC Problem

1: Inputs: stage-wise independent samples ξt := {ξtj}1≤j≤Nt , t = 1, · · · , T, initializations of
Vt(·) : V 0

t (·), t = 1, · · · , T, initial point x̂1

2: for k = 1, 2, . . . , K do
3: V k−1

T+1(·) = VT+1

4: for t = 1, · · · , T do . Forward Step
5: ût = arg min

ut∈Ut
Rt

(
ct(x̂t, ut, ξt) + V k−1

t+1 (Atx̂t +Btut + bt)
)

6: Draw a sample (Ât, B̂t, b̂t) from {ξt}
7: x̂t+1 = Âtx̂t + B̂tût + b̂t
8: end for
9: for t = T, · · · , 1 do . Backward Step

10: θ̂t = arg min
θt∈Θ

1
N

N∑
j=1

Ψ
(
ct(x̂t, ût, ξtj) + V k−1

t+1 (Atjx̂t +Btjût + btj), θt
)
,

11: vt = 1
N

N∑
j=1

Ψ
(
ct(x̂t, ût, ξtj) + V k−1

t+1 (Atjx̂t +Btjût + btj), θ̂t

)
,

12: ytj := ct(x̂t, ût, ξtj) + V k−1
t+1 (Atjx̂t +Btjût + btj),

13: gt = 1
N

N∑
j=1

Ψ′(ytj, θ̂t)
(
∇ct(x̂t, ût, ξtj) + A>tj∇V k−1

t+1 (Atjx̂t +Btjût + btj)
)
,

14: V k
t (xt) = max(V k−1

t (xt), g
T
t (xt − x̂t) + vt),

15: end for
16: Lower bound: Lk = V k

1(x̂1)
17: Generate S sample paths ξks = {ξkts}1≤t≤T , s = 1, · · · , S, run forward step for each sample

path ξks to obtain controls (ûkts)1≤t≤T and states (x̂kts)1≤t≤T+1 . Evaluation
18: Set vkT+1,s = cT+1(x̂kT+1,s), s = 1, · · · , S
19: for t = T, · · · , 1 do
20: for s = 1, · · · , S do

21: θ̂kts = arg min
θt∈Θ

1
N

N∑
j=1

Ψ
(
ct(x̂

k
ts, û

k
ts, ξtj) + V k

t+1(Atjx̂
k
ts +Btjû

k
ts + btj), θt

)
22: vkts = Ψ(ct(x̂

k
ts, û

k
ts, ξ

k
ts) + vkt+1,s, θ̂

k
ts)

23: end for
24: end for

25: v̄k1 = 1
S

S∑
s=1

vk1s, σ
2
k = 1

S−1

S∑
s=1

(vk1s − v̄k1)2

26: Statistical upper bound: Uk
S = v̄k1 + z1−βσk/

√
S.

27: end for

12



of the convergence guided by the deterministic lower bound and the statistical upper bound of
the risk averse stochastic optimal control problem.

The hydro-thermal planning problem is a large-scale problem with T = 120 planning horizon
stages and four state variables related to the energy reservoirs in four interconnected regions. The
monthly energy inflows define the stochastic data process in the model. For the sake of simplicity,
it is assumed in the experiments below that the random inflow process is stagewise independent.
The (discretization) samples are generated from log-normal distributions (with 100 realizations
at each stage) estimated from the historical data. Previous attempts to define a statistical upper
bound have shown some of the challenges of this task. For example, the numerical results in
[29] show that by formulating the problem as a risk-averse multistage stochastic program, the
scale of the statistical upper bounds starts to explode with increase of the number of stages and
becomes prohibitively large when the number of stages T is more than 10.

We aim to demonstrate via the hydro-thermal planning problem, the effectiveness of the
construction of the statistical upper bound proposed in Section 4. This suggests first to formulate
the problem as a risk-averse optimal control model, and then to solve it by a variant of the SDDP
algorithm, while preserving the number of stages, the states, and the data process in the original
problem. More specifically, we construct the upper bound as explained in Section 4.2, detailed
in Algorithm 1. We conduct experiments for risk measures of convex combination of expectation
and AV@R and KL-divergence, as described in Examples 3.2 and 3.3, respectively. We solve both
problems, and compute the corresponding statistical upper bounds, by an SDDP-type algorithm
as described in Algorithm 1.

Implementation Details.

1. Convex combination of expectation and AV@R (Example 3.2): (1 − λ)E[·] + λAV@Rα(·).
For this risk measure, we perform tests with the critical value of the confidence interval
z1−β = 2 (see line 26 of Algorithm 1) and λ ∈ {0, 0.5, 1}. When λ = 0, the problem
becomes risk neutral, while λ = 1 corresponds to an extreme risk aversion.

In this setting, at each backward step and in the evaluation procedure (line 10 and line
21 in Algorithm 1), θ̂t can be computed by arranging values ct(x̂t, ût, ξtj) + V t+1(Atjx̂t +
Btjût + btj), j = 1, · · · , N , in the increasing order and taking the respective empirical
(1−β)-quantile. Moreover, in order to obtain a fast converging deterministic lower bound,
we adopt the biased-sampling technique proposed in [19].

2. KL-divergence (Example 3.3). For this risk measure, we conduct experiments for ε ∈
{10−1, 10−2, 10−3, 10−8, 10−12}, which corresponds to problems with different levels of risk
aversion. In particular, when ε = 10−12, the problem is essentially a risk neutral problem,
up to some numerical error.

In this case, at steps indicated by line 10 and line 21 in Algorithm 1, the following (one-
dimensional) convex program:

λ̂t = arg min
λt>0

{λtε+ λt lnEPt

[
eZt/λt

]
}, (5.31)

where Zt := {ct(x̂t, ût, ξtj)+V t+1(Atjx̂t+Btjût+btj)}1≤j≤Nt , was solved using Scipy solver.

13



Results. For risk measure (1 − λ)E[·] + λAV@Rα(·) , with λ = 0.5, in order to examine the
trend of the statistical upper bound, we compute the upper bound for the problem at every
10 iterations with a sample of size S = 10, by running 10 forward passes in parallel. Figure
1 in the Appendix displays the evolution of the deterministic lower bounds and the statistical
upper bounds for the hydro-thermal planning problem for 3000 iterations. We can see from the
figure that the statistical upper bound oscillates significantly for the first 500 iterations and then
gradually stabilizes within narrow fluctuations. Table 1 reports, for different choices of λ, the
statistical upper bounds obtained from Monte Carlo simulation using 3000 samples, along with
the deterministic lower bounds and the relative gap (upper bound −lower bound

lower bound
) at the last iteration

3000. From the results, it seems that the relative gap of the problem is not very sensitive to the
level of risk aversion.

(1− λ)E[·] + λAV@Rα(·)

λ Deterministic lower bound Statistical upper bound Gap(%)
(×109) (×109)

0.0 0.345 0.348 0.97

0.5 1.640 1.672 1.93

1.0 6.669 7.003 5.02

Table 1: Convergence of convex combination of expectation and AV@R problem for different λ.

Table 2 reports results for the KL-divergence problem. The statistical upper bounds are
computed by Monte Carlo simulation using 3000 samples, the lower bound and the relative gap,
are computed as well for difference values of ε. All results in the table are obtained when the
problems are solved for 3000 iterations. We observe that when ε increases, the relative gap
becomes larger.

KL-divergence

ε Deterministic lower bound Statistical upper bound Gap(%)
(×109) (×109)

10−1 4.894 5.959 21.76

10−2 4.202 4.659 10.89

10−3 3.991 4.306 7.88

10−8 3.246 3.324 2.42

10−12 0.339 0.342 1.03

Table 2: Convergence of KL-divergence problem for different ε.

14



6 Concluding remarks

There are two somewhat different reasons for the gap between the considered statistical upper
and deterministic lower bounds. One reason is the optimality gap similar to the risk neutral case.
The additional gap, as compared to the risk neutral setting, appears because Jensen’s inequality
is employed in derivations (4.29). This gap tends to increase as the function Ψ(·, θ) becomes
more “nonlinear”. This can be clearly seen in Table 2, the gap increases with increase of ε, and
also in Table 1 as the problem becomes more risk-averse.

When the function Ψ is not polyhedral, as for instance in the setting of φ-divergence example,
the procedure requires solving nonlinear optimization programs. This could be inconvenient
since nonlinear optimization solvers should be used, which are known to be less efficient than
linear solvers. In the considered example of KL-divergence, this requires solving one-dimensional
nonlinear programs, which does not pose a significant problem. In general, in order to keep the
procedure to linear programming solvers, the Q-factor approach, discussed in section 7.4 of the
Appendix, can be used. Note however that the Q-factor approach involves increasing the state
space which could significantly slow down the convergence of the algorithm.

References

[1] Ben-Tal A. and Teboulle M. An old-new concept of convex risk measures: The optimized
certainty equivalent. Mathematical Finance, 17:449–476, 2007.

[2] P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath. Coherent measures of risk. Mathematical
Finance, 9:203–228, 1999.

[3] M. Bandarra and V. Guigues. Single cut and multicut stochastic dual dynamic program-
ming with cut selection for multistage stochastic linear programs: Convergence proof and
numerical experiments. Computational Management Science, 18(2):125–148, 2021.

[4] G. Bayraksan and D. K. Love. Data-driven stochastic programming using phi-divergences.
Tutorials in Operations Research, INFORMS, pages 1563–1581, 2015.

[5] A. Ben-Tal and M. Teboulle. Penalty functions and duality in stochastic programming via
phi-divergence functionals. Mathematics of Operations Research, 12:224–240, 1987.

[6] D.P. Bertsekas and S.E. Shreve. Stochastic Optimal Control, The Discrete Time Case.
Academic Press, New York, 1978.

[7] J. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer-Verlag, New
York, 1997.

[8] J.R. Birge. Decomposition and partitioning methods for multistage stochastic linear pro-
grams. Operations Research, 33:989–1007, 1985.

[9] B.F.P. da Costa and V. Leclere. Dual SDDP for risk-averse multistage stochastic programs.
arXiv, 2021.

15



[10] L. Ding, S. Ahmed, and A. Shapiro. A python package for multi-stage stochastic program-
ming. Optimization online, 2019.

[11] H. Föllmer and A. Schied. Stochastic Finance: An Introduction in Discrete Time. Walter
de Gruyter, Berlin, 2nd edition, 2004.

[12] A. Tsoukalas G. Angelos and W. Wiesemann. Robust dual dynamic programming. Opera-
tions Research, 67:813–830, 2019.

[13] V. Guigues. SDDP for some interstage dependent risk-averse problems and application to
hydro-thermal planning. Computational Optimization and Applications, 57:167–203, 2014.

[14] V. Guigues. Dual dynamic programing with cut selection: Convergence proof and numerical
experiments. European Journal of Operational Research, 258:47–57, 2017.

[15] V. Guigues and W. Römisch. Sampling-based decomposition methods for multistage stochas-
tic programs based on extended polyhedral risk measures. SIAM Journal on Optimization,
22:286–312, 2012.

[16] V. Guigues, A. Shapiro, and Y. Cheng. Duality and sensitivity analysis of multistage linear
stochastic programs. European Journal of Operational Research, Online, 2022.

[17] G. Infanger and D. Morton. Cut sharing for multistage stochastic linear programs with
interstage dependency. Math. Program., 75:241–256, 1996.

[18] V. Leclere, P. Carpentier, J-P. Chancelier, A. Lenoir, and F. Pacaud. Exact converging
bounds for stochastic dual dynamic programming via fenchel duality. Siam Journal on
Optimization, 30:1223–1250, 2020.

[19] R.P. Liu and A. Shapiro. Reformulation approach to risk averse stochastic programming.
Risk Neutral Reformulation Approach to Risk Averse Stochastic Programming, 286:21–31,
2020.

[20] N. Lohndorf and A. Shapiro. Modeling time-dependent randomness in stochastic dual dy-
namic programming. European Journal of Operational Research, 273:650–661, 2019.

[21] M.V.F. Pereira and L.M.V.G. Pinto. Multi-stage stochastic optimization applied to energy
planning. Mathematical programming, 52(1-3):359–375, 1991.

[22] A. Philpott, V. de Matos, and E. Finardi. Improving the performance of stochastic dual
dynamic programming. journal of computational and applied mathematics. Journal of Com-
putational and Applied Mathematics, 290:196 – 208, 2015.

[23] A. B. Philpott and Z. Guan. On the convergence of stochastic dual dynamic programming
and related methods. Operations Research Letters, 36:450–455, 2008.

[24] A.B. Philpott, V.L. de Matos, and E. Finardi. On solving multistage stochastic programs
with coherent risk measures. Operations Research, 61(4):957–970, 2013.

16



[25] A.R. De Queiroz and D.P. Morton. Sharing cuts under aggregated forecasts when decom-
posing multi-stage stochastic programs. Operations Research Letters, 41:311–316, 2013.

[26] R. T Rockafellar. Conjugate Duality and Optimization. Society for Industrial and Applied
Mathematics, Philadelphia, 1974.

[27] R.T. Rockafellar. Convex Analysis. Princeton University Press, 1970.

[28] A. Shapiro, D. Dentcheva, and A. Ruszczyński. Lectures on Stochastic Programming: Mod-
eling and Theory. SIAM, Philadelphia, third edition, 2021.

[29] A. Shapiro and L. Ding. Upper bound for optimal value of risk averse multistage problems.
Technical report, Georgia Tech, 2016.

[30] A. Shapiro, W. Tekaya, J.P. da Costa, and M. Pereira Soares. Risk neutral and risk averse
stochastic dual dynamic programming method. European Journal of Operational Research,
224:375–391, 2013.

Acknowledgment Research of A. Shapiro was partially supported by Air Force Office of
Scientific Research (AFOSR) under Grant FA9550-22-1-0244.

7 Appendix

7.1 Figure

7.2 Controls

Consider the setting where the control set depends on the state variables. That is, consider
the extension of problem (2.1) - (2.2), where the feasibility constraints ut ∈ Ut are replaced
by ut ∈ Ut(xt) with Ut : Rnt ⇒ Rmt being a (measurable) point to set mapping, t = 1, ..., T .
By changing the cost functions to c̄t(xt, ut, ξt) := ct(xt, ut, ξt) + IUt(xt)(ut), where IUt(xt) is the
indicator function of set Ut(xt), we can write the corresponding problem in the following form

min
π

Eπ
[

T∑
t=1

c̄t(xt, ut, ξt) + cT+1(xT+1)

]
, (7.1)

s.t. ut = πt(ξ[t−1]), ut ∈ Rmt and xt+1 = Ft(xt, ut, ξt), t = 1, ..., T. (7.2)

In order to maintain convexity of the value functions, we need to verify convexity in (xt, ut)
of the cost functions c̄t(xt, ut, ξt), i.e., to verify convexity of the indicator functions ψt(xt, ut) :=
IUt(xt)(ut). Note that ψt(xt, ut) = 0 if ut ∈ Ut(xt), and ψt(xt, ut) = +∞ otherwise, i.e., ψt(·, ·) is
the indicator function of the set Gr(Ut) := {(xt, ut) : ut ∈ Ut(xt)} (this set is the graph of the
multifunction Ut). Therefore ψt(xt, ut) is convex iff the set Gr(Ut) is a convex subset of Rnt×Rmt .
In particular, suppose that

Ut(xt) := {ut : gtk(xt, ut) ≤ 0, k = 1, ..., K} (7.3)

17



Figure 1: Evolution of lower and upper bounds for convex combination of expectation and AV@R
problem when λ = 0.5.

for given functions gtk : Rnt × Rmt → R. Then the set Gr(Ut) is convex if the functions gtk(·, ·)
are convex.

In the risk neutral case the corresponding dynamic programming equations for the lower
bounding approximations of the values functions, become

V t(xt) = inf
ut∈Ut(xt)

N∑
i=1

pti
[
cti(xt, ut) + V t+1

(
Atixt +Btiut + bti

)]
. (7.4)

Suppose that the set Ut(xt) is of the form (7.3) with functions gtk(xt, ut) being convex. We need
a procedure to compute a subgradient of the right hand side of (7.4). Let

V t+1(xt+1) = max
j=1,...,M

{`t+1,j(xt+1)}

be the current representation of V t+1 by its cutting planes `t+1,j(xt+1) = a>t+1,jxt+1 + ht+1,j. We
can write the minimization problem (7.4) as the following program

min
u,z

∑N
i=1 pti

[
c>ti(xt, ut) + zi

]
s.t. `t+1,j(Atixt +Btiut + bti) ≤ zi, i = 1, ..., N, j = 1, ...,M,

gtk(xt, ut) ≤ 0, k = 1, ..., K.

(7.5)

18



Suppose further that the cost functions cti(xt, ut) and the constraint functions gtk(xt, ut) are
linear. Then the above problem (7.5) is linear. The required subgradient can be computed by
solving the dual of the linear program (7.5).

In the risk averse case it is possible to proceed in a similar way. Suppose for example
Rt = AV@Rα risk measure. Then we can write the corresponding dynamic equations in the
form

V t(xt) = inf
ut∈Ut(xt), θ∈R

{
θ + α−1

N∑
i=1

pti
[
cti(xt, ut) + V t+1

(
Atixt +Btiut + bti

)
− θ
]

+

}
. (7.6)

In the above formulation controls and parameter θ of the AV@Rα risk measure are computed
simultaneously. The minimization problem (7.6) can be written as the following program

min
u,θ,z

θ + α−1

N∑
i=1

ptizi

s.t. cti(xt, ut) + `t+1,j(Atixt +Btiut + bti)− θ ≤ zi, i = 1, ..., N, j = 1, ...,M,

0 ≤ zi, i = 1, ..., N,

gtk(xt, ut) ≤ 0, k = 1, ..., K.

If the cost functions cti(xt, ut) and the constraint functions gtk(xt, ut) are linear, this is a linear
program. In general it is possible to write problem (7.6) as a linear program if the risk measure
and the cost functions are polyhedral and the constraint functions are linear.

7.3 Optimal Control and Stochastic Programming modeling

Mainly for historical reasons, the SDDP algorithm was formulated first in the framework of
the SP modeling. Quite often the same optimization problem can be alternatively formulated
either in the SOC or SP framework. In both cases the decision should be based on information
available at time of the decision, this is the so-called nonaticipativity principle. There are various
ways how the information available at time t can be represented. Here we assume that it is
defined by history of the random (data) process ξt. We label the available history at time t as
ξ[t−1] = (ξ0, ξ1, ..., ξt−1), with ξ0 being given (deterministic). Of course, shifting the time label
we can write this as ξ[t] = (ξ1, ..., ξt) with now ξ1 being deterministic representing the initial
conditions, which is more common in the SP framework. What is important is that in both
cases our decisions are functions of the observed realizations of the data process at time of the
decision. It also could be noted that we need to consider only policies which are functions of the
data process alone because of the basic assumption that the distribution of the random process
ξt does not depend on our decisions.

One important difference between the SOC and SP modeling is that in the SOC approach
there is a clear separation between the states and controls. Because of the stagewise independence
assumption, the value functions Vt(xt) are functions of the state variables only. The controls ut
and the corresponding values θt of the parameter vector are computed (estimated) simultaneously
based on equation (4.22). That is, the estimated values of θt are functions of state xt and optimal
controls ūt, based on a current approximation of the value function (see eq. (4.24)). This

19



makes the computed estimates of θt to be consistent for the generated discretization (sample)
of the marginal distribution of ξt. This is in contrast to the SP approach where the bias of the
corresponding estimates of θt explodes exponentially with increase of the number of stages (cf.,
[29]).

7.4 Q-factor approach

The following is a counterpart of the Q-factor approach popular in the SOC applications. Con-
sider the dynamic equations

Vt(xt) = inf
ut∈Ut, θt∈Θ

EPt

[
Ψ
(
ct(xt, ut, ξt) + Vt+1(Atxt +Btut + bt), θt

)]
, (7.7)

and define
Qt(xt, ut, θt) := EPt

[
Ψ
(
ct(xt, ut, ξt) + Vt+1(Atxt +Btut + bt), θt

)]
. (7.8)

We have that
Vt(xt) = inf

ut∈Ut, θt∈Θ
Qt(xt, ut, θt),

and hence the dynamic equations (7.7) can be written in terms of Qt(xt, ut, θt) as

Qt(xt, ut, θt) = EPt

[
Ψ
(
ct(xt, ut, ξt)+ inf

ut+1∈Ut+1, θt+1∈Θ
Qt+1

(
Atxt+Btut+bt, ut+1, θt+1

)
, θt

)]
. (7.9)

The cutting planes, SDDP type, algorithm can be applied directly to functions Qt(xt, ut, θt)
rather than to the value functions Vt(xt). In the backward step of the algorithm, subgradients
with respect to xt, ut and θt, of the current approximations of the functions Qt(xt, ut, θt), should
be computed. An advantage of that approach is that the calculation of these subgradients does
not require solving nonlinear optimization programs even if the function Ψ is not polyhedral1. On
the other hand, this Q-factor approach involves increasing the state space from xt to (xt, ut, θt),
which could make the convergence of the algorithm considerably slower.

1The function Ψ is not polyhedral, for example, in the φ-divergence case. In that case the SDDP algorithm,
applied to the value functions Vt(xt), requires solving nonlinear programs.

20


	1 Introduction
	2 Risk-neutral Stochastic Optimal Control
	3 Preliminaries on risk measures
	4 Risk-averse Stochastic Optimal Control
	4.1 Risk-averse Setting
	4.2 Statistical upper bounds on the value of the policy

	5 Numerical Experiments
	6 Concluding remarks
	7 Appendix
	7.1 Figure
	7.2 Controls
	7.3 Optimal Control and Stochastic Programming modeling 
	7.4 Q-factor approach 


