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Abstract

We study the budgeted laminar matroid independent set problem. The input is a ground set,
where each element has a cost and a non-negative profit, along with a laminar matroid over the
elements and a budget. The goal is to select a maximum profit independent set of the matroid
whose total cost is bounded by the budget. Several well known special cases, where we have, e.g.,
no matroid constraint (the classic knapsack problem) or a uniform matroid constraint (knapsack
with a cardinality constraint), admit a fully polynomial-time approximation scheme (FPTAS). In
contrast, the budgeted matroid independent set (BMI) problem with a general matroid has an
efficient polynomial-time approximation scheme (EPTAS) but does not admit an FPTAS. This
implies an EPTAS for our problem, which is the best known result prior to this work.

We present an FPTAS for budgeted laminar matroid independent set, improving the previous
EPTAS for this matroid family and generalizing the FPTAS known for knapsack with a cardinality
constraint and multiple-choice knapsack. Our scheme is based on a simple dynamic program which
utilizes the tree-like structure of laminar matroids.

1 Introduction

Knapsack is one of the most fundamental problems in combinatorial optimization, which has been
continuously studied in the past half century. [14, 24, 20, 3]. Considerable attention was given to a
generalization of knapsack including an additional matroid constraint [22, 4, 25, 23, 28, 1, 21, 10]. In
this work we consider the knapsack problem with a laminar matroid constraint.

A matroid is a set system (S, I), where S is a finite set and I ⊆ 2S such that (i) ∅ ∈ I, (ii) for all
A ∈ I and B ⊆ A it holds that B ∈ I, and (iii) for all A,B ∈ I where |A| > |B| there is e ∈ A \ B
such that B ∪ {e} ∈ I. We focus on the family of laminar matroids, defined below.

Definition 1.1. Given a finite set S, F ⊆ 2S \ {∅} is a laminar family on S if for any X,Y ∈ F one
of the following holds: X ∩ Y = ∅, or X ∩ Y = X, or X ∩ Y = Y .

Definition 1.2. Let F be a laminar family on a finite set S; also, let k : F → N>0 and IF ,k = {A ⊆
S : |A ∩X| ≤ k(X) ∀X ∈ F}. Then (S, IF ,k) is a laminar matroid.

The independent sets IF ,k in the laminar matroid (S, IF ,k) are all subsets of elements A such that for
any set X ∈ F in the laminar family, |A ∩X| does not violate the cardinality constraint k(X). It is
well known (see, e.g., [19, 13]) that laminar matroids are indeed matroids.

In this paper, we study the budgeted laminar matroid independent set (BLM) problem. The input
is a tuple I = (S,F , k, c, p, B), where S is a finite set, F is a laminar family on S such that S ∈ F ,
k : F → N>0 gives cardinality bounds to F , c : S → N is a cost function, p : S → N is a profit function,
and B ∈ N is a budget. A solution of I is an independent set T ∈ IF ,k of the laminar matroid (S, IF ,k)
such that c(T ) =

∑
e∈T c(e) ≤ B. The goal is to find a solution T of I such that p(T ) =

∑
e∈T p(e) is

maximized.
There are a few notable special cases of BLM; we use our notation to formally define them.

Consider an instance I of BLM. If F \ {S} is a partition of S and k(S) ≥ |S| then (S, IF ,k) is a
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Figure 1: Complexity of knapsack generalizations with various families of matroid constraints.

partition matroid, and we say that I is a knapsack with partition matroid instance.1 Moreover, the
special case of knapsack with partition matroid where k(X) = 1 ∀X ∈ (F \{S}) is the multiple-choice
knapsack [28]. Alternatively, if F = {S} then (S, IF ,k) is a uniform matroid, and I is a cardinality
constrained knapsack instance [22].

A natural application of BLM arises in the context of cloud computing, where limited network
bandwidth limit plays a vital role (see, e.g., [29, 27, 26]). Consider a network G = (V,E), that is a
directed tree with a root M associated with a cloud computer. Each leaf in G represents a client.
Each client sends a job to M , which can process the job and broadcast the results through the network
back to the client. The jobs have processing times and values. Also, M has a bound on the total
processing time of admitted jobs. Moreover, each node v ∈ V in the network has a limited bandwidth,
k(v), so that v can broadcast the results of at most k(v) jobs to its descendant clients. The goal is to
maximize the total value of complete jobs subject to the processing time and bandwidth bounds.

We can cast this problem as a BLM instance by taking the set of elements S to be the se of jobs,
where the profit and cost of each element are the value and processing time of the corresponding job.
Now, we define a laminar family F on the set of elements, where for each vertex v ∈ V there is a
set Xv ∈ F containing all jobss that belong to clients (i.e., leaves) in the subtree rooted by v, where
the cardinality bound of Xv is the bandwidth limit k(Xv) = k(v). For other applications of laminar
matroids, see e.g., [13, 15, 19].

We focus in this paper on approximation schemes for BLM. Let OPT(I) be the value of an optimal
solution for an instance I of a maximization problem Π. For α ∈ (0, 1], we say that A is an α-
approximation algorithm for Π if, for any instance I of Π, A outputs a solution of value at least
α ·OPT(I). A polynomial-time approximation scheme (PTAS) for Π is a family of algorithms (Aε)ε>0

such that, for any ε > 0, Aε is a polynomial-time (1− ε)-approximation algorithm for Π. An efficient
PTAS (EPTAS) is a PTAS (Aε)ε>0 with running time of the form f

(
1
ε

)
·|I|O(1), where f is an arbitrary

computable function. The running time of an EPTAS might be impractically high; this motivates the
study of the following important subclass of EPTAS: (Aε)ε>0 is a fully PTAS (FPTAS) if the running

time of Aε is of the form
(
|I|
ε

)O(1)
.

We note that budgeted independent set with a general matroid constraint admits an EPTAS;
however, the existence of an FPTAS was ruled out [11]. In contrast, well known special cases of
BLM such as cardinality constrained knapsack [22] and multiple-choice knapsack [28] admit FPTAS.
The question whether budgeted independent set admits an FPTAS on other classes of matroids (e.g.,

1Adding the constraint k(S) ≥ |S| is purely technical to instantiate a partition matroid using BLM notation.
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laminar, graphic, or linear matroid) remained open.
In this paper we resolve this open question for laminar matroids. Our main result is an FPTAS

for BLM, improving upon the existing EPTAS for this family, and generalizing the FPTAS for the
special cases of cardinality constrained knapsack and multiple-choice knapsack. Specifically,

Theorem 1.3. There is an algorithm FPTAS that given a BLM instance I and ε > 0 finds in time
O
(
|I|5 · ε−2

)
a solution T for I of profit p(T ) ≥ (1− ε) ·OPT(I).

We give in Figure 1 a complexity overview of the related problems. To derive an FPTAS, we
first find a pseudo-polynomial time algorithm for BLM. Our technique is based on dynamic pro-
gramming (DP), which exploits the tree-like structure of laminar matroids. More concretely, let
I = (S,F , k, c, p, B) be a BLM instance and X ∈ F a maximal set in the laminar family, not con-
tained in any other set except for S. We first construct (recursively) DP tables for elements contained
in X and separately for elements contained in S \X. Then, we combine the two DP tables into a DP
table for the original instance I. We rely on the key property that combining any two independent
sets T1 ⊆ X and independent set T2 ⊆ S \X yields an independent set T1 ∪ T2 as long as the overall
cardinality (i.e., |T1 ∪ T2|) satisfies the cardinality bound of S. Finally, our FPTAS is obtained by
standard rounding of the profits. We remark that we did not attempt to optimize the running time;
instead, our goal is to obtain a simple FPTAS for the problem.

1.1 Related Work

BLM is an immediate generalization of the classic 0/1-knapsack problem. While the knapsack problem
is known to be NP-hard, it admits an FPTAS. Other notable special cases of BLM that admit an
FPTAS include cardinality constrained knapsack [22, 4, 25, 23] and multiple choice knapsack [28, 1, 21].

Chakaravarthy et al. [5] considered the knapsack cover with a matroid constraint (KCM) problem,
which is dual to budgeted matroid independent set. In this variant, we are given a matroidM = (S, I),
a cost function c : S → R≥0, a size function s : S → R≥0, and a demand D ∈ R≥0. The goal is to
find A ∈ I such that s(A) =

∑
e∈A s(e) ≥ D such that c(A) =

∑
e∈A c(e) is minimized. They obtain

a PTAS for a general matroid M, and an FPTAS when M is a partition matroid. The constrained
minimum spanning tree problem is a special case of KCM where (S, I) is a graphic matroid.2 The
constrained minimum spanning tree problem admits an EPTAS [17] and an FPTAS which violates
the budget constraint by a factor of (1 + ε) [18].

As BLM is a special case of the budgeted matroid independent set problem, a PTAS for the
problem follows from the works of [16, 6, 2]. An EPTAS for BMI was recently presented in [10] and
generalized for budgeted matroid intersection in [9]. As shown in [11], this is the best possible.

1.2 Organization of the Paper

Section 2 gives preliminary results and notations. In Section 3 we give a pseudo-polynomial time
algorithm for BLM. Section 4 presents our FPTAS. We conclude in Section 5 with a discussion.

2 Preliminaries

Given a set S, a function f : S → N, and R ⊆ S, let f(R) =
∑

e∈R f(e). Also, we sometimes use f
to denote a restriction of f to a subset of the domain S′ ⊆ S. Let I = (S,F , k, c, p, B) be a BLM
instance; we use I(I) = IF ,k to denote the independent sets of the instance. For some G ⊆ S define
F⊆G = {Y ∈ F | Y ⊆ G} as all sets in F that are contained in G. We define below operations on
I, generating modified BLM instances. We say that a set X ∈ F \ {S} is a maximal set if it is not
contained in any other set in F \ {S}. For a maximal set X ∈ F \ {S}, define the BLM instances
I ∩ X = (X,F⊆X , k, c, p, B) and I \ X =

(
S \ X,F⊆(S\X) ∪ {S \ X}, k̄, c, p, B

)
such that for all

Y ∈ F⊆(S\X) ∪ {S \X}

k̄(Y ) =

{
k(Y ) Y ∈ F
k(S), otherwise.

2(S, I) is a graphic matroid if there is a graph G = (V, S) where I contains all the subsets T ⊆ S satisfying G′ = (V, T )
is an acyclic graph.
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Note that the only set Y that potentially does not belong to F is Y = S \X. Observe that I ∩X and
I \X can be viewed as restrictions of I to X and S \X, respectively. The next observations follow
from the above definitions and the properties of laminar families.

Observation 2.1. For a BLM instance I = (S,F , k, c, p, B) and a maximal set X ∈ (F \ {S}) it
holds that I ∩X and I \X are BLM instances.

We use ] to denote disjoint union.

Observation 2.2. For a BLM instance I = (S,F , k, c, p, B) and a maximal set X ∈ (F \ {S}) the
following holds.

1. For any Q1 ∈ I(I∩X) and Q2 ∈ I(I\X) such that |Q1]Q2| ≤ k(S) it holds that Q1]Q2 ∈ I(I).

2. For any Q ∈ I(I) it holds that Q ∩X ∈ I(I ∩X) and Q \X ∈ I(I \X).

3 A Pseudo-polynomial Time Algorithm

In this section we give a pseudo-polynomial time algorithm for BLM. Let I = (S,F , k, c, p, B) be a
BLM instance, and define PI = {0, 1, . . . , |S| ·maxe∈S p(e)}. Observe that for any solution T ⊆ S it
holds that p(T ) ∈ PI . Also, there may be t ∈ PI such that t 6= p(T ) for any T ⊆ S. Our algorithm
computes the following table.

Definition 3.1. For any BLM instance I = (S,F , k, c, p, B), define the DP table of I as the function
DPI : {0, ....|S|} × PI → N ∪∞ such that for all q ∈ {0, 1, . . . , |S|} and t ∈ PI ,

DPI(q, t) = min
Q∈IF,k s.t. |Q|=q, p(Q)=t

c(Q).

For any q ∈ {0, 1, . . . , |S|} and t ∈ PI , the entry DPI(q, t) gives the minimum cost of an independent
set in IF ,k of exactly q elements and profit equal to t; if there is no such independent set then
DPI(q, t) =∞. Also, DPI(q, t) =∞ if q or t do not belong to the domain of DPI (e.g., q = |S|+ 1).

We formulate a dynamic program which computes the table DPI . Informally, the table DPI is
constructed by taking a maximal set X ∈ F \ {S} in the laminar family (recall that a maximal set is
not a subset of any other set in F \ {S}). Our algorithm computes the sub-tables DPI∩X and DPI\X
recursively. An important observation is that the instances I∩X and I \X are disjoint; thus, the table
DPI can be computed from DPI∩X and DPI\X using a convolution. Specifically, to compute an entry
DPI(q, t) for q ∈ {0, 1, . . . , |S|} and t ∈ PI , we find the minimum solution induced by partitioning the
values q and t between the complementary sub-instances I ∩X and I \X. This is formalized by the
next lemma.

Lemma 3.2. Let I = (S,F , k, c, p, B) be a BLM instance, and X ∈ F \ {S} a maximal set. Then,
for all q ∈ {0, 1, . . . , |S|} and t ∈ PI ,

DPI(q, t) =

min q1,q2,t1,t2∈N s.t.
q1+q2=q, t1+t2=t

{
DPI∩X(q1, t1) + DPI\X(q2, t2)

}
if q ≤ k(S)

∞ otherwise

Proof. Let q ∈ {0, 1, . . . , |S|} and t ∈ PI . For simplicity, let

M = min
q1,q2,t1,t2∈N s.t.
q1+q2=q, t1+t2=t

{
DPI∩X(q1, t1) + DPI\X(q2, t2)

}
.

We first consider the case where DPI(q, t) and M differ from∞. We use the following auxiliary claims.

Claim 3.3. If DPI(q, t) 6=∞ then M ≤ DPI(q, t).
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Proof. As DPI(q, t) 6=∞ there is Q∗ ∈ IF ,k such that

Q∗ = arg min
Q∈IF,k s.t. |Q|=q, p(Q)=t

c(Q). (1)

Let q∗1 = |Q∗∩X|, q∗2 = |Q∗\X|, t∗1 = p(Q∗∩X), and t∗2 = p(Q∗\X). By (1), and since S = X](S\X),
it holds that

|Q∗| = |Q∗ ∩X|+ |Q∗ \X| = q∗1 + q∗2 = q

and
p(Q∗) = p(Q∗ ∩X) + p(Q∗ \X) = t∗1 + t∗2 = t.

Moreover, by Observation 2.2, since Q∗ ∈ IF ,k, it holds that Q∗∩X ∈ I(I ∩X) and Q∗ \X ∈ I(I \X)
. Thus,

DPI(q, t) = c(Q∗) = c(Q∗ ∩X) + c(Q∗ \X) ≥ DPI∩X(q∗1, t
∗
1) + DPI\X(q∗2, t

∗
2) ≥M.

The first inequality holds since DPI∩X(q∗1, t
∗
1) is the minimum cost of Q ∈ I(I ∩ X) such that

|Q| = q∗1 and p(Q) = t∗1; since Q∗ ∩ X satisfies these conditions (by Observation 2.2), we conclude
that c(Q∗∩X) ≥ DPI∩X(q∗1, t

∗
1). Similar arguments show that c(Q∗ \X) ≥ DPI\X(q∗2, t

∗
2). The second

inequality holds since M is the minimum value of DPI∩X(q1, t1)+DPI\X(q2, t2) over all q1, q2, t1, t2 ∈ N
such that q1+q2 = q, t1+t2 = t. As q∗1, q

∗
2, t
∗
1, t
∗
2 ∈ N and q∗1+q∗2 = q, t∗1+t∗2 = t, the inequality follows. �

Claim 3.4. If M 6=∞ and q ≤ k(S) then DPI(q, t) ≤M .

Proof. Let q′1, q
′
2, t
′
1, t
′
2 ∈ N, q′1 + q′2 = q, t′1 + t′2 = t such that

DPI∩X(q′1, t
′
1) + DPI\X(q′2, t

′
2) = M.

Since M 6=∞, there exist

Q′1 = arg min
Q∈I(I∩X) s.t. |Q|=q′1, p(Q)=t′1

c(Q), Q′2 = arg min
Q∈I(I\X) s.t. |Q|=q′2, p(Q)=t′2

c(Q). (2)

By (2),
M = DPI∩X(q′1, t

′
1) + DPI\X(q′2, t

′
2)

= c(Q′1) + c(Q′2)

= c(Q′1 ]Q′2)

≥ min
Q∈IF,k s.t. |Q|=q, p(Q)=t

c(Q)

= DPI(q, t).

The above inequality follows from the next arguments. As q′1 + q′2 = q and q ≤ k(S), by Observa-
tion 2.2 Q′1 ]Q′2 ∈ IF ,k; also, |Q′1 ]Q′2| = q, and p(Q′1 ]Q′2) = t′1 + t′2 = t. The inequality follows, as
the minimum in the right-hand side of the inequality considers Q = Q′1 ]Q′2 in particular. �

To complete the proof of the lemma, we consider four complementary cases.

• If q > k(S) then DPI(q, t) =∞ by Definition 3.1.

• If M =∞ then DPI(q, t) =∞ by Claim 3.3.

• If q ≤ k(S) and DPI(q, t) =∞ then by Claim 3.4 M =∞ .

• If q ≤ k(S) and DPI(q, t) 6=∞ then, by Claims 3.3 and 3.4, DPI(q, t) = M .

�
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Note that computing the table DPI by Lemma 3.2 is possible only if there is a maximal set
X ∈ F \ {S}; this requires more than one set in the laminar family. If |F| = 1, we compute
the table DPI using two alternative ways, depending on whether |S| = 1 or |S| > 1. The next
observation considers the case where the instance consists of a single element; it follows immediately
from Definition 3.1.

Observation 3.5. For a BLM instance I = (S,F , k, c, p, B) such that |S| = 1 it holds that DPI(1, p(S)) =
c(S), DPI(0, 0) = 0, and for any other (q, t) ∈ {0, . . . , |S|} × PI it holds that DPI(q, t) =∞.

We now consider the case where |S| > 1 and F = {S}. Here, we define a new instance which adds a
(redundant) partition of S into two subsets. This partition allows us to use the recursive computation
as given in Lemma 3.2. For a BLM instance I = (S,F , k, c, p, B) such that F = {S} and |S| > 1, we
say that the BLM instance Ĩ = (S, F̃ , k̃, c, p, B) is a partitioned-instance of I if the following holds.

• F̃ = {S1, S2, S} where S1, S2 is a partition of S.

• k̃ : F̃ → N and k̃(S1) = k̃(S2) = k̃(S) = k(S).

Note that S1, S2 6= ∅ since |S| > 1. The next lemma states that the independent sets of an instance
I and of a partitioned-instance of I are identical.

Lemma 3.6. For any BLM instance I = (S,F , k, c, p, B) such that F = {S} and |S| > 1, and a
partitioned-instance Ĩ = (S, F̃ , k̃, c, p, B) of I it holds that IF ,k = IF̃ ,k̃.

Proof. Let F̃ = {S1, S2, S} and Q ∈ IF ,k. Then |Q| ≤ k(S) = k̃(S), and

|Q ∩ S1| ≤ |Q| ≤ k(S) = k̃(S1).

Similarly, |Q ∩ S2| ≤ k̃(S2). Thus, Q ∈ IF̃ ,k̃. For the other direction, let Q̃ ∈ IF̃ ,k̃. Then, |Q̃| ≤
k̃(S) = k(S) and it follows that Q̃ ∈ IF ,k. We conclude that IF ,k = IF̃ ,k̃. �

The next result follows immediately from Lemma 3.6 and Definition 3.1.

Corollary 3.7. For any BLM instance I such that F = {S} and |S| > 1, and a partitioned-instance
Ĩ of I, it holds that DPĨ = DPI .

Figure 2: An illustration of the recursive calls of Algorithm 1 for a BLM instance I with five elements
S = {1, 2, 3, 4, 5}, represented by the circles. The underbraces indicate the sets in the laminar family
F of the instance in each node of the tree. For example, in the root node, F = {S, {2, 3}, {4, 5}}.
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Using the above, we derive a pseudo-polynomial time algorithm which computes DPI . If there
is one element, the algorithm computes DPI using Observation 3.5; otherwise, if there is one set
F = {S} in the laminar family, the algorithm computes DPI by a recursive call to the algorithm with
a partitioned-instance. The remaining case is that there exists a maximal set X ∈ F\{S} for which we
can apply the recursive computation of the table via Lemma 3.2. We give an illustration of recursive
calls the algorithm initiates in Figure 2. The pseudocode of the algorithm is given in Algorithm 1.
For a BLM instance I, we use d(I) to denote the recursion depth in the execution of ComputeDP (I).

Algorithm 1: ComputeDP(I)

input : A BLM instance I = (S,F , k, c, p, B).
output: The table DPI as defined in Definition 3.1.

1 Initialize DPI(q, t) =∞ for all q ∈ {0, 1, . . . , |S|} and t ∈ PI .
2 if |S| = 1 then
3 Set DPI(1, p(S))← c(S) and DPI(0, 0)← 0.
4 Return the table DPI .

5 end
6 if |F| = 1 then

7 Return ComputeDP
(
Ĩ
)

where Ĩ is a partitioned-instance of I.

8 end
9 Find a maximal set X ∈ F \ {S} .

10 Compute DPI∩X ← ComputeDP(I ∩X) and DPI\X ← ComputeDP(I \X).

11 For q ∈ {0, 1, . . . , |S|} and t ∈ PI set

DPI(q, t) =

minq1,q2,t1,t2∈N s.t.
q1+q2=q,t1+t2=t

{
DPI∩X(q1, t1) + DPI\X(q2, t2)

}
if q ≤ k(S)

∞ otherwise

12 Return the table DPI .

Lemma 3.8. For any BLM instance I = (S,F , k, c, p, B) Algorithm 1 returns the table DPI .

Proof. We show that for every BLM instance I = (S,F , k, c, p, B) it holds that ComputeDP (I) = DPI .
The proof is by induction on d(I). For the base case, let I be a BLM instance such that d(I) = 1.
Then, it holds that |S| = 1 and the algorithm returns DPI by Observation 3.5 and Steps 1, 3 of
Algorithm 1. For some n ∈ N>0, assume that for every BLM instance I ′ for which d(I ′) ≤ n, it holds
that ComputeDP (I ′) = DPI′ . For the induction step, let I = (S,F , k, c, p, B) be a BLM instance such
that d(I) = n+ 1. We consider two cases.

1. |F| = 1. Then Algorithm 1 returns ComputeDP
(
Ĩ
)

by Step 7, where Ĩ is a partitioned-instance

of I. By the induction hypothesis, it holds that ComputeDP
(
Ĩ
)

= DPĨ . Thus, by Corollary 3.7,

we have ComputeDP (I) = ComputeDP
(
Ĩ
)

= DPI .

2. |F| > 1. In Step 9 in the (non-recursive) computation of ComputeDP (I), the algorithm finds a
maximal setX ∈ F\{S}. By the assumption of the induction it follows that ComputeDP(I∩X) =
DPI∩X and ComputeDP(I \ X) = DPI\X . Therefore, by Step 11 and Lemma 3.2 it holds that
ComputeDP (I) = DPI .

�

For the running time of Algorithm 1, assume that the laminar family is represented by a linked
list of sets, and that the elements in each set are represented by a bit map.
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Lemma 3.9. For any BLM instance I = (S,F , k, c, p, B), the running time of Algorithm 1 on I is
O(|S|3 · |PI |2).

Proof. We use the next claim.

Claim 3.10. For any BLM instance I = (S,F , k, c, p, B), Algorithm 1 makes at most 3 · |S| recursive
calls during the execution of ComputeDP(I).

Proof. Consider the tree of recursive calls generated throughout the execution of ComputeDP(I). Each
element in S has a unique leaf in the tree; therefore, the number of leaves is bounded by |S|. Moreover,
since there are |S| leaves, the number of internal nodes in the tree that have two children is bounded
by |S| − 1; thus, the number of recursive calls initiated in Step 10 is at most |S|. Finally, after each
recursive call from Step 7 the algorithm applies a recursive call from Step 10. Therefore, the number
of recursive calls from Step 7 is at most |S|. Overall, Algorithm 1 makes at most 3·|S| recursive calls. �

To complete the proof, we show that the running time of the algorithm, excluding the recursive
calls, is O(|S|2 · |PI |2). As the recursive calls in the algorithm use instances in which the number of
elements is bounded by |S|, and the set of profits is of size at most PI , the statement of the lemma
follows from Claim 3.10. Computing Step 1 takes O(|S| · |PI |). Moreover, Step 7 can be computed in
time O(|S|) using an arbitrary partition of the elements. Step 9 can be computed in time O(|S|) by
iterating over all sets in the laminar family F . Also, computing each entry in the table DPI in Step 11
takes O(|S| · |PI |); thus, computing the entire table takes O(|S|2 · |PI |2). Overall, the running time is
O(|S|3 · |PI |2). �

4 An FPTAS for BLM

In this section we use the dynamic program in Section 3 to derive an FPTAS for BLM, leading to
the proof of Theorem 1.3. Let I = (S,F , k, c, p, B) be a BLM instance and let ε > 0 be an error
parameter. Note that the computation time of DPI depends on |PI |, may not be polynomial in the

input size. To obtain a polynomial-time algorithm, we round down the profit of each item e to
⌊
p(e)
α

⌋
,

where α = ε·maxe∈S p(e)
|S| . This generates a reduced instance Ī, for which the table DPI can be computed

efficiently. Then, by iterating over all possible values in DPI , we compute the value of the optimum
for Ī; this gives an almost optimal solution for I, where the solution itself is computed using standard
backtracking. The pseudocode of the algorithm is given in Algorithm 2.

Algorithm 2: FPTAS(I, ε)

input : A BLM instance I = (S,F , k, c, p, B) and an error parameter ε > 0.
output: A solution T of I with profit p(T ) ≥ (1− ε) ·OPT(I).

1 Let α← ε·maxe∈S p(e)
|S| and define p̄(e)←

⌊
p(e)
α

⌋
∀e ∈ S.

2 Compute DPĪ ← ComputeDP(Ī), where Ī = (S,F , k, c, p̄, B).

3 Let λ←
{

(q, t) ∈ {0, . . . , |S|} × PĪ

∣∣∣∣ DPĪ(q, t) ≤ B}.

4 Use backtracking to find a solution T for I of value max(q,t)∈λ t.

Proof of Theorem 1.3: We show that Algorithm 2 is an FPTAS for BLM. Let Ī = (S,F , k, c, p̄, B)
be the instance with the rounded profits as given in Algorithm 2. By Lemma 3.8, ComputeDP(Ī)
returns the table DPĪ as given in Definition 3.1. Thus, for all (q, t) ∈ λ there is a solution for Ī of
profit t if and only if DPĪ(q, t) ≤ B. Let T be an optimal solution for Ī. By the above, we have

p̄(T ) = max
(q,t)∈λ

t = OPT(Ī) (3)

Let T ∗ be an optimal solution of I. Then,

p̄(T ∗) =
∑
e∈T ∗

⌊
p(e)

α

⌋
≥
∑
e∈T ∗

(
p(e)

α
− 1

)
≥
∑
e∈T ∗

(
p(e)

α

)
− |S| = OPT(I)

α
− |S|. (4)
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Hence,

p(T ) ≥ α · p̄(T ) ≥ α · p̄(T ∗) ≥ α ·
(

OPT(I)

α
− |S|

)
= OPT(I)− ε ·max

e∈S
p(e) ≥ (1− ε) ·OPT(I).

The first inequality holds by Step 1. The second inequality follows from the optimality of p̄(T ) by (3).
The third inequality holds by (4). The last inequality holds since OPT(I) ≥ maxe∈S p(e) (assuming
that c(e) ≤ B ∀e ∈ S).

We now analyze the running time of the scheme. We note that Step 1 takes linear time. The
running time of Step 2 is O(|S|3 · |PĪ |2) by Lemma 3.9. Finally, Steps 3 and 4 can be computed in
time O(|S| · |PĪ |) by the definition of λ. Hence, the overall running time is

O
(
|S|3 · |PĪ |2

)
= O

(
|I5| · ε−2

)
.

The equality follows since |P̄Ī | = O(|S| · ε−1) by Step 1. �

5 Discussion

In this paper we showed that the budgeted laminar matroid independent set (BLM) problem admits an
FPTAS, thus improving upon the existing EPTAS for this matroid family, and generalizing the FPTAS
for the special cases of cardinality constrained knapsack and multiple-choice knapsack. Our FPTAS
is based on a natural dynamic program which utilizes the tree-like structure of laminar matroids. It
seems that with slight modifications our scheme yields an FPTAS for the more general problem of
budgeted k-laminar matroid independent set, where k ∈ N is fixed.3

An intriguing open question is whether BMI admits an FPTAS on other families of matroids, such
as graphic matroids, transversal matroids, or linear matroids.

We note that the running time of our scheme is O(|I|5 · ε−2), whereas the running time of the
state of the art FPTAS for knapsack is O(|I| + ε−2.2) [8], which almost matches the lower bound of
Õ
(
(|I|+ ε−1)2−o(1)

)
for the problem [7]. It would be interesting to design an FPTAS for BLM that

matches the running time of [8], or to obtain a stronger lower bound for this problem.
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