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Abstract

It is a well-known result that bilevel linear optimization is NP-hard. In many publications,

reformulations as mixed-integer linear optimization problems are proposed, which suggests

that the decision version of the problem belongs to NP. However, to the best of our knowledge,

a rigorous proof of membership in NP has never been published, so we close this gap by

reporting a simple but not entirely trivial proof. A related question is whether a large enough

“big M” for the classical KKT-based reformulation can be computed efficiently, which we

answer in the affirmative. In particular, our big M has polynomial encoding length in the

original problem data.

1 Introduction

We consider a general bilevel optimization problem with linear constraints at both the upper and
lower level. Given as input the data c ∈ Qn, d, q ∈ Qm, A ∈ Qk×n, B ∈ Qk×m, a ∈ Qk, T ∈ Qr×n,
W ∈ Qr×m, and h ∈ Qr, such a problem can be written as

min c⊤x+ d⊤y

s.t. Ax+By = a, x ≥ 0
y ∈ argmin {q⊤ȳ | Tx+Wȳ = h, ȳ ≥ 0} .

(BLP)

In this formulation, we implicitly assume the optimistic scenario: whenever the lower level problem

min q⊤y

s.t. T x̄+Wy = h, y ≥ 0 ,
(LL)

for some given upper level choice x̄ ≥ 0, has more than one optimal solution satisfying the coupling
constraints Ax̄ +By = a, we assume that one minimizing d⊤y is chosen, i.e., a best possible one
for the upper level problem. In the pessimistic scenario, it is instead assumed that the chosen y

maximizes d⊤y over all optimal solutions of (LL). For a further discussion of the optimistic
and the pessimistic scenario as well as structural properties of (BLP) and (LL), as a parametric
optimization problem, we refer to [2, Chapters 2 and 3] and the references therein.

In the optimistic formulation (BLP), any x̄ ≥ 0 that renders the lower level problem (LL) infeasible
or unbounded is an infeasible choice for the upper level by definition, and the same is true when
no optimal solution of (LL) satisfies the coupling constraints. In the pessimistic case, it is natural
to assume that x̄ is feasible only if all optimal choices of (LL) satisfy the coupling constraints.
This is in line with the interpretation that the follower, i.e., the optimizer of (LL), is an adversary
to the leader, i.e., the optimizer of (BLP), in the pessimistic case.
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Problem (BLP) is known to be strongly NP-hard [7]. Essentially, one can model implicit binarity
constraints for the upper level variables x by an appropriate lower level construction [1], so that
every single-level binary linear optimization problem can be represented in the form (BLP): for
each binary variable xi, a new variable yi together with constraints yi ≤ xi and yi ≤ 1 − xi and
the objective max yi are introduced on the lower level. This implies yi = min{xi, 1− xi} for every
bilevel-feasible solution. On the upper level, a constraint yi = 0 is added, then min{xi, 1−xi} = 0
and hence xi ∈ {0, 1}. To avoid the coupling constraint, one may also minimize yi in the upper
level and add linear constraints xi ∈ [0, 1]. Vicente et al. [12] show that even checking local
optimality of a given feasible solution to (BLP) is NP-hard.

The complexity of (BLP) is further investigated by Deng [3]. Besides discussing hardness results
and efficiently solvable special cases, he claims that bilevel linear optimization is NP-easy, i.e., can
be Turing-reduced to some NP-complete problem [3, Theorem 6.2]. However, instead of a proof,
only a reference to an unpublished (and untitled) manuscript is given. This result is related to,
but weaker than the assertion that the decision version of (BLP) belongs to NP. To the best of
our knowledge, no rigorous proof of NP-membership has appeared in the literature yet, a gap that
we will fill in Section 2 below.

One of the classical approaches for solving Problem (BLP) in practice is to reformulate it as a mixed
integer linear optimization problem, using the Karush-Kuhn-Tucker (KKT) conditions to model
optimality for the lower level problem [4]. More precisely, in a first step, one can rewrite (BLP)
equivalently as

min c⊤x+ d⊤y

s.t. Ax+By = a, x ≥ 0
Tx+Wy = h, y ≥ 0
W⊤λ ≤ q

y⊤(q −W⊤λ) = 0 .

(BLP-KKT)

The main difficulty here is the non-linear complementarity constraint y⊤(q − W⊤λ) = 0. It is
typically linearized by introducing binary variables zi ∈ {0, 1} and constraints

yi ≤ Mp(1− zi), (q −W⊤λ)i ≤ Mdzi (1)

for sufficiently large Mp,Md ∈ R. This ensures that either yi = 0 or (q −W⊤λ)i = 0 for all i.

In general, choosing Mp and Md correctly is not a trivial task: too small values of Mp and Md may
cut off lower level optimal solutions of (BLP), as (1) implies that yi ≤ Mp and (q −W⊤λ)i ≤ Md

for all i. This problem is highlighted in [10]. In fact, Kleinert et al. [9] recently showed that it is
a co-NP-complete problem to decide whether given values for Mp and Md are bilevel-correct, i.e.,
yield an equivalent reformulation of (BLP). They claim that their results “imply that there is no
hope for an efficient, i.e., polynomial-time, general-purpose method for verifying or computing a
correct big-M in bilevel optimization unless P=NP” [9]. However, it is not true that the second
part of this claim follows from the first one: it may still be possible to compute some bilevel-
correct Mp and Md in polynomial time, even if verifying bilevel-correctness for given Mp and Md

is not possible. Stated differently, the result of Kleinert et al. rules out that the smallest possible
bilevel-correct Mp and Md can be found efficiently, if P 6= NP, but it does not rule out that there
exist bilevel-correct Mp and Md that can be computed efficiently, and thus in particular have
polynomial encoding length – even though they may be much larger than necessary.

In fact, devising an approach for constructing bilevel-correct Mp and Md in polynomial time is
closely related to showing that (the decision version of) Problem (BLP) is contained in NP, i.e.,
that there exist certificates of polynomial size. It is quite natural to define the certificate as
a feasible solution to either (BLP) or the KKT reformulation (BLP-KKT). However, it is not
obvious that there exists such a solution of polynomial encoding length. In the following, we first
give a short proof that the decision version of Problem (BLP) indeed belongs to NP (Section 2)
and then show how to compute bilevel-correct Mp and Md in polynomial time (Section 3).
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2 Membership in NP

We first show that the decision version of Problem (BLP) belongs to NP. For a precise definition of
the class NP and the corresponding certificates, as well as encoding lengths and other complexity-
theoretic concepts, we refer to [6]. As is common for optimization problems, we formally define
the decision version of Problem (BLP) as follows:

Decision version of (BLP), optimistic scenario

Given: Problem data c ∈ Qn, d, q ∈ Qm, A ∈ Qk×n, B ∈ Qk×m, a ∈ Qk,
T ∈ Qr×n, W ∈ Qr×m, h ∈ Qr, and a number α ∈ Q.

Task: Decide whether there exists x̄ ≥ 0 such that (LL) has an optimal solution and such that
at least one optimal solution ȳ of (LL) satisfies Ax̄+Bȳ = a and c⊤x̄+ d⊤ȳ ≤ α.

Note that this decision version of (BLP) is equivalent to the problem of determining whether (BLP)
admits any feasible solution, since the constraint c⊤x + d⊤y ≤ α can be seen as an additional
coupling constraint.

The idea of the following proof is to reformulate the feasibility of a given solution to Problem (BLP)
that also satisfies c⊤x + d⊤y ≤ α by a system of linear constraints. However, in order to enforce
the optimality of the lower level solution, we need to choose an optimal basis for (LL), which will
then form the desired certificate. In other words, the NP-hardness of (BLP) is only due to the
required choice of the optimal lower level basis. An important technical ingredient in the following
proof is that the reduced costs of a given basis for (LL) do not depend on x̄.

Theorem 1. The decision version of Problem (BLP) in the optimistic scenario belongs to NP.

Proof. Assume that a yes-instance is given, i.e., that there exist feasible x′ ∈ Rn and y′ ∈ Rm

for (BLP) with c⊤x′ + d⊤y′ ≤ α. Let B be any optimal basis for the lower level problem for x′.
Then B has non-negative reduced costs w.r.t. q and (x′, y′) together satisfy the linear constraints

c⊤x+ d⊤y ≤ α (2a)

Ax+By = a, x ≥ 0 (2b)

Tx+Wy = h, y ≥ 0 (2c)

q⊤y = q⊤BW−1
B

(h− Tx) (2d)

W−1
B

(h− Tx) ≥ 0 . (2e)

The constraint (2d) follows from the optimality of y′, since W−1
B

(h− Tx′) is the basic part of the
optimal solution corresponding to B. The constraint (2e) expresses that B is a feasible basis for
the lower level problem for x′.

Conversely, assume that there exists a basis B of W with non-negative reduced costs w.r.t. q
such that (2) is satisfied by some x̄ and ȳ. By (2e), the basis B is feasible for the lower level
problem for x̄, hence also optimal because of the non-negative reduced costs w.r.t. q. It thus
follows from (2d) that ȳ is an optimal lower level solution for x̄. Together with the remaining
constraints in (2), we derive that x̄ and ȳ form a feasible solution to (BLP) with c⊤x̄+ d⊤ȳ ≤ α.

A polynomial-size certificate for a yes-instances thus consists of a basis B ⊆ {1, . . . , r} with non-
negative reduced costs w.r.t. q such that the linear system (2) is solvable. The latter can be tested
in time polynomial in the coefficients of (2), which are in turn polynomial in the coefficients of
the original problem (BLP).

Note that the basis B in the above proof does not necessarily correspond to the solution y′ or ȳ,
if the lower level solution is not unique. In fact, in the optimistic setting considered here, it may
happen that no basic solution of the follower’s problem is feasible. The constraints (2c) and (2d)
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in the proof are thus needed to model the optimal face of the lower level problem. As a (somewhat
pathological) example, which does not contain any leader variables, consider

min y

s.t. y = 1
y ∈ argmin {0 | ȳ ≤ 2, ȳ ≥ 0} = [0, 2] .

The optimal value of this problem is 1, since y = 1 is the unique bilevel-feasible solution. However,
the only two basic solutions of the follower’s subproblem are y = 0 and y = 2, which do not
satisfy the upper level constraint y = 1. On the other hand, if there are no upper level coupling
constraints, i.e., if B = 0, it is easy to see that there always exists an optimal lower level basic
solution; see also [2, Theorem 2.1].

We emphasize that the proof of Theorem 1 does not make any assumptions on the feasibility or
boundedness of the lower level problem (LL): since we start with feasible x′ and y′, we know by
definition that y′ is an optimal lower level response to the upper level decision x′. Hence the lower
level problem cannot be unbounded or infeasible for the given x′. Moreover, the second part of
the proof shows that a certificate cannot exist if there is no upper level decision x̄ such that the
lower level problem (LL) has an optimal solution.

Remark 2. The proof of Theorem 1 can be easily extended to show that the decision version of
an ℓ-level linear optimization problem (in the optimistic scenario) belongs to ΣP

ℓ−1, for all ℓ ≥ 1.
For ℓ = 1, this just means that linear optimization is tractable. Assume recursively that the claim
holds for some ℓ ≥ 1 and consider an (ℓ + 1)-level linear optimization problem. Again using as
certificate a basis B with non-negative reduced costs for the lowest level problem, and applying the
same reformulation as in the proof of Theorem 1, we obtain a feasibility problem for an ℓ-level
linear optimization problem, depending on B, in place of (2). By our recursive assumption, the
latter feasibility problem belongs to ΣP

ℓ−1. In summary, the (ℓ+1)-level problem can be decided by

an NP-algorithm using an oracle for a problem in ΣP
ℓ−1, so that it belongs to ΣP

ℓ by definition.

We now turn our attention to the pessimistic case, where the follower tries to violate the coupling
constraints and, if not possible, returns a worst-possible solution for the upper level problem. We
first define the decision version again:

Decision version of (BLP), pessimistic scenario

Given: Problem data c ∈ Qn, d, q ∈ Qm, A ∈ Qk×n, B ∈ Qk×m, a ∈ Qk,
T ∈ Qr×n, W ∈ Qr×m, h ∈ Qr, and a number α ∈ Q.

Task: Decide whether there exists x̄ ≥ 0 such that (LL) has an optimal solution and such that
all optimal solutions ȳ of (LL) satisfy Ax̄+Bȳ = a and c⊤x̄+ d⊤ȳ ≤ α.

The universal quantifier in this formulation creates some additional difficulty: for a yes-instance,
we have to make sure that x̄ is chosen such that all optimal solutions of the lower level problem
satisfy the coupling constraints and c⊤x̄+ d⊤ȳ ≤ α. More abstractly, we thus have to enforce an
inclusion relation between two polyhedra that are both parametrized by x̄. In the following proof,
we need a second basis in our certificate to achieve this.

Theorem 3. The decision version of Problem (BLP) in the pessimistic scenario belongs to NP.

Proof. Assume that a yes-instance is given. Then, in particular, some x̄ ≥ 0 exists such that (LL)
has an optimal solution. This means that there exists a basis B of W with non-negative reduced
costs w.r.t. q such that the corresponding basic solution is feasible, i.e., such that x̄ satisfies

W−1
B

(h− Tx) ≥ 0, x ≥ 0 . (3)
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Moreover, every optimal solution y of (LL) satisfies both Ax̄ + By = a and c⊤x̄ + d⊤y ≤ α. In
other words, we have that all solutions y of

T x̄+Wy = h, q⊤y = q⊤BW
−1
B

(h− T x̄), y ≥ 0 (4)

also satisfy
Ax̄+By = a, c⊤x̄+ d⊤y ≤ α .

In particular, we deduce
max
(4)

d⊤y ≤ −c⊤x̄+ α , (5)

and this maximization problem has an optimal solution since it is bounded and (4) is feasible.
Since (4) is in standard form, there exists a basis B̂ for Ŵ :=

(

W

q⊤

)

with non-positive reduced costs
w.r.t. d such that x̄ satisfies the linear constraints

d⊤
B̂
Ŵ−1

B̂

(

h−Tx

q⊤
B
W

−1

B
(h−Tx)

)

≤ −c⊤x+ α (6a)

Ŵ−1

B̂

(

h−Tx

q⊤
B
W−1

B
(h−Tx)

)

≥ 0 . (6b)

Indeed, constraint (6b) states that the basis B̂ is feasible for (4), while constraint (6a) states that
the corresponding basic solution y satisfies the constraint c⊤x̄+ d⊤y ≤ α.

Proceeding to the coupling constraints Ax̄+By = a, let bi and ai denote the i-th row of A and B,
respectively, and let ai denote the i-th entry of a. Then, for all i = 1, . . . , k, the basis B̂ is optimal
for both minimizing and maximizing biy over (4), since biy = −aix̄ + ai for all y satisfying (4).
The reduced costs of B̂ w.r.t. bi are thus zero, and the linear constraints

bi
B̂
Ŵ−1

B̂

(

h−Tx

q⊤
B
W

−1

B
(h−Tx)

)

= −aix+ ai (7)

hold for x̄, for all i = 1, . . . , k.

To sum up, for any yes-instance, there exist a basis B ofW with non-negative reduced costs w.r.t. q
and a basis B̂ of Ŵ with non-positive reduced costs w.r.t d and zero reduced costs w.r.t. b1, . . . , bk,
such that all linear constraints on x in (3), (6), and (7) can be satisfied simultaneously.

Conversely, if such bases exist, the instance is a yes-instance. Indeed, by (3) the corresponding
feasible solution x̄ admits an optimal response. From (6) it follows that

max
(4)

d⊤y = d⊤
B̂
Ŵ−1

B̂

(

h−T x̄

q⊤
B
W

−1

B
(h−T x̄)

)

≤ −c⊤x̄+ α ,

as B̂ is a feasible and hence optimal basis for the given maximization problem. Thus c⊤x̄+d⊤y ≤ α

for all y feasible for (4). From (7) we similarly derive Ax̄+By = a for all such y. The result thus
follows with the certificate consisting of the two bases B and B̂.

We emphasize that, different from the proof of Theorem 1, the linear constraints constructed in
the proof of Theorem 3 do not contain the lower level variables, they only restrict the upper
level decision. This is in line with the fact that, in the pessimistic case, the lower level variables
appear in a universal instead of an existential quantifier. In order to deal with this “adversarial”
quantifier, the second basis B̂ is needed in the certificate.

One may be tempted to simplify the above proof by replacing the maximization problem in (5) by
its dual and then resolving the resulting minimization problem by introducing additional variables.
However, this approach would lead to a non-linear model, because the new variables would be
multiplied by the variables x appearing on the right hand side of (4). For the resulting quadratic
system, testing feasibility would not be trivially polynomial any more.
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3 Computation of bilevel-correct bounds

For sake of simplicity, we focus on the optimistic scenario in the remainder of this paper. From
an abstract point of view, it already follows from Theorem 1 that there exists a polynomial-time
algorithm that reformulates any bilevel linear optimization problem into an equivalent mixed-
integer linear optimization problem. Indeed, as mixed-integer linear optimization is NP-hard, any
decision problem in NP can be polynomially reduced to it. We now show that this task can actually
be achieved by the KKT-reformulation (BLP-KKT), after deriving bilevel-correct bounds. In fact,
the proof of Theorem 1 already implies that we can compute a bound on the entries of x and y

in polynomial time such that this bound does not cut off all optimal solutions. We now make
this bound more explicit and extend this statement to the dual variables. For the convenience of
the reader, we first report the following elementary result. We will denote by [X ] the maximal
absolute value of any entry in an integer matrix or vector X .

Lemma 4. Let P = {x ∈ Rn | Ax = b, x ≥ 0} be a polyhedron with A ∈ Zm×n and b ∈ Zm. Let x̄
be a vertex of P . Then x̄i ≤ m! [b] [A]m−1 for all i = 1, . . . , n.

Proof. By removing redundant constraints, we may assume that A has full row rank. Let B be a
basis yielding x̄. Then x̄i = 0 for i 6∈ B and xB = A−1

B
b. Hence, for i ∈ B, we have |x̄i| ≤ | det(Ai

B
)|

by Cramer’s rule, where Ai
B
arises from AB by replacing column i by b; note that | det(AB)| ≥ 1

by integrality and regularity of AB. Hence

|x̄i| ≤ |
∑

σ∈Sm

sgn(σ)
∏m

j=1(A
i
B
)j,σ(j)| ≤

∑

σ∈Sm

∏m

j=1 |(A
i
B
)j,σ(j)| ,

which directly implies the result.

Note that the number m! appearing in the bound above has polynomial encoding length in m ∈ N,
since m! ≤ mm and the latter has encoding length at most m(⌈log(m + 1)⌉ + 1). In particular,
the naive algorithm to compute m! runs in polynomial time, but there exist faster algorithms
performing this task in O(m log2 m) time [8, 11].

Theorem 5. Bilevel-correct values for Mp and Md can be computed in polynomial time from the
data of Problem (BLP).

Proof. We may assume that (BLP) admits an optimal solution x′, y′. As in the proof of Theorem 1,
we choose B as an optimal basis of the lower level problem for x′. Let (x̄, ȳ, z̄) be an optimal vertex
of the polyhedron defined by

Ax+By = a

Tx+Wy = h

q⊤
B
W−1

B
Tx+ q⊤y = q⊤

B
W−1

B
h

W−1
B

Tx+ z = W−1
B

h

x, y, z ≥ 0 ,

(8)

with respect to the objective function c⊤x + d⊤y. Then λ̄ := W−⊤

B
qB is a dual optimal solution

for the lower level problem for x̄. In particular, we have (h − T x̄)⊤λ̄ = q⊤ȳ, which implies the
complementarity constraint ȳ⊤(q −W⊤λ̄) = 0. In summary, the constructed solution consisting
of x̄, ȳ, and λ̄ is feasible and hence optimal for (BLP-KKT). It thus suffices to bound the entries
of ȳ and q −W⊤λ̄ in terms of the problem data of (BLP), independently of the choice of B. By
scaling all constraints and objective functions, we may assume that all coefficients in (BLP) are
integer. This can be done in polynomial time, as it suffices to scale by the product of all numerators
of these coefficients. In particular, the encoding length of the scaled instance is polynomial in the
original encoding length.

To obtain a valid choice of Md, we need Md ≥ (q −W⊤λ̄)i = (q −W⊤W−⊤

B
qB)i for all bases B

of W . For i ∈ B we have (q−W⊤λ̄)i = 0 by construction, while the remaining entries contain the
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reduced costs of B. It thus suffices to compute a bound on the reduced costs of any basis of W in
terms of W and q. For i ∈ N , we have

|qi −W⊤
·i W

−⊤

B
qB| ≤ |qi|+ |W⊤

·i W
−⊤

B
qB| ≤ |qi|+

∑

j∈B
|Wij ||(W

−⊤

B
qB)j | .

Now, since W is assumed to be integer, we have | det(W⊤
B
)| ≥ 1, so by Cramer’s rule, each entry

of W−⊤

B
qB is bounded by det(W̄ ), where W̄ arises from WB by replacing some column by qB.

Hence |(W−⊤

B
qB)j | ≤ r! [q][W ]r−1 and we can choose Md as

[q] + r[W ]r! [q][W ]r−1 = [q](1 + r! r[W ]r) .

To determine a bilevel-correct value for Mp, it suffices to bound the entries of y in all vertices
of (8). Using Lemma 4, we can choose Mp as ℓ! [f ][L]ℓ−1 where ℓ := k + r + 1 +m is the number
of equations in (8) and

[L] := max{[A], [B], [T ], [W ], [q⊤BW
−1
B

T ], [q], [W−1
B

T ], 1}

[f ] := max{[a], [h], [q⊤BW
−1
B

h], [W−1
B

h]} .

We further have

[W−1
B

h] ≤ r! [W ]r−1[h]

[q⊤BW−1
B

h] ≤ r! r[q][W ]r−1[h]

[W−1
B

T ] ≤ r! [W ]r−1[T ]

[q⊤BW
−1
B

T ] ≤ r! r[q][W ]r−1[T ] .

Altogether, we can compute bilevel-correct bounds Md and Mp in polynomial time from the
coefficients of (BLP).

Note that the bound Md derived in the proof of Theorem 5 only depends on W and q, while Mp

depends on all problem data, including the upper level coefficients. If r ≥ 1 and none of q,W, T, h

is all zero, the bounds can be simplified to

[L] ≤ max{[A], [B], r! r[q][W ]r−1[T ]}

[f ] ≤ max{[a], r! r[q][W ]r−1[h]} .

Both bounds constructed in Theorem 5 have polynomial encoding length. However, their values
are exponential in general. The latter cannot be avoided, even without the bilevel structure. As
a simple example, consider constraints y1 = 1 and 2yi − yi+1 = 0 for i = 1, . . . ,m − 1. Then all
coefficients have size at most 2, but in the unique feasible solution, the value of yn is 2n−1.

Remark 6. From the proof of Theorem 1 it can be argued that the NP-hardness of (BLP) is due
to the exponential number of bases of the lower level problem. More precisely, even though it is
possible to efficiently find an optimal lower level basis for any fixed upper level decision, since this
reduces to solving a linear optimization problem, it is not possible to efficiently decide whether there
exists a basis B that yields a feasible system (2), unless P=NP. Otherwise, it would follow from
the proof of Theorem 1 that (BLP) is tractable. In terms of the bounds Md and Mp, Theorem 1
implies that we can determine bilevel-correct values by considering all possible lower level bases,
which is the core idea of the proof of Theorem 5. If, however, the task is to test bilevel-correctness
of given values of Md and Mp as in [9], we need to decide whether there exists a basis B such
that some feasible solution of (2), with α being the optimal value of (BLP), has a small enough
encoding length. As shown in [9], the latter problem is NP-complete. Both observations are related
to the hardness of the problem OVP, which was shown in [5] and used in the main proof of [9]:
while it is easy to find an optimal basis for a given linear optimization problem, if one exists, it
is hard to test whether an (unbounded) linear optimization problem has a basic solution exceeding
a certain threshold. From an abstract point of view, the common difficulty of (BLP) and OVP is
thus to determine a suitable basis for the respective task, out of exponentially many candidates.
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