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Abstract

This paper investigates the differences between the symbol-spaced discrete-time
Wiener phase noise channel model, commonly assumed in the literature to rep-
resent the effect of phase noise, and that obtained by symbol-rate sampling the
filtered continuous-time received signal affected by continuous-time Wiener
phase-noise. In particular, for comparison, we consider some statistical tests
to check temporal and distributional properties of the two models. We show
that the fit between the two models is very good even for quite strong val-
ues of phase noise. The main result is that when the standard deviation of the
discrete-time Wiener phase noise increment σPN is below a threshold of approx-
imately σ̄PN ≃ 0.1 rad, the discrete-time Wiener model provides a good
approximation to the actual symbol-spaced sampled filtered signal affected by
continuous-time Wiener phase noise. We show that when σPN is below
σ̄PN the ratio between the power of the signal and the power of the model mis-
match is greater than 20 dB. Simulation results are also presented to compare
bit error rates of the two models in case of QPSK and 16-QAM transmission
and to compare the power spectral densities of their associated complex expo-
nential phase noises. Our results suggest that the discrete-time Wiener phase
noise model can be adopted for many real-world systems, where, according to
experimental results available in the literature, σPN in the order of 0.1 rad is
rarely found even when the nonlinearity of the optical channel is deeply stressed.
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1. Introduction

Multiplicative phase noise is one of the major impairments affecting the
performance of coherent optical transmission systems [1–3]. Phase noise is due
to both laser oscillators used for up- and down-conversion [4], and to cross-
phase modulation that arises in wavelength-division-multiplexing systems [5].5

A recent tutorial on transmission over phase noise channels is [6].
Several schemes have been proposed to estimate the received carrier phase

for arbitrary PSK and QAM constellations in presence of phase noise. Among
blind methods, the feedforward scheme of [7] addresses the con-
straints imposed by high speed parallel processing, while in [8] the10

performance of Viterbi-Viterbi carrier phase estimation is investi-
gated for circular QAM signals. Pilot-aided carrier phase recovery schemes
have recently gained attention as candidate phase recovery approaches for sys-
tems affected by strong phase noise. Papers [9, 10] are based on the insertion of a
pilot tone in a notch of the transmitted signal spectrum, while in papers [11–13]15

pilot symbols are inserted in time domain. Papers [14–19] discuss coding and
demodulation techniques based on pilot symbols aimed at combating the cycle-
slip phenomenon. Also, schemes based on time domain interleaving of robust
modulation formats and less robust, but more spectrally efficient modulation
formats, are proposed in [20, 21]. The information rate transferred through20

the discrete-time phase noise channel is studied in [22–26] while that associated
with multiple-input multiple-output channels is considered in [27, 28].

h(t)
a
i

w(t)
jφ(t)

e

h(-t)*r(t) y(t) y
i

t = iT

Figure 1: Complex baseband representation of the transmission system with multiplicative
phase noise, matched filtering, and symbol-rate sampling.

With reference to Fig. 1, the complex baseband model of the continuous-
time signal r(t) at the input of the receiver is

r(t) =
∑

l

alh(t− lT )ejϕ(t) + w(t)ejϕ(t), (1)

where {ai} is the sequence of zero-mean complex symbols with unit variance25

σ2
a = 1 transmitted at rate 1/T , j =

√
−1 is the imaginary unit, h(t) is the

square-root Nyquist impulse response of the transmit shaping filter with energy
Eh and w(t) is the complex Additive White Gaussian Noise (AWGN) with power
spectral density N0. The signal-to-noise ratio is SNR=Es/N0, where Es =
σ2
aEh is the average energy per symbol. The information rate between30

the input modulation and the continuous-time signal of eq. (1) is studied in
[29, 30] while a lower bound on the capacity has been recently derived
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in [31]. Upper bounds on the SNR penalty due to phase noise with arbitrary
discretization in time domain are given in [32]. In [4] it is shown that phase
noise introduced by laser oscillators can be modeled as a continuous-timeWiener35

process. The random phase of a continuous-time Wiener process evolves as

ϕ(t) = ϕ(0) + σ

∫ t

0

λ(τ)dτ, (2)

where ϕ(0) is uniform in [−π, π), σ is a real constant, and λ(t) is a white
Gaussian process with autocorrelation

E [λ(τ)λ(τ + t)] = δ(t),

where δ(t) is the Dirac delta function and E[·] is the expectation. For Wiener
phase noise, the power spectral density of the complex exponential ejϕ(t) is40

known to be the Lorentzian function given by [33]

L(f) = 4σ2

σ4 + 16π2f2
(3)

with 3 dB linewidth σ2/(4π).
However, processing the continuous-time signal, or a finely time-discretized

version of it, is too complex, therefore in the practice processing is made on
the symbol spaced sampled complex sequence after the matched filter, that is45

sequence {yi} in Fig. 1. The discrete-time model

ỹi = aie
jϕi + ni (4)

is adopted in the bibliography on discrete-time phase noise channel as an ap-
proximation to the actual sampled signal yi = y(iT ), with ϕi = ϕ(iT ). The
discrete-time Wiener phase noise process is described as

ϕi = ϕi−1 + σPNλi, (5)

where σ2
PN = σ2T and λi is an i.i.d. discrete-time Gaussian random process50

with zero mean and unit variance; the term σPNλi can be interpreted as
the instantaneous value of a white frequency noise process, being it
given by the difference between two successive phase noise samples.
In other words, translation from continuous to discrete-time is simply obtained
by neglecting the effects of the receive filter on the multiplicative phase noise.55

The model defined by (4) and (5) is commonly assumed in computer simula-
tions for bit-error rate (BER) evaluation. Remarkably, the experimental results
presented in [34] show that the model in (4) and (5) can be adopted to de-
scribe carrier phase noise after nonlinear propagation in different transmission
scenarios. From now on the actual sequence {yi} of (1) will be denoted60

as Continuous-Time Wiener Sampled Matched Filter (CTWSMF) model, while
the approximation {ỹi} to the actual {yi} will be referred as Discrete-Time
Wiener (DTW) model. The aim of this paper is to show what are the lim-
its of applicability of the DTW for approximating the CTWSMF. In order to
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do this, we perform statistical tests on temporal and distributional properties65

of CTWSMF for two different roll-offs that can be considered as end-
points of the range of values that are of practical interest in optical
systems and compare them with those performed on the DTW model. The
main result is the proof, by simulations, that DTW is a good approximation
of the CTWSMF when σPN < 0.1 rad. As a further way of evaluating the70

accuracy provided by the approximation we present computer simulations to
compare BERs of QPSK and 16-QAM and the power spectral densities of the
complex exponential phase noise obtained by using the two models.

The paper is organized as follows. Section 2 contains the mathematical
derivation of the CTWSMF and suggests a frequency domain interpretation75

of the mismatch between CTWSMF and DTW. Sections 3 and 4 go further
in depth by comparing the statistical characterizations of the discrete-time
sampled-spaced output signals and by discussing the mismatch between the
two models. Simulation results are presented in Sec. 5, where we compare the
BER and the power spectral density of discrete time phase noise with CTWSMF80

and with its DTW approximation. Finally, conclusions are drawn in Sec. 6.

2. Continuous-time Wiener Sampled Matched Filter Model

The signal r(t) in (1) is filtered through the square root Nyquist matched
filter h∗(−t) and sampled at the time instants t = iT , obtaining

yi =
∞
∑

l=−∞

ai−lc
(i)
l + n′

i, (6)

where85

c
(i)
l =

∫ +∞

−∞

h(τ − lT )h∗(τ − iT )ejϕ(τ)dτ (7)

and

n′
i =

∫ ∞

−∞

w(τ)ejϕ(τ)h∗(τ − iT )dτ.

If the phase noise cannot be approximated as nearly constant within the effective
duration of the impulse response of the receive filter, the Nyquist condition for
Inter-Symbol Interference (ISI) free transmission is not satisfied. It is worth
writing the output of the sampled matched filter as90

yi = aie
jϕ′

i · ρ′i + n′
i. (8)

Equation (8) defines the CTWSMF. By comparing the CTWSMF to the DTW
of (4) one observes that:

• the additive noise n′
i is statistically equivalent to the additive noise ni of

the DTW model;
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• the term ρ′ie
j(ϕ′

i−ϕi) is a distortion on the symbol ai given by the integra-95

tion of the complex exponential through the matched filter. Actually, as
pointed out in [4], since the effect of filtering is to convert phase fluctu-
ations in amplitude variations, phase noise can have a detrimental effect
not only for the case of phase modulations (PMs) but also in that of ampli-
tude modulations (AMs), but the PM-AM conversion is totally neglected100

in the DTW.

The distortion term can be explained also by reasoning in frequency domain.
The noiseless part of the received signal r(t) in (1) corresponds to the multi-
plication of the filtered data sequence with ejϕ(t). If one translates this to the
frequency domain the power spectral density of the noiseless part of the received105

signal is the convolution between σ2
a|H(f)|2/T and the Lorentzian spectrum of

the complex exponential phase noise given in (3). Since the overall frequency
response from the input of the transmit filter to the output of the matched filter
is not proportional to |H(f)|2, ISI arises.

3. Modeling the CTWSMF Phase Noise110

We want to check if ϕ′
i appearing in eq. (8) is a discrete-time Wiener process

or not, hence if it can be approximated as ϕi of (4). To achieve this, we must
verify that

υi = ϕ′
i − ϕ′

i−1, (9)

is a white Gaussian random variable. Being υi the difference between two phases
at the two successive time instants iT and (i − 1)T we name it Discrete-Time115

Frequency Noise (DTFN). In the following, the AWGN terms ni and n′
i appear-

ing in (4) and (8) will be neglected because they affect the two discrete-time
models in the same way. We denote the noiseless part of the symbol-spaced
signal at the output of the receive matched filter in (8) as

xi = aie
jϕ′

i · ρ′i. (10)

The analysis of the mismatch between CTWSMF and DTW is performed by120

means of simulations. It is worth emphasizing that since the goal of this
study is to analyze the non-linear effects introduced by phase noise,
time-domain processing is implemented. In order to synthetically generate
the actual signal yi in (8) the continuous-time signal is sampled at a rate much
higher than the symbol interval. In our simulations the oversampling factor is125

equal to 20. Such a value has been chosen after a preliminary analysis
with the goal of providing a safe margin for aliasing free processing
and, at the same time, obtaining numeric results with reasonable
complexity. The discrete-time signal sequence {vi} given in (9) is generated
as shown in Fig. 2.130
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Figure 2: Block diagram for the generation of υi, ϕi and ϕ′

i
. The block ZP (↑20) appends

19 zeros after one valid sample (up-sampling with zero-padding). The block ↓20 performs
decimation (down-sampling) by a factor 20 to extract samples at integer multiplies of the
symbol interval. The discrete-time impulse response hn is obtained by oversampling h(t) at
20 times the symbol frequency while the oversampled discrete-time random process λn is i.i.d.
with zero mean and unit variance.

3.1. Test of Whiteness

In the test of whiteness we focus on the estimation of the DTFN autocor-
relation. In particular we consider the Pearson’s Correlation Coefficient (PCC)
with time lag lT

PCCl =
Cov[υiυi+l]

σ2
υ

, (11)

where σ2
υ is the variance of υi and Cov[υiυi+l] = E[υiυi+l]−E2[υi] is the covari-135

ance between random variables υi and υi+l. Pearson’s correlation coefficient
is one of the most popular tests for measuring the linear dependence
between two continuous random variables [35]. From (11) it follows
that PCCl is always comprised between −1 and +1. Specifically, while
a value of PCCl equal to 0 means that there is no correlation between140

the two random variables, a value of +1 (−1) means that there is a
perfect positive (negative) relationship between them and, therefore,
as one variable increases, the second variable increases (decreases)
in exactly the same proportion. When the DTFN sequence υi is white it
happens that145

PCCl =

{

1, if l = 0,

0, otherwise.
(12)

A sequence of N DTFN samples {υ1, υ2, ..., υN}, generated by simulation, is
used for obtaining an estimate of the mean and of the expected values in (11).
The mean is estimated as

E[υi] ≃ m̂υ =
1

N

N
∑

i=1

υi. (13)
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while the unbiased estimate of E[υiυi+l] is

E[υiυi+l] ≃
1

N − l − 1

N−l
∑

i=1

υiυi+l. (14)

The unbiased estimate of the DTFN variance turns out to be150

σ̂2
υ =

1

N − 1

N
∑

i=1

(υi − m̂υ)
2. (15)

By putting (13), (14) and (15) in (11) we get the Estimated PCCl as

EPCCl =
N − 1

N − l − 1

∑N−l
l=1 (υi − m̂υ)(υi+l − m̂υ)

∑N

i=1(υi − m̂υ)2
. (16)

From the simulations we found m̂υ ≃ 0.
Figures 3 and 4 show EPCC1 and EPCC2, respectively, versus σPN for

QPSK and 16-QAM with roll-off α = 0.1 and α = 0.5. These two roll-offs
can be considered as the endpoints of the range of values that are155

of practical interest for optical systems. In Fig. 3 we see that for both
the two considered modulation formats the value of EPCC1 is between
0.2 and 0.28 for σPN lower than 0.3 rad while it approaches zero for higher
values of σPN . Concerning EPCC2, from Fig. 4 one realizes that while
for α = 0.5 its value is always around 0 for all the values of σPN , for160

α = 0.1 its value is around 0.04 for σPN lower than 0.3 rad and then
it decreases to 0 for higher values of σPN . However, independently
on the roll-off value and modulation type, EPCC2 can be considered
negligible with respect to EPCC1. Other values EPCCl, with l > 2,
are not reported, since EPCCl ≃ 0.165

From the numerical results presented in Figs. 3 and 4 we can
clearly distinguish between two different cases: the first where σPN

is lower than 0.3 rad and the second where it is higher. In the first
case we see that while for α = 0.5 the values of EPCC1 and EPCC2

are virtually not affected by the modulation format, for α = 0.1 this170

property is satisfied only by EPCC2. Concerning with EPCC1, a
higher value can be observed for QPSK than for 16-QAM. A pos-
sible explanation of this behavior resides in the combined effect of
different amplitude levels of 16-QAM and slow-decaying tails of the
Nyquist impulse responses with small roll-off values. The fast ampli-175

tude variations within a symbol interval induced by higher tails and
amplitude levels of 16-QAM interfere in a stronger way thus reducing
the observed correlation between successive samples of υi. In the sec-
ond case, where σPN has values higher than 0.3 rad, we can see that
the large phase change occurring between successive samples of the180

phase noise Wiener random process totally decorrelates the sequence
of samples υi.
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Figure 3: EPCC1 vs. σPN for QPSK and 16-QAM.
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Figure 4: EPCC2 vs. σPN for QPSK and 16-QAM.

3.2. Test of Gaussianity

The sequence of N DTFN samples {υ1, υ2, ..., υN} is used to build a his-
togram pυ(x) of the samples distribution. In order to test the gaussianity of the185

DTFN, we compute the Kullback-Leibler (KL) divergence between pυ(x) and
the Gaussian distribution

g(x) =
1√
2πσ2

exp

(

− x2

2σ̂2
υ

)

. (17)
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The KL divergence provides a measure of the discrepancy between
two probability distributions. In [36] Monte-Carlo simulations are
presented to demonstrate the superiority of the KL compared to other
statistical methods to test gaussianity. The KL divergence formula is

DKL(pυ(x)||g(x)) =
∫ +∞

−∞

pυ(x) ln

[

pυ(x)

g(x)

]

dx =

= −H(pυ)−
∫ +∞

−∞

pυ(x)

[

−1

2
ln(2πσ̂2

υ)−
x2

2σ̂2
υ

]

dx =

= −H(pυ) +
1

2
ln(2πσ̂2

υ) +
1

2

σ̂2
υ

σ̂2
υ

=

= −H(pυ) +
1

2
ln(2πeσ̂2

υ) = H(g)−H(pυ), (18)

where H(pz) denotes the entropy of the random process z with probability
density function pz(x). Simulations were carried out for QPSK and 16-QAM
constellations. Figure 5 reports the KL divergence in nats versus σPN for α =190

0.1. For each point in the plots the histogram is built with 103 bins and N =
2 · 105.

3.3. Discussion about Whiteness and Gaussianity

Values of DKL(pυ(x)||g(x)) ≃ 0 mean that {υi} is virtually Gaussian. From
Fig. 5 we observe that this happens for values of σPN lower than the threshold195

value σPN ≃ 0.3 rad. From the Figure it is clear that the KL divergence mea-
sured for σPN below the threshold σPN is never greater than 0.04. Above σPN
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Figure 5: KL divergence vs. σPN for QPSK and 16-QAM transmission.
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the discrete-time frequency noise cannot be considered Gaussian. This means
that if the phase noise is too strong then the approximation of the CTWSMF
with the DTW does not hold anymore.200

A completely different behavior can be observed in Fig. 3 for EPCC1: when
σPN > σPN EPCC1 tends to 0. This would lead us to the conclusion that
the phase noise of the CTWSMF cannot be approximated to a discrete-time
Wiener process, at least for small values of σPN . However, Secs. 4 and
5 will enlighten that the difference between the non-white discrete-205

time frequency noise υi, obtained from simulations, and the discrete-
time white frequency process, defining the random increment of the
Wiener phase noise in (5), does not have any significant impact on the
power of the error associated with the mismatch due to the use of the
two models and on the associated measured BERs. As a consequence,210

the non-whiteness of the discrete-time phase noise can be neglected
in practical cases.

4. Analysis of the Mismatch

The impact of the approximation provided by DTW is analyzed by measur-
ing the mean-squared error215

P = E[|xi − aie
jϕi |2], (19)

where xi and ϕi are obtained as in Fig. 2. Also, we measure the mean-squared
error with non-white frequency noise

PF = E[|xi − aie
jϕF,i |2] (20)

with
ϕF,i = 6 (z1e

jϕi−1 + ejϕi + z1e
jϕi+1)

where z1 is the correlation coefficient EPCC1. From Figs. 6 and 7 one can notice
that for both the two considered roll-off values P and PF scale with220

respect to σPN with a 20 dB/decade slope up to about 0.3 rad. By comparing
Figs. 6 and 7 one realizes that 10 log10 (P/PF ) ≃ 1 dB. This small difference
means that the memory in the DTFN does not dominate the quality of the
approximation. Also more important to note is that, with σPN smaller than
0.1 rad, the powers of the errors P and PF are still very low, being more than225

20 dB below the signal power. It should be said that σPN = 0.1 rad is really
strong phase noise, which can be tolerated only by robust systems as coded
BPSK or coded QPSK. Since the threshold SNR for these systems is
typically below 10dB, we can conclude that for both the two models
the level of the error power due to phase noise mismatch is much230

lower than that due to AWGN. This makes negligible the impact of the
mismatch introduced by DTW on system performance.
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Figure 6: P vs. σPN in the case of QPSK and 16-QAM transmission.
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Figure 7: PF vs. σPN in the case of QPSK and 16-QAM transmission.

5. BER Performance and Phase Noise Power Spectral Densities Com-
parison

To validate the accuracy of the approximation provided by the DTW channel235

model, we use computer simulations to compare its BER with that obtained by
using the CTWSMF channel model in case of coherent detection of QPSK and
16-QAM. For DTW the discrete-time signals are generated according to eqns.
(4) and (5), while for the CTWSMF they are generated according to the scheme
reported in Fig. 2. The BER with the CTWSMF channel model is measured240
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Figure 8: BER vs. SNR for QPSK and 16-QAM with σPN=3 · 10−2.

for α = 0.1 and α = 0.5. As standard deviation values we consider σPN equal
to 3 · 10−2 rad, 6.6 · 10−2 rad, and 0.135 rad. These values can be considered
as representative of channels that are characterized by phase-noise levels of
practical interest [34, 37]. It is worth noting that, only σPN = 3 · 10−2 and
σPN = 6.6 · 10−2 are below the threshold of 0.1 rad that defines the maximum245

standard deviation for which a good agreement has been observed in the previous
Sections between the statistical tests applied to the two models and for which
the mean-squared error due to the mismatch is below 20dB.

Coherent demodulation of the discrete-time received sequence is realized by
the pilot-aided trellis scheme proposed in [13]. Such a method is able to provide250

good tolerance to phase noise because it implements virtually optimal Bayesian
tracking of the unknown phase. It relies on the insertion of known pilot symbols
that are time-division multiplexed with the information-bearing symbols. In the
results shown in this Section we use a pilot overhead of 5%.

Figure 8 reports the BER versus SNR for σPN = 3 · 10−2. An excellent fit is255

found between the BER curves of the two models. The AWGN performance is
also reported as a reference in the Figure. For σPN = 6.6 · 10−2 the measured
BERs are shown in Figure 9. In this case we observe that for QPSK we still have
a good agreement between the two models, while, in contrast, for 16-QAM a
small deviation appears at BER values lower than 10−3, being the performance260

achieved by DTW slightly worse than that achieved by CTWSMF. Figure 10
shows results for σPN = 0.135. Due to strong phase noise, for both the two
models a BER floor is observed at high SNR with 16-QAM. The DTW channel
model exhibits a BER floor that is one order of magnitude lower than that of
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Figure 9: BER vs. SNR for QPSK and 16-QAM with σPN=6.6 · 10−2.
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Figure 10: BER vs. SNR for QPSK and 16-QAM with σPN = 0.135.

DTW. From these results we conclude that when the DTW channel model is265

used in computer simulations the resulting BER measure is always conservative.
Also, we observe that in all the considered cases the roll-off factor has negligible
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Figure 11: Power spectral density of the discrete-time complex exponential phase noise with
σPN=6.6 · 10−2.
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Figure 12: Power spectral density of the discrete-time complex exponential phase noise with
σPN=0.135.

impact on the BER performance achieved by using CTWSMF.
The difference of performance between the two models can be explained by

analyzing the phase noise spectra. Figures 11 and 12 show the power spectral270
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density of the complex exponential function of the discrete-time phase noise
for the DTW and CTWSMF with α = 0.1 for σPN = 6.6 · 10−2 and σPN =
1.35 · 10−1, respectively. The reason for choosing α = 0.1 is motivated by
the numerical results shown in Figs. 6 and 7, where it is shown that
for such a value of roll-off the power of the mismatch is higher than275

that achieved by α = 0.5 for both CTWSMF and DTW. From Figs. 11
and 12 it can be seen that the spectrum of discrete-time phase noise of CTWSMF
is narrower than the spectrum of phase noise of DTW, the difference between the
two being apparent for normalized frequency greater than 10−1. This difference
can be explained by observing that CTWSMF has been sampled after having280

been filtered through the matched filter, which increases the duration of the
continuous-time phase noise memory thus narrowing the spectrum. It is strongly
intuitive that the phase noise with narrower spectrum can be better tracked than
the one with broader spectrum. From the performance reported in Figs. 9 and
10 we come to the conclusion that the benefit due narrower phase noise spectrum285

exceeds the loss due to ISI.

6. Conclusion

We have analyzed the differences between the symbol-spaced discrete-time
channel model that is commonly adopted to evaluate performance degradation
introduced by discrete-time multiplicative Wiener phase noise and the more ac-290

curate model obtained by filtering and sampling at symbol-rate the continuous-
time received signal affected by multiplicative continuous-time Wiener phase
noise. The fit between the two models has been analyzed by means of statistical
tests aiming to verify temporal and distributional properties. We have consid-
ered the power of the error resulting from the mismatch of the noiseless signals295

between the two models. We have found that, when the standard deviation
of the discrete-time Wiener phase-noise increment is below 0.1 rad, a range of
values that are often met in real systems, the discrete-time model provides a
good approximation to the sampled filtered model with continuous-time phase
noise with the same width of the spectral line, being the power of the error300

about 20 dB below that of the signal. The good quality of the approximation
is also demonstrated by analysis of error performance, showing that BERs of
QPSK and 16-QAM are close to each other for the two models. This indicates
that, for these systems, one can skip the continuous-time model and consider
only the symbol spaced model of equations (4) and (5).305
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