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In response to the need for high bandwidth and power efficient data center interconnection networks, 

different interconnects have been proposed based on the optical technology used: micro-

electromechanical system (MEMS), optical cross connects (OXCs), arrayed waveguide grating routers 

(AWGRs) and semiconductor optical amplifier (SOAs). MEMS switches are based on mature 

technology, have low insertion loss and cross-talk, and are data rate inde-pendent. They are also the most 

scalable and the cheapest class of optical switches. However, the reconfiguration time of these switches is 

of the order of tens of milliseconds while fast optical switches have switching time in the range of a few 

nanoseconds. Fast optical switches can be based on AWGRs in conjunction with tunable wavelength 

converters or tunable lasers or they are based on SOAs in broadcast-and-select architecture. In this paper, 

we propose an optical interconnect architecture for the large scale data centers. The proposed 

interconnect: Hybrid Optical Switch Architecture (HOSA) is a hybrid design that features slow and fast 

optical switches. The hybrid design leverages strengths of both types of optical switches. To reduce 

complexity, we employ a single stage core topology that can be easily scaled up (in capacity) and scaled 

out (in the number of racks) without requiring major re-cabling and network reconfiguration. We 

investigate the scalability of the HOSA and show that by using a single stage core topology, it can be 

scaled to a hundreds of thousands of servers. We also investigate a trade-off between cost and power 

consumption of our design by comparing it with other well-known interconnects by using analytical 

modelling. We demonstrate power efficiency as compared to other conventional interconnects on account 

of upfront CAPEX but the additional CAPEX incurred in deploying our solution instead of traditional 

architecture is mitigated to some extent by reduced OPEX, due to its greater energy efficiency. We 

evaluate the performance of the system using network-level simulation by considering diverse workload 

communication patterns and system design parameters. Our results show low latency and high 

throughput with different workload communication patterns. 
 

 
 
 
 
 
  

 
  



 
 
 

1.  Introduction 

 
Internet traffic has shown an exponential increase in recent years due to the advent of cloud computing 

based applications. Cloud computing infrastructure is deployed in data centers (DCs). The traditional 

architecture of the data center network (DCN) is based on a hierarchical design as shown in Fig. 1. It 

features several layers of electrical switches. At the front end, the content and load balance switches are 

connected to the Internet through the gateway routers, while at the back end, they are linked to the core 

switches. The core switches are linked to the aggregate switches and the aggregate switches are 

connected to the Top of the Rack (ToR) switches. Each ToR switch is connected to the servers in the 

rack. All the switches feature an electronic switch fabric and the links between them can be either copper 

cables or optical fibers. In the case of optical fiber links, optical–electrical–optical (O–E–O) conversion 

is required at every port of the switch. When a request comes from the external network, it first comes to 

the load balance and content switches which route the request to the appropriate servers. To fulfil the 

request, the servers can coordinate with other servers within the same or different racks. For example, the 

application servers can coordinate with the database servers to process the request. After completing the 

request, the response is sent to the external network through the gateway routers.  
 

1.1.  Limitations of traditional DCNs 

 

There are significant challenges to meeting growing performance requirements with current data center 

architectures. These are described below. 

 

1.1.1.  Power 
 

The electrical switches at different layers of a DCN and the transceivers required for O–E–O conversion 

are significant sources of power consumption in traditional DCN designs. The power consumption of the 

current inter-connection network incurs 23% of the total IT power consumption in a DCN while it is 

predicted that the interconnection network will incur a much higher percentage of overall IT power 

consumption in future DCNs [2]. It is shown in Table 1 that the peak performance required of data 

centers will continue to rise tremendously but the affordable budget for the total permissible power 

dissipation by the data centers is increasing at a much slower rate i.e. it doubles every 4 years due to 

various thermal dissipation factors. 
 

 

1.1.2.  Scalability  
Large cloud computing data centers owned by Amazon, Microsoft and Google have tens of thousands of 

servers. With the expected growth in data center traffic, the number of servers in data centers is destined 

to increase which poses a significant challenge to the data center interconnection network. 

 

 

1.1.3.  Traffic locality  
The projection of traffic growth in data centers according to the Cisco cloud index [3] is shown in Fig. 2. 

Observe that during the period from 2013 to 2018, the majority of data center traffic will remain within 

the data center while only a small portion of the traffic will go to the external network. Some of the 

traffic will also be exchanged between data centers for distributed and replicated services between 

databases in different data centers. Due to this high traffic locality, high bandwidth and low latency 

interconnections are required. 

 

 



1.1.4.  Higher bit rates  
The performance of communication systems at high data rates using electrical transmission lines is 

degraded by dielectric losses and losses incurred due to skin effect. Power dissipation increases as data 

rates increase in electrical transmission lines. For example, for 10 Gig E, power restrictions limit cable 

length to about 10 m. Longer cables are possible, but power can exceed 6 W/port which is not feasible in 

large-scale data centers [4]. On the other hand, power consumption in optical fiber is independent of the 

data rate. 
 

1.1.5.  Latency  
Latency is introduced by queuing in buffers and by propagation delays incurred by packets during 

transmission from one node to another. Packets have to be buffered by switches during packet processing 

and this delay can be long when there is congestion in the network. Although the switching speed of 

electronic switches is of the order of micro or nano-seconds but overall end-to-end packet delay is 

significant and will need to be reduced in future data centers. 
 

1.1.6.  Performance  
The performance of data centers has been increasing on the order of 10 times every 4 years with 

bandwidth increasing on the order of 20 times in the same interval as shown in Table 1. Power 

consumption can only be allowed to increase perhaps twofold and cost by a factor of 1.5. There is an 

upper limit of power consumption of 20 MW and cost of $500M for exascale computing to take place 

[6]. 

 

Optical interconnects address these challenges because they are power efficient and can provide huge 

bandwidths. The performance of the optical interconnects is directly related to the type of optical 

switches used. Traditional optical switches are based on micro-electro-mechanical system (MEMS) 

technology. The attractions of MEMS switches include (a) excellent power efficiency due to the use of 

passive switching, (b) high port density, (c) low insertion loss and crosstalk, (d) an absence of 

transceivers due to using all-optical switching, (e) lower cost, (f) support of bidirectional communication, 

and (g) data rate independence. They are also highly scalable and are commercially available e.g. 3D-

MEMS [7]. However, they have high switching times, of the order of tens of milliseconds. Fast optical 

switches using technologies such as arrayed waveguide grating routers (AWGRs) and semiconductor 

optical amplifiers (SOAs) are now available. An AWGR is a passive device and works in combination 

with tunable lasers (TLs) or tunable wavelength converters (TWCs). The switching time of these 

switches is determined by the tuning speed of TLs or TWCs which is in the order of a few nanoseconds 

[8]. An SOA works as an ON/OFF switch that allows light to pass through it or not and also compensates 

for losses that occur during transmission of optical signals. SOA switches also have a switching time in 

the range of a few nanoseconds [9,10]. Although both types of switches are fast, they are expensive in 

comparison to MEMS switches of the same capacity. 

 

In this paper, we extend our recent work [11]. We propose a novel optical interconnection scheme based 

on fast and slow optical switches. The proposed technique leverages strengths of both types of optical 

switches. The strengths of one type of optical switch compensate for the weaknesses of the other type. 

The main idea is to utilize resources so as to ensure minimum latency. Instead of using optical circuit 

switching (OCS) or optical packet switching (OPS), we use optical burst switching (OBS) [12]. The OCS 

paradigm has been used in the backbone optical core network for many years. The OBS was also 

proposed for the backbone optical core network but it has not replaced OCS due to its limitation of high 

burst loss in this application. We implement OBS with a two-way reservation protocol that ensures zero 

burst loss. The two-way reservation is not suitable for longhaul backbone optical networks due to the 

high round trip time (RTT) of the control packet but for our optical interconnect for the DCN, this RTT is 

not high for several reasons: (1) the propagation delay is negligible, (2) faster optical switches are used at 

the core, (3) a fast optical control plane is used, processing of the control packet is rapid and (5) a single 

hop topology is used. We have shown the feasibility of OBS using fast optical switches in the context of 

the DCN in our recent work [13]. 



 

We design a resource allocation algorithm for efficient utilization of the resources that results in high 

throughput and low latency. We evaluate the performance of the proposed system using network-level 

simulation by consider-ing different capacities of slow and fast optical switches and also investigate a 

trade-off between cost and power consumption of our design by comparing it with well-known 

interconnects. We also evaluate the scalability of our new architecture by considering different capacities 

of servers in a rack and different ratios of fast and slow optical switches. 

 

The rest of the paper is organized as follows. In Section 2, an overview of existing optical interconnects 

is presented. In Section 3, we describe our proposed architecture and we evaluate its performance in 

Section 4. Section 5 contains our conclusions. 
 

 

 

Related work 
 

We categorize existing optical interconnects into three categories: (1) hybrid optical/electrical 

architectures; (2) interconnects  based  on  fast  optical  switches;  and (3) interconnects based on both 

fast and slow optical switches. 
 

Hybrid optical/electrical architectures are based on optical MEMS switches and electrical switches [14–

17]. Helios [14] and c-Through [15] use MEMS switches for optical circuit switching and electrical 

switches for traditional electrical packet switching. Long-lived traffic flows are routed through MEMS 

switches while bursty and short-lived traffic is routed through electrical packet switches. Energy 

efficiency is still the major concern of these solutions because they use power hungry transceivers and 

electrical switches in the core of the network. The OSA [16] and Hydra [17] designs employ a multi-

hopping technique. ToR switches generating high traffic volumes are connected to each other by a single 

hop while short-lived traffic flows are routed via multi-hop paths. The multi-hopping technique increases 

the latency and energy consumption of ToR switches for traffic using multi-hops. 

 

Optical interconnects based on fast optical switches have been presented [18,10,8,19–24]. The LIONS 

[8] exploits a switching fabric based on AWGR in combination with TLs or TWCs at the input ports and 

multiple receivers per output port. Cost and scalability are their major limitations. The scalability of the 

LIONS has been addressed in the H-LIONS but the cost of the interconnect is still a major concern due to 

expensive TWCs/TLs. An orthogonal frequency-division multiplexing (OFDM) based architecture [21] 

is also based on AWGR switches but it uses OFDM-based transmitters instead of TWCs/TLs and a single 

receiver using parallel signal detection (PSD) technology to detect multiple OFDM signals. Apart from 

scalability, this design is also less power efficient due to the use of power hungry OFDM-based 

transmitters. SOA-based Interconnects [10,18] use a broadcast-and-select configuration and utilize space, 

time and wavelength domains. The broadcast-and-select architecture is an expensive design. The data 

vortex is also based on SOA switches but it uses a ring architecture [23,24]. The Mordia architecture [22] 

is based on wavelength selective switches (WSSs). WSSs have switching time in the order of a few 

microseconds. The Mordia uses time division multiplexing to share the optical bandwidth among the 

hosts. The scalability is the major limitation in this design due to the support of a limited number of 

wavelengths in WSSs. 
 

A hybrid optical switching scheme [25] based on fast and slow optical switches uses a three stage Clos 

architecture at the core node. The edge node classifies incoming traffic into four types. Circuit and long-

burst traffic is routed through slow MEMS switches while short bursts and packets are routed through 

SOA-based fast optical switches. Packet and burst losses are the major limitations in this architecture 

which not only increase end-to-end latency due to retransmission but also decrease overall throughput. 

The LIGHTNESS project is based on fast optical and slow MEMS switches [26,27]. It uses OCS with 

MEMS switches and OPS with fast optical switches. Its principle of operation is to route high demanding 

traffic through MEMS switches using OCS and short-lived flows through optical fast switches using 



OPS. LIGHTNESS employs a software defined control plane to configure the topology and optical 

switches. 
 

3.  Hybrid optical switch architecture – HOSA 

 

We employ OBS in the proposed data center network architecture. We aggregate packet traffic to create 

burst of short duration. A control packet is created to request the allocation of resources needed to 

transmit the burst from the controller by using a two-way reservation process similar to that proposed for 

optical burst switching networks [12]. Although such two-way reservation is not feasible in a longhaul 

backbone network, in data centers it is suitable for the reasons presented earlier. The controller assigns 

resources and sends the control packet back to the originating node as an acknowledgement. The burst is 

then transmitted on the pre-established path configured by the controller. 

 

The proposed hybrid optical switch architecture for DCNs named HOSA is shown in Fig. 3. We use a 

two layer topology comprising electrical ToR switches at the edge and an array of optical switches at the 

core. The optical switches include both slow and fast optical switches. Servers in a rack are connected to 

ToR switches using bidirectional fiber links. Each ToR switch has X optical transceivers, in which K 

transceivers are linked to the slow optical switches and X-K transceivers are interfaced to the fast optical 

switches, where 1<K <X. If we consider N the total number of ToR switches in the network, then ðN NÞ 

is the minimum configuration for both fast and slow optical switches so that at least one port from all 

ToR switches connects to every (NxN) optical switch. 

 

HOSA features separate data and control planes. The control plane is realized by using a centralized 

controller. Routing, scheduling, switch configuration and traffic matrix calculation are the main tasks of 

the controller. It handles connection requests from all ToR switches, finds routes to the destination ToR 

switch through optical switches, assigns timeslots to the connection requests by selecting a suitable 

channel to the destination ToR switch, and configures optical switches with respect to the timeslots 

allocated. In order to realize these functions, the controller maintains a record of the global connectivity 

state of the optical switches. It also collects traffic statistics to perform traffic matrix calculation. Traffic 

matrix calculation is used to configure each slow optical switch and it ensures that elephant flows are 

routed through slow optical switches. The data plane is realized by using optical switches, performing 

data forwarding on pre-established lightpaths configured by the controller. Each ToR switch has a 

dedicated optical transceiver which is connected to the controller through a management network. 

 
 
 

3.1.  ToR switch design 

 

The ToR switch design is shown in Fig. 4. The ToR switch has an electronic switch fabric which is 

connected to the servers in the rack to perform intra-rack (within rack) switching in the electrical domain. 

To perform inter-rack (between racks) switching, we employ ðTRK 1Þ virtual out-put queues (VOQs) 

where TRK is the number of ToR switches in the network. State of the art ToR switches support hun-

dreds of VOQs. For example, the Cisco Nexus 5500 supports up to 384 VOQs, the Cisco 5548P supports 

up to 18,432 VOQs and the Cisco 5596 supports up to 37,728 VOQs [28,29]. There is a VOQ for each 

destination ToR switch in the DCN. Packets destined to the same ToR are aggregated into the same 

VOQ. The VOQ not only aggregates traffic to the same destination ToR switch but it also avoids head of 

line blocking (HOL). Each VOQ is configured for a destination network address. Each ToR switch 

maintains a VOQ table where entries comprise the destination rack network address and the VOQ 

number. The dispatcher module matches the destination network address of the packet with the entry in 

this table and forwards the packet on the required VOQ. 
 

 

3.1.1.  Dynamic allocation of VOQs 
 



For a very large scale DCN, the number of VOQs provided by the ToR switch can be less than the total 

number of racks in the DCN e.g. in the case of the Cisco 5500 switch, it supports only 384 VOQs. In this 

case we can use a subset of the total racks with which a given ToR communicates over a specified period 

of time. For example, in a thousand rack network, each rack may communicate with only a few other 

racks over a given period of time. So each rack would not require 999 VOQs. In this case we can 

dynamically allocate VOQs for the destination rack which the ToR is sending traffic. 

 

For dynamic allocation, we need another field, i.e. time-stamp, in the VOQ table. In the first stage, the 

VOQ table contains only a list of VOQ entries in it without any corresponding destination network 

addresses. When a packet arrives at the dispatcher module, it looks up the destination network address in 

the list of VOQs but it does not find any match. Then it takes the first empty entry from the list of VOQs 

and assigns the destination network address and updates this field with the current timestamp and 

forwards the packet to this VOQ. When another packet arrives requesting the same destination rack, the 

dispatcher finds a match for this network address in the table, it updates its entry with the new timestamp 

and forwards the packet to the same VOQ. There is also a daemon process in the ToR switch that checks 

the VOQ list after a particular time interval. If the VOQ entry in the list has not been updated for that 

particular time, the destination network address entry from the list is deleted on the assumption that there 

is no more traffic for the destination rack. In this way, this VOQ can be assigned to another destination 

rack, after a timeout. 
 

 

 

3.2.  Control packet format 

 

The format of the control packet is shown in Fig. 5. The control packet is 440 bits long and contains two 

main fields, routing and reservation. The routing field contains source and destination IP addresses and 

IDs of the ToR switches. These are the IP addresses of network interface cards (NICs) reserved for the 

control plane in the ToR switches. We consider 128 bits for IPv6 addresses, however this length could be 

reduced to 32 bits using IPv4 addresses making overall control packet length to 31 bytes. 

 

The reservation field is 96 bits long, and is divided into 3 sub-fields: (1) burst length, (2) start time and 

(3) port number. The burst length field is filled by the ToR switch to request a timeslot from the 

controller. The controller fills rest of the two fields after processing the control packet. All of these three 

fields are 4 bytes long. The burst length field contains burst length expressed in bytes while start time 

contains time when the burst will be sent and the port number is the port of the ToR switch in which the 

burst is to be sent. The CRC field is reserved for cyclic redundancy check and a couple of optional fields 

are reserved for flags. 

 

 

3.2.1.  Burst assembly/disassembly  
Burst assembly can be timer based, length based or a combination of both [12]. We consider the mixed 

approach in which either a timer expires or the burst length exceeds a threshold. The timer starts when a 

packet arrives at the empty VOQ. If the VOQ is not empty when the packet arrives, it joins other packets 

in the VOQ. The control packet is generated after the timer expires or the burst length exceeds the 

threshold and is sent to the controller using transceiver dedicated for the control plane. The control 

packet at this stage contains information of the burst length, IP addresses of source and destination ToR 

switches and IDs of source and destination ToR switches. Each ToR switch is assigned a unique ID. The 

range of IDs of ToR switches is from 0 to N 1 in N rack network. These IDs are used by the controller to 

perform routing and scheduling algorithm. The controller processes the control packet, assigns start time 

and port number of the ToR switch on which a burst is to be transmitted and sends it back to the source 

ToR switch. The control packet processing mechanism is described in Section 3.3. When the control 

packet arrives at the ToR switch, the scheduler module of the ToR switch generates a burst according to 

the timeslot assigned by the controller. The timeslot refers to the duration of time assigned for a burst in 

an optical switch path. The generated burst is then sent to the queue of the allocated port. The scheduler 



module also initiates a new timer if the VOQ is not empty after the burst generation because new packets 

might have been arrived during the RTT of the control packet. In order to realize bidirectional 

communication, the controller also generates a new control packet and sends it to the destination ToR 

switch. The destination TOR switch also generates a burst according to the timeslot allocated and sends it 

to the queue of the allocated transmitter. 

 

The ToR switch also has burst disassembler and packet extractor module to disassemble the bursts 

received through the receivers. The receivers perform O–E conversion and send bursts to the 

disassembler module where packets are extracted from them and are sent to the electronic switch fabric 

and finally to the destination servers using electronic switching. 
 

 

3.3.  Control plane processing 

 

The controller performs routing, scheduling and switch configuration functions. It also performs traffic 

matrix calculation to configure slow optical switch so that elephant flows are routed through the slow 

path. 

 

Routing and scheduling operation is performed when a control packet arrives at the controller for a new 

timeslot and is described in Algorithm 1. There are different steps in the algorithm. First, the controller 

gets the source and the destination IDs of the ToR switches from the control packet. The next step is to 

check whether the same ToR pair has been assigned a timeslot recently or not to avoid duplicate timeslot 

allocation. For example, ToR 1 and 2 send control packets to the controller at the same time or with very 

little time difference. The controller receives the first control packet and schedules it and sends it to both 

ToR 1 and 2. Meanwhile it also receives the second control packet. To avoid duplicate time slot 

allocation, it deletes the control packet if ToR pair has been assigned timeslot recently. For this purpose, 

we define three parameters Tpre,Tcur and Tdup. Tpre is the previous reservation time for the ToR pair, 

Tcur is the current time and Tdup is the time to check for duplicate allocation. The control packet is 

deleted if condition in line 5 of Algorithm 1 is satisfied. 

 

Next step is to find the latest horizon for both fast and slow paths. The term horizon refers to the latest 

available time when the channel will be free. The controller maintains a routing table which contains pre-

defined routes of all source and destination ToR pairs and selects best route according to the latest 

horizon as described in lines 8–11 in Algorithm 1. Tfast and Tslow represent horizons of optimal fast and 

slow paths respectively. Tsch represents the horizon of an already established slow path between source 

and destination ToR pair and TRL is the length of timeslot to be allocated on the basis of burst length 

ðBLÞ in the control packet. 

 

In order to configure the slow switch, the controller maintains a matrix table as shown in Table 2. It 

consists of three fields i.e. traffic (T), connections exist (CE) and connections allowed (CA) for every 

source destination pair. The controller updates traffic entry in the table for both source and destination 

ToR switches as described in lines and 24 of Algorithm 1. We define Interval time Tinterval after which 

the controller updates entry of the CA in the matrix table. The CA is maximum number of connections 

for slow path that a given source destination ToR pair can have in Tinterval and is calculated by the 

following formula: 
 

 
 

 

Tidle represents the idle time for which the channel has not been used. The algorithm sets up a new slow 

path if Tcur-Tslow >=Tidle  and CE <CA as shown in lines 25–29 in Algorithm 1. We assume that the 

channel in the slow switch can be assigned to the new request if it is idle since Tidle and traffic matrix 

also predicts this. All new paths of slow switch are assigned on the basis of this principle. Although the 



slow path is established in this way, the current control packet request is assigned to a fast path if there is 

no slow path already established or (Tfast+TRL)<Tsch). Otherwise, already established slow path is 

assigned to the current request by updating its horizon in the controller. After assigning time-slots, start 

time and port number fields in the control packet are filled by the controller (lines 38 and 41). The 

controller also generates a new control packet by duplicating existing control packet and updates port 

number, source and destination addresses and their relevant IDs in the control packet because source and 

destination ToR will have different port numbers (lines 39–44 and 53–57). In the end, the original control 

packet is sent back to the source ToR switch and the newly generated control packet is sent to the 

destination ToR switch for bidirectional communication (lines 46, 47, 60, and 61). 

 

 

The ports of the slow switches are not necessarily be connected. Fortunately, connectivity is easy to 

achieve via the port exchange operation as described in [16]. First,we find unconnected ports and we 

select two unconnected ports a-b and two connected ports c-d and connect them via replacing links a->b 

and c->d with a->c and b->d. There is a daemon process in the controller which runs after periodic 

intervals to check and connect the unconnected ports in the slow switches. 
 

Switch configuration is the final operation of the controller. After processing the control packet, a 

configuration message is generated and is sent to the switch controller to configure the optical switch. 

The configuration message contains the source and destination port numbers and the connection start-

time. It does not contain the connection end-time because connections are established with unlim-ited 

duration. The connection end-time information is only maintained by the controller. The switch 

controller config-ures the optical switch according to the instructions in the configuration message. 

 

The biggest advantage of establishing a connection with an unlimited duration is that when a new 

connection request arrives at the controller for an already established connection in the slow path, the 

controller only updates its horizon with a new time and nothing is done in the switch controller. But in 

order to ensure fairness, this principle does not apply on the fast switch path. In the fast switch path, all 

the traffic has an equal probability of getting a timeslot while in slow switch paths, the probability of 

being assigned a timeslot on an already established connection is higher than of a timeslot on an as yet 

unestablished connection. This is to avoid frequent reconfiguration of MEMS switches so that persistent 

traffic flows are routed through the slow switch paths. 

 
 

4.  Performance analysis 

 

In this section, we evaluate the HOSA design by ana-lyzing its scalability, cost and power consumption. 

We also investigate its latency and throughput performance by using network-level simulation. 
 

4.1.  Scalability 

 

Slow optical MEMS switches with 320 bidirectional ports are commercially available while fast optical 

switches can be built using technologies as described in our recent work [30]. Due to the constraint of 

maximum port size of fast or slow optical switches, the scalability of the architecture with only one fast 

and one slow switch is limited to a few thousand servers as shown in the first two rows of Table 3. This 

is suitable for departmental and medium-scale enterprise data centers, but we target large-scale high 

performance computing data centers in the order of O(10 K) of servers. In order to achieve this, we 

employ multiple optical fast and slow switches in the core arranged in a single stage topology as shown 

in Fig. 3. 

 

Table 3 describes different configurations of slow and fast switches (SS and FS respectively), ratio of 

their capacities, number of slow and fast switches required (NSS and NFS respectively), servers/rack 

(SRK), and various core/edge oversubscription ratios (CO). It can be seen that maximum system size 



with only one fast and one slow switch, each having ½320 320 configurations and oversubscription ratios 

of 4 and 2 is limited to 2560 and 1280 servers respectively. The maximum size of the system reaches to 

12,800 servers having 40 servers/rack and ½320 320 switches configuration with different capacities of 

slow and fast switches. It can be observed that the number of slow and fast optical switches required are 

varied with the capacity of slow:fast switches. Slow MEMS switches with 1024 ports are feasible [31,7] 

and fast optical switch using SOAs with 1024 ports has also been proposed [10]. The system size of 

40,960 servers with 40 servers/rack and 81,920 servers with 80 servers/rack can be achieved with the 

proposed single stage topology without converting to multi-stage core topologies. Eighty servers/rack can 

be integrated by using two 64 port ToR switches per rack. Similarly, if we consider a pod switch instead 

of the ToR switch that has the capacity to integrate several ToR switches into a single unit and can 

aggregate a few hundreds to thousand servers [14], leads to the scalability up to 245,760 servers by 

considering 240 servers per pod which is ideal for future large scale data centers. 

 

It can be observed that the size of the optical switch (port density) controls the maximum number of 

racks while the number of optical switches controls the core oversubscription ratio. Single-stage core 

interconnect topology with multiple optical switches allows our design to both incrementally scaled up 

(in capacity) and scaled out (in the number of racks) without requiring major re-cabling and network re-

configuration similar to the topology used in reconfigurable architecture [32]. 

 

We avoid multi-stage core topology due to the complexity of the control plane and optical signal 

degradation at every intermediate optical switch (providing all optical switching) due to insertion losses 

and crosstalk. Optical amplifiers may be required in multi-stage core topologies that will not only 

increase overall cost of the interconnect but also the power consumption. Although the multi-stage 

designs can be scaled to a very large topology but scaling is expensive and is not incremental. 
 

4.2.  Cost and power consumption 

 

In our analysis of cost and power consumption, we consider only cost and power consumption of the 

network elements that are used in the interconnection network. Table 4 highlights the cost and power 

consumption of different net-work elements that we use in our analysis. We consider four 

interconnection networks to perform a comparative analysis. These networks are Fat tree, BCube, 

Traditional-electrical (TE) and Optical–electrical (OE). We assume different capacities of fast and slow 

switches in the HOSA to perform a fair comparison with these four networks. Our design is scalable to 

40,960 and 81,920 servers using ToR switches at the edge as described in Section 4.1, so we consider 

these two values for servers to compare our design with other networks. 
 

 

4.2.1.  Fat tree network  
Fat tree (FT) is the most common tree topology that is used in DCNs [33]. The FT with n-port switches 

can connect n3/4  hosts with a total number of 5n3/4 switch ports. The power consumption of the FT 

network PFT is calculated by 

 

 

 
 

where PCMOS is the power consumption of an electrical switch port and PTR is the power consumption 

of a transceiver. For example, in order to calculate power consumption of 40,960 servers, we consider 54 

port switches, 54^3/4=39,366 servers and total number of 5x54^3/4 switch ports. So the power 

consumption of the FT network with 39,366 servers in this case is given by: 
 



 
 

The FT network cannot have exactly 40,960 servers, so we normalize this power consumption value to 

40,960 servers that results in 2.80576 MW as shown in Fig. 6(b). Similar phenomenon is used for the 

power consumption of 81,920 servers. The CAPEX cost of the FT network CCAPEXFT is calculated by 

using the following formula: 
 

 
 

  
where CCMOS is the cost of the electrical switch port and CTR is the cost of the transceiver. Similarly, 

the CAPEX cost of the FT network having 39,366 servers is given by: 

 

 
  

For 40,960 servers, the normalized cost results in 200.704 Million US $ as shown in Fig. 6(a). The OPEX 

cost is related with the power consumption. In order to cal-ulate OPEX cost, we consider 0.1 cent per 

unit cost of electricity that is used in the United States. The OPEX cost of the FT network COPEXFT is 

calculated by using the following formula: 
 

 
 

  



 
 

 

 
 

 



 

 
 

 



 

 



 
 

4.2.6.  Results  
We calculate CAPEX and OPEX costs, and power consumption of the FT, BCube, TE, OE and HOSA 

networks and results are shown in Figs. 6 and 7. 

We calculate cost and power consumption of the HOSA by using different capacities of the fast and slow 

optical switches. In Figs. 6(a) and (b) and 7, FS represents the capacity of the fast optical switches and SS 

represents the capacity of the slow optical switches. FS,SS= 0,1 means that there is no fast optical switch 

and all of the switching capacity is provided by the slow optical switches only while FS,SS= 1,0 reveals 

that there is no slow optical switch and all of the switching capacity is provided by the fast optical 

switches only. These are the two extreme cases, which we consider as the worst and the best case 

respectively. Similarly, FS,SS=0.2,0.8 means that 20% of the switching capacity is provided by the fast 

optical switches and the remaining 80% capacity is provided by the slow optical switches. We compare 

different combi-nation of the switching capacities in HOSA with two extreme cases as well as with other 

networks. 

 

Fig. 6 (a) shows that the CAPEX cost of the interconnection network using only fast optical switches is 

double as that of the FT and BCube network while it is quadruple as that of TE or OE networks, but this 

cost is reduced to almost half by considering HOSA with only 40% of the switches being fast. The cost 

of HOSA with this combination is almost the same as that of the FT and BCube network but it is still 

double as that of TE/OE networks. This extra upfront cost is mitigated to some extent by its reduced 

OPEX cost as shown in Fig. 7. The reduced OPEX cost is observed due to the improvement in power 

consumption as shown in Fig. 6(b). It can be inferred from Fig. 6(b) that with different capacities of the 

HOSA, a 70–65% improvement in power consumption is achieved over the FT and BCube networks 

while a 27–33% improvement in power consumption is achieved over the OE and TE networks 

respectively. 

 

 

4.3. Modelling approach 
To assess the latency and throughput performance of the HOSA, we developed simulations models using 

OMNeT++simulation framework [36]. Our simulation models consist of models for ToR switches, 

fast/slow optical switches and controller. We use OMNeTþ þ inet models for servers and electrical 

switches. The simulated topology consists of TR=40 total racks. Each rack has SRK = 40 servers and 1 

ToR switch. Servers are connected to the ToR switch using bidirectional fiber links. Each ToR switch is 

also linked with the electrical switch using bidirectional fiber link via a transceiver reserved for use by 

control plane. The electrical switch in the control plane is connected to all the ToR switches, the 

controller and all optical switches. We con-sider two optical switches, one for slow path and other for 

fast path. We consider 2:1 core over-subscription by using X¼ 20 optical transceivers per ToR switch 

connected to the optical switches. To evaluate performance at different switching capacities for slow and 

fast optical switches, we use K ={0; 10; 12; 14; 16} links for the slow optical switch and X -K ={20; 10; 

8; 6; 4g} links for the fast optical switch. 

 

4.3.1.  Traffic generation  
To the best of our knowledge, there is no theoretical model or benchmark of the data center traffic has 

been established yet but there are few studies [37,38,31] that have investigated the nature of the data 

center traffic. The traffic characteristics of data centers is bursty in nature and shows evidence of ON–

OFF behavior [38]. We use a Markov Chain Process model for bursty traffic with an ON period of 800 

μs and an OFF period of 200 μs which are exponentially distributed. We consider various exponential 

inter-arrival rates of packets during the ON period to investigate traffic at different loads. We define two 

para-meters to control traffic generation. These are: 

 

 

Stability: It is the lifetime (in milliseconds) of a traffic flow between two ToR switches. 



 

Topological degree of communication (TDC): It is the number of simultaneous destinations ToR switches 

that a given source ToR switch sends traffic to. 

 

The TDC parameter represents diversity of traffic work-loads. We select different values of TDC 

parameters to evaluate performance at low, medium and high traffic diversity. The stability is used to 

evaluate the ability of the core interconnect to adapt to constantly changing communication patterns. 

 
 

4.3.2.  Simulation parameters 
The key simulation parameters are shown in Table 5. We choose a value of 1 μs for the processing time 

of the control packet by the controller. We use a value of 10 ms for the switching time of the slow 

MEMS switch [16]. We select a value of 1 μs for the switching time of the fast optical switches because 

this is a conservative choice, although in some types of fast optical switch this value can be as low as few 

nanoseconds [8]. The RTT of the control packet includes its processing time at the controller (Tproc) and 

the overhead time (Toverhead). The overhead time comprises propagation delay (5 ns for 1 m optical 

fiber), the processing delay of the control packet at the electrical switch, and the optical–electrical–

optical (O–E–O) conversion delay. The aggregate value of Toverhead is conservatively set to 1 μs 

although all these delays are negligible (at most a few nanoseconds [16]). 

 

We consider a value of 2 ms for interval time (Tint) for matrix calculation. For burst generation, we 

choose a combination of 100 μs for aggregation time (Ta) and 500 KB for burst length (BL). We choose 

three cases for TDC by using values drawn from the set f1; 10; 20g and a value of 500 ms for stability in 

order to evaluate their impact on performance of the system. Simulation time was set to 2 s. 

 

4.3.3.  Baseline electrical network 
 

We benchmark the performance against an ideal traditional electrical (TE) packet switching network that 

features a two layer leaf-spine topology [1] as shown in Fig. 8. Its latency and throughput performance 

provide a baseline against which to compare the performance of the new networks. The TE network acts 

as an ideal electrical packet switching network that has low latency and high throughput as compared to 

the FT, BCube and OE networks due to higher number of hops in these networks. 
 

 

4.3.4.  End-to-end delay 
We define end-to-end delay as the time between a packet is generated by the source server and the time 

in which packet is received by the destination server. The traffic within the same rack has negligible end-

to-end delays because the ToR switches have the capacity to switch packets within nanoseconds range. 

We only investigate inter-rack traffic so that the performance of optical interconnect could be evaluated. 

The end-to-end delay is the sum of  packet delay at the ToR switch and the propagation delay from the 

source to the destination servers. The packet delay at the ToR switch is the sum of packet queuing delay 

at NIC, packet processing delay, packet delay for burst assembly, packet delay till burst departure and 

delay due to O–E–O conversion. There is no queuing or processing delay at the optical switch due to all 

optical switching. 

 

The simulation results obtained for latency are shown in Fig. 9. Fig. 9 shows the delay performance at 

different values of offered load by considering three values for TDC. Five of the curves at each plot in 

Fig. 9 represent end-to-end delay versus offered load using different capacities of fast and slow optical 

switches, while the sixth curve shows the corresponding performance of the baseline electrical network. 

The electrical network acts as the performance benchmark while the curve with FS,SS=1,0 is the best 

case in which all of the switching capacity is provided by the fast switches only. The other four curves 

represent hybrid switching capacities for mixed fast and slow switches. It can be seen in Fig. 9(a) that 

end-to-end delay increases by increasing traffic load for different hybrid capacities of fast and slow 

switches. This is due to the high switching time of slow optical switches but is still below 1 ms for 

various switching capacities as compared to the 10 ms switching time of the slow optical switches. A 



similar trend is also observed with high diversity traffic as shown in Fig. 9 (b)and (c). It can be noticed 

that the hybrid system where only 40% of the switching capacity is provided by the fast optical switches 

shows a performance comparable to the system only using fast optical switches until the load reaches 

40%. The improvement of our design in scalability, cost and power consumption comes at the cost of 

latency. This is due to the traffic aggregation delay that is the inherent limitation of optical burst 

switching and also due to the higher switching time of MEMS switches but it is still comparable to the 

baseline electrical network. 
 

 

4.3.5.  Throughput 
 

Fig. 10 shows the throughput performance observed at 80% offered load at the core by considering three 

values for TDC. There are four sets of four bars at each plot which represent average bandwidth achieved 

at fast switches, slow switches, average bandwidth of the interconnect using both fast and slow switches 

and average bandwidth in baseline electrical network. Each set of bars represent combination of different 

switching capacities as shown in the x-axis of all three plots. 

 

It can be seen in Fig. 10(a) that the average bandwidth of slow optical switches is higher than the average 

band-width of fast optical switches and a similar trend is observed with high diversity traffic as shown in 

Fig. 10 (b) and (c). This is because the majority of the traffic is routed through slow optical switches and 

it also results in decreasing overall power consumption of the inter-connection network because slow 

MEMS switches are more power efficient than fast optical switches due to the use of passive switching. 

 

It can also be observed that the overall interconnect bandwidth using both type of switches remains close 

to 8 Gbps at 80% load with TDC=1 and TDC=10 as shown in Fig. 10(a) and (b). It decreases slightly 

with high diversity traffic with TDC= 20 but is still comparable to the baseline electrical network as 

shown in Fig. 10(c). This is because with high diversity traffic, there are a plenty of requests for new 

connections and each request is delayed by the RTT of the control packet. The bandwidth of the 

interconnection is wasted during this RTT which results in decreased overall network through-put in the 

presence of high diversity traffic. A similar trend of performance of decreasing bandwidth with 

increasing traffic diversity is also observed in other optical interconnects [16,32]. 
  

4.3.6.  Performance of the control plane  
In order to assess the performance of the routing and scheduling algorithm of the control plane, we ran 

our algorithm on an Intel host with a Core i7, 2.17 GHz processor and 16 GB RAM. The results were 

obtained for several combinations of parameters. For statistical significance, we averaged the results of 

1000 runs and the results are shown in Table 6. Table 6 shows the execution time of the algorithms for 

different network sizes N in terms of racks, different values of topological degree of communication 

(TDC), and different values of degree of ToR switches. 
 
 

When a control packet arrives at the controller, the controller performs routing and scheduling operations 

as described in Algorithm 1. The complexity of the routing and scheduling algorithm is O(2(2K + L) + 

μ), where K is the number of ports of the ToR switch dedicated for the slow switch paths, L is the 

number of ports of the ToR switch assigned for the fast switch paths and μ represents the aggregate 

processing time of all other instructions. This is assumed to be a constant of negligibly low value. We 

measure the algorithm execution time in a 4:1 oversubscribed network when (K; L) = 5, in a 2:1 

oversubscribed network when (K; L ) = 10 and in a fully subscribed network when (K; L) = 20 using 40 

servers per rack as shown in first three rows of Table 6. Fourth row of Table 6 shows its execution in a 

fully subscribed networking using 80 servers per rack. It can be inferred that the processing time of the 

control packet is independent of the network size and the TDC values. The execution time of the routing 

and scheduling algorithm is very low in 4:1 and 2:1 oversubscribed networks while it increases slightly 

because of the increased number of ports of ToR switches in a fully subscribed network. 

 
 



The traffic matrix scheduling is used to measure the traffic statistics that are ultimately used by the 

routing and scheduling algorithm to configure each slow optical switch. The complexity of this algorithm 

is O(Nx(N-1) + μ). The performance of this algorithm depends upon the network size and the TDC 

parameter. It is independent of the network over-subscription as shown in Table 6. This algorithm runs 

periodically to predict the new traffic matrix. It can be seen that the execution time is proportional to 

network size and the TDC. In a very large network with worst case scenario, e.g. with N = 1024 and TDC 

=1023, we get an execution time around 30 ms that is infeasibly high. In a real network scenario, the 

TDC would not be too high because different studies on data center traffic [37,38,31] have shown that 

traffic within data centers is bounded in degrees and racks communicate with only a few other racks over 

a given period of time. A hardware implementation of the algorithms would reduce this time. 

Implementing our algorithm in hardware such as in an FPGA would reduce this time to a few 

microseconds even in an extreme worst case. We will explore the viability of a hardware implementation 

in future work. 
 

5.  Conclusion 

 

We propose a novel optical interconnect based on a combination of slow and fast optical switches in a 

single stage core topology. The hybrid design exploits the strengths of fast and slow optical switches. We 

use OBS with two-way reservation to get zero burst loss. The two-way reservation is not appropriate for 

traditional backbone optical networks due to the high RTT of the control packet but in a DCN, this RTT 

is not high. We design a resource allocation algorithm in the controller that ensures minimum latency by 

allocating resources efficiently. We use network-level simulation by considering different combinations 

of slow and fast optical switches to validate our design. 

 

We perform a scalability analysis of the proposed interconnect by investigating various ratios of slow and 

fast optical switches. The single stage core topology can be easily scaled up (in capacity) and scaled out 

(in the num-ber of racks) without requiring major re-cabling and net-work reconfiguration. We also 

investigate a trade-off between cost and power consumption of our design by comparing it with 

conventional interconnects by using analytical modelling. The additional upfront cost incurred in 

deploying our solution instead of conventional archi-tecture is mitigated to some extent by its reduced 

opera-tional cost, due to its greater energy efficiency. 
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Fig. 1. Traditional architecture of data center networks [1]. 

 

 

  



 

 

Fig. 2. Traffic movement projection in DCNs from 2012 to 2017 [3]. 
  



 
 

Fig. 3. Proposed architecture: HOSA 
  



 

 
 

Fig. 4. ToR switch design 
 

 

  



 

Figure 5: Control packet format 

 

  



 

 

Figure 6: Total CAPEX cost and power consumption of different interconnection networks with respect 

to different values for the number of servers: (a) CAPEX cost. (b) Power consumption. 

 

 

  



 

 

 

 

Figure 7: Total OPEX cost of different interconnection networks with respect to years using 40,960 

servers. 
 

 

  



 

 
 

 

Figure 8: Topology diagram for the baseline traditional electrical network 

(leaf-spine topology). 
 

  



 

 

 
 

Figure 9: Load vs. end-to-end delay with different capacities of fast and slow switches and with respect 

to different TDC values: (a) TDC=1, (b) TDC=10, and (c) TDC=20. 

 
 

 

  



 
 

 

 

Figure 10: Average bandwidth (Gb/s) with different capacities of fast and slow switches and with respect 

to different TDC values: (a) TDC=1, (b) TDC=10, and (c) TDC=20. 
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