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Rumour Verification through Recurring Information

and an Inner-Attention Mechanism
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Abstract

Verification of online rumours is becoming an increasingly important task with

the prevalence of event discussions on social media platforms. This paper pro-

poses an inner-attention-based neural network model that uses frequent, recur-

ring terms from past rumours to classify a newly emerging rumour as true, false

or unverified. Unlike other methods proposed in related work, our model uses

the source rumour alone without any additional information, such as user replies

to the rumour or additional feature engineering. Our method outperforms the

current state-of-the-art methods on benchmark datasets (RumourEval2017) by

3% accuracy and 6% F-1 leading to 60.7% accuracy and 61.6% F-1. We also

compare our attention-based method to two similar models which however do

not make use of recurrent terms. The attention-based method guided by fre-

quent recurring terms outperforms this baseline on the same dataset, indicating

that the recurring terms injected by the attention mechanism have high posi-

tive impact on distinguishing between true and false rumours. Furthermore, we

perform out-of-domain evaluations and show that our model is indeed highly

competitive compared to the baselines on a newly released RumourEval2019

dataset and also achieves the best performance on classifying fake and legiti-

mate news headlines.
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1. Introduction

Social media platforms now play an important role in the lives of many. They

are not only used for social interaction, entertainment and relaxation but also

for information seeking and sharing [1]. However, social media platforms are rife

with rumours, which following [2] we define as fast-spreading, unverified pieces5

of information. False rumours can cause major problems not only for everyday

users, but also for professionals like journalists and institutions that rely on

social information. Thus, in the past few years, automatic rumour verification

has become a hot research topic. Most research on rumour analysis has focused

on Twitter, as it has established itself as the go-to social platform for real-time10

news [3] coupled with its comprehensive API. Twitter’s unmoderated nature is

also the perfect ground for spreading rumours [4].

According to Zubiaga et al. [2], rumour analysis consists of a pipeline of

four stages: rumour detection, rumour tracking, stance classification and ru-

mour verification. Our work focuses on the rumour verification stage. The15

aim of rumour verification is to verify a rumour and label it as true, false or

unverified. To tackle this problem, related work has mainly performed feature

engineering and investigated different state-of-the-art machine learning algo-

rithms and learning strategies [5, 6, 7, 8, 9, 10, 11, 12, 13]. Unlike the related

work, we focus on recurrent patterns in the messages and use these pieces of20

information to distinguish between the veracity levels.

According to Sen et al. [14] messages during any crisis situation are centered

on a finite set of terms related to that specific event. For instance, in the event

of an airplane crash, the messages are likely to repeat words related to the

crash itself, number of deaths, information related to the pilots, etc. Messages25

about a terror act will be dominated by words related to the terrorists, number

of casualties, location, etc. However, different rumour levels (true, false and

unverified) will use different wordings. For instance, false rumours will aim to

exaggerate the situation, whereas true rumours would aim to report an incident

according to known facts and minimise sentimental overlay.30
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We argue that these repeating or recurrent pieces of information in the ru-

mour classes are important for the verification task. In this research, we use

recurrent words to distinguish between the different veracity classes. To capture

the recurrent words we use a simple but effective method of uni-gram counting.

Frequent uni-grams are determined from the training data and are used to teach35

our model where in a Twitter message to focus. Our model is a combination of

an LSTM layer with an attention mechanism.

The recurrent words are extracted from the source tweets only, i.e. our

approach does not look at replying tweets. Several previous approaches to

rumour verification use stance information of replying tweets [12, 13, 15]. The40

advantage of our approach is that the model can be applied directly on the

first message reporting a rumour and does not wait until a certain number of

replying tweets appear.

Compared to current state-of-the-art performances on known benchmark

data (RumourEval2017), our results show 3% gain in accuracy and 6% in F-1 –45

so far the best reported figures are 57.1% accuracy and 55.8% F-1 [13]. To also

show that the results are due to our use of the recurrent words, we compare

our model to a vanilla LSTM as well as soft attention approach where recurrent

words are not used. Again, the model with the recurrent words leads to best

performance. We also test the model on two out-of-domain datasets. The50

first out-of-domain dataset is the newly released RumourEval2019 dataset that

focuses on natural disasters. The second dataset entails headlines collected from

fake and legitimate news. Our results show that our inner attention approach

achieves satisfactory results on the RumourEval2019 dataset and reaches the

best performance on the headlines dataset.55

In the following section, we discuss related work. In Section 3 we describe

the task as well as the data used in our experiments. Our method is presented

in Section 4. Section 5 describes our experimental settings. Results are given

in Section 6 and discussed in Section 7. We conclude our paper with immediate

future directions in Section 8.60
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2. Related Work

The veracity classification task aims to determine whether a given rumour

can be confirmed as true, debunked as false, or in some cases marked as yet to be

resolved (i.e. unverified). Related work has tackled the problem in a supervised

fashion by applying state-of-the-art machine learning algorithms on features ex-65

tracted from rumour datasets. The pioneering paper of [5] proposed message,

user, topic and propagation-based features. In most subsequent studies these

features have been used as baselines. Following these feature sets, Kwon et al.

[6] and Kwon et al. [16] proposed a new set of feature categories: temporal,

structural and linguistic, and showed their importance in verifying rumours.70

Other than Twitter, the Chinese microblogging platform Sina Weibo also has

been analysed for rumours. For this service, Yang et al. [17] proposed client and

location-based features and showed that these help to increase prediction accu-

racy. Further studies modelled features over time [9], investigated other ways

of determining the features such as from propagation trees [8, 18] or applied75

different techniques to model them such as using Hidden Markov Models [7].

Chen et al. [19] treated rumour veracity classification as an anomaly detection

problem where false rumours are regarded as anomalies. Several features relat-

ing to the content, crowd opinion and post propagation were used. Chang et al.

[20] put the emphasis on the characteristics of users who post the rumours to80

determine the veracity. Tong et al. [21] aimed at curtailing false rumour spread

rather than marking tweets as true or false. Motivated by the fact that later

corrections are not as effective, the authors argued that the first post seen by a

user is influential for their future opinion and thus it is important to show users

rumours only once they are confirmed to be true.85

Rumour veracity classification has also been studied in the RumourEval

shared task at SemEval 2017 [22]. Subtask B consisted in determining if each ru-

mour in the dataset was true, false or remained unverified. Participants viewed

the task either as a three-way [12, 23, 24] or two-way [25, 26], single tweet clas-

sification task. The winning system [12] added features more specific to the dis-90
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tribution of stance labels in the tweets replying to the source tweet (percentage

of reply tweets classified as either support, deny or query). The authors report

an accuracy of 53.6% on the RumourEval dataset. Authors of [13] performed a

re-implementation of this winning system and reported a slightly better perfor-

mance (57.1%). In addition, the authors propose a multi-task-learning model95

where they learn veracity, stance and rumour detection at the same time and

reported again a performance of 57.1% accuracy. Note, in both studies [12, 13]

stance from the responding tweets played a major role in achieving the score

of 57.1%. The power of stance to verify rumours was also recently reported by

Dungs et al. [15]. The survey paper of Zubiaga et al. [2] provides an exten-100

sive summary of current work on rumour verification, along with related tasks

such as detection of rumours and stance classification of messages involved in

rumours.

Unlike the related work we do not perform explicit feature engineering, nor

do we rely on the wisdom from the crowd, e.g. stance information. Our approach105

works only with the source tweet and does not look at replying messages. The

advantage of our method over the previous studies, especially those which rely on

replying tweets and are forced to wait until a certain number of replies appear,

is that it can work without any delays and therefore be applied in real time –

whenever a source tweet appears, our approach can judge it in terms of veracity.110

In our approach, we make use of recurrent words extracted from source tweets

and use them in an attention mechanism to steer the model direction to areas

which are distinctive in different rumour levels. Note, attention mechanism has

been applied by Chen et al. [27] to perform early rumour detection. However,

unlike these authors, we apply inner-attention whereas the authors applied soft115

attention on top of the LSTM layers.1 The idea of recurrent words or patterns

have been also applied to perform rumour detection [5, 28]. For instance, Zhao

et al. [28] use manually constructed patterns like <is (that / this / it) true> to

1We implemented a soft attention method as baseline to compare it with inner-attention

approach.
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detect tweets which enquiry the truth of information conveyed by some rumour

spreading tweets. The patterns are used as features in traditional machine120

learning settings. We extract our patterns automatically from the training data

and inject them through attention directly to our model. In addition, we use

them to verify rumours instead of, as done by Zhao et al. [28], detecting or

tracking rumours.

3. Task and Data125

3.1. Task: Rumour Verification

Rumour Verification refers to the task of determining a rumour source post

being either true, false or unverified and thus is treated as a 3-label classification

task [2]. The label unverified is used when there is not enough information to

verify the message. The input to the task is a source tweet reporting a rumour.130

Optionally, the source tweet may have replying tweets. Based on the source

tweet and the optional replying tweets the task is to label the rumour with a

class label.

3.2. Data

We use two rumour datasets for the rumour verification task. Both datasets135

include conversation threads in Twitter about several events. Each conversation

thread is represented in a tree structure with the source tweet as a root node

and several branches of replying tweets. A reply chain is a sequence of tweets

from root node to a leaf node.

3.2.1. RumourEval2017140

Our first data resource is the RumourEval2017 dataset [29] which is derived

from the PHEME dataset [30]. The RumourEval2017 dataset contains 325

Twitter conversation threads discussing rumours with respect to eight different

events like Germanwings Air Crash, Charlie Hebdo, Ottowa Shootings, etc. All

the events are man made. Each thread in the dataset is annotated as true, false145

or unverified. Also each reply to a source tweet is annotated with one of the
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Split Set # Rumours # True # False # Unverified

Train 272 127 50 95

Dev 25 10 12 3

Test 28 8 12 8

Total 325 145 74 106

Table 1: Distribution of RumourEval2017 dataset.

labels: supporting, denying, questioning and commenting. An example conver-

sation structure is shown in Figure 1. As it was used for the RumourEval2017

challenge it is split into training, development and held-out test set. Table 1

shows the class distribution for the three sets.150

Figure 1: RumourEval2017: Example conversation structure.

Note the split of the dataset into training, development and testing sets is

performed randomly. Also note that the rumours in the dataset are independent

of each other so that there is no timely development between the rumours. This

is also the case for the RumourEval2019 dataset (see next Section).
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Split Set # Rumours # True # False # Unverified

Test 56 22 30 4

Table 2: Distribution of RumourEval2019 dataset.

3.2.2. RumourEval2019155

Our second data contains rumours about natural disasters such as hurri-

canes, tornados, floods, etc. and thus has a completely different domain fo-

cus as the RumourEval2017 data. The structure of the data is similar to the

RumourEval2017 and contains conversations with a source tweet that starts

a rumour and replies reacting to the source tweet. Also similar to the Ru-160

mourEval2017 data, the veracity levels are true, false and unverified and have

been also annotated for stance (supporting, denying, questioning and comment-

ing). This data was adopted by the RumourEval2019 challenge as testing data.

In this work we refer to this data as the RumourEval2019 dataset. Statistical

details about it are shown in Table 2.165

3.2.3. Headlines

In addition to the rumour datasets described in the previous sections, we

also used news headlines to validate our model. More precisely we have news

headlines extracted from manually determined fake news articles and legitimate

articles. Here the idea is to validate our model whether it is able to distin-170

guish legitimate headlines which follow rather a reporting style from fake news

headlines that use catchy and exaggerating terms.

We use the data repository FakeNewsSet2 provided by [31] for the purpose

of fake news headline instances. For the legitimate news we took random 100

articles from the Guardian and the independent and used their headlines as175

legitimate instances. The domains of the articles – fake and non-fake – are

from the political and economic areas. In total we have 100 headlines from the

fake articles and 100 headlines from the true news. We label the fake news

2https://github.com/KaiDMML/FakeNewsNet
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Veracity Class Example Headlines

False
WHOA! NEW DISTURBING VIDEO Shows HILLARY’S

Campaign Likely FAKED Her Audience At NC Rally

True New car sales plunge 20 % in September

Table 3: Example fake and non-fake headlines.

related headlines as false and the headlines from the legitimate articles with

true. Example of true and false news headlines are shown in Table 3.180

4. Method

4.1. Core Idea

An event causes many social media users to form groups around related issues

and hashtags [32]. These groups use language that is narrow and is centered on

a finite set of terms related to the event [14], i.e. there are terms that repeat185

or recur among the messages. We argue that these recurring terms carry useful

information to distinguish between rumour classes. In Table 4 we list some

frequent uni-grams for different rumour classes. In the true rumour case we

can see that the terms indicate some fact reporting behaviour such as “live,

died, freed, identified”, etc. However, unlike true rumours the false ones have190

a different style. They tend to contain words commonly used to exaggerate

like “horrifying, terrorist”, etc. This indicates that they rely on emotionally

coloured language aiming to fuel fear in readers. Interestingly, false rumours

even contain terms like “rumours, false, fake”, which are used to attack other

pieces of information reporting about the event and claim that they are all195

false. This has been also reported by earlier work such as Starbird [33] who

reports that false messages accuse true ones of reporting fake information. For

the unverified messages the language is vague and thus difficult to classify as

one of the previous classes – probably this is also why the messages in this

class were marked as unverified. However, as in the true rumours the terms in200

the unverified messages seem to follow a reporting behaviour such as “alleged,
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Veracity Class Example Terms

False rumours, terrorist, #muslim, internet, horrifying, false, cold, fake

True live, died, freed, free, follow, identified

Unverified alleged, disappeared, military, give

Table 4: Example recurring terms extracted for each veracity class from RumourEval 2017

dataset.

disappeared” but the message is not as clear as in the case of true rumour. Our

aim is to capture these recurring terms and use them to guide our classification

model. We capture the recurring terms using the frequency distribution of uni-

grams observed in the training data.205

4.2. Inner-Attention LSTM

In our work, we tackle the veracity classification using a inner-attention

based LSTM neural network [34]. Our model resembles the ones used in ear-

lier work for question answering [35] and topic specific argument retrieval [36].

Figure 2 shows the architecture of our inner-attention based LSTM network.210

This neural network is able to learn the importance weighting of source tweet

words with respect to a given set of recurring terms. Both the source words as

well as the recurring words are represented using word embeddings (Word2Vec

[37] or Glove [38] trained on the Twitter dataset3). For each source word, an

individual weighting factor is learned denoting the importance of that word215

with respect to the recurring terms. The following formula is used to obtain

this weighting factor αi for each word embedding xi:

αi = σ(uT
Wsxi) (1)

where u is the averaged recurring terms embedding, and Ws are the parameters

of the embedding mechanism. Each word embedding xi is then multiplied by

its respective relevance weight factor αi using Formula 2.220

3https://nlp.stanford.edu/projects/glove/
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Figure 2: Inner-Attention LSTM network.

x̄i = αixi (2)

In this way, non-relevant source words are filtered out or weighted less. This

leads to weighted source tweet word embeddings, on which an Long Short Term

Memory (LSTM) [39] layer is applied in the next step. The LSTM reads each

weighted tweet word at a time and produces an output when the end of the

tweet is reached (last word). The output depends on the last word but also on225

what the LSTM has read till the last word. This history of information starts

with the first word and is built up with every new input. However, instead

of letting every new word contribute to the historical knowledge LSTM unit

applies, similar to humans, some kind of information focus. It uses only those
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words in the historical knowledge which are also worth to consider. Words that230

are not worth to consider are not used in construction of the history knowledge.

Once the tweet ends LSTM constructs the output. In our model this output

is passed to a dense layer (feed forward neural network) which is followed by

softmax. Note the LSTM units also used in the baseline systems work on the

same principle as described here.235

4.3. Real Time Usage

As noted earlier, in our method we tackle the rumour verification with the

source tweet alone, i.e. the tweet that is the origin of the rumour. This means

that reply chains with respect to the source tweet are not required. This makes

our approach applicable for any source tweet with or without replies. Further-240

more, since we do not use replying tweets, we also do not require knowledge

such as stance information from them. This makes our approach independent

from any additional pipelines which might introduce further noise for the sub-

sequent parts. Due to these facts – focus only on the source tweet and no use

of additional pipelines – we argue that our approach can be applied in real time245

situations and on any short message reporting a rumour.

Note, what we refer with real time usage is that since our approach works

only on the source tweet that it can be applied once such a source tweet about

an event such as the German Aircraft crash is posted. The source would be

carrying a rumour that requires verification. In this current study our aim is250

to investigate the contribution of recurring terms for this task. Also as noted

in Section 3.2.1 the rumours in both RumourEval datasets are independent of

each other. This setting makes our approach suitable for distinguishing between

rumours that carry exaggeration and false information and those that aim to

report proper pieces of information.255
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5. Experiments

5.1. Baselines

5.1.1. NileTMRG*

The best system on the RumourEval2017 shared task achieved 53.6 % accu-

racy on the test dataset [12]. The winning system relied on a traditional feature260

engineering approach by proposing a linear SVC with a concatenated feature set

consisting of a Bag of Word (BoW) source tweet representation, the existence

of URL and hashtags as well as the percentage of stance information from the

replying tweets (querying, denying or supporting). A re-implementation of the

NileTMRG was performed by Kochkina et al. [13]. The new model NileTMRG*265

achieves an accuracy score of 57.1% on the same dataset.

5.1.2. Branch LSTM

The branch LSTM (branchLSTM) is a sequential approach which consists

of several LSTM layers that are connected to several feed-forward ReLU layers.

The prediction layer consists of a softmax layer and outputs the probabilities270

for the class labels [30]. Kochkina et al. [13] adopted this model for the rumour

verification task and applied on the RumourEval2017 dataset.

5.1.3. Multi-Task Learning

Kochkina et al. [13] use a multi-task-learning model in order to predict

veracity status of rumours. The model jointly learns to predict for the tasks of275

rumour detection, stance classification and rumour veracity classification. The

joint learning of all the tasks leads to the best performing setting. Using this

setting the authors report 57.1 % accuracy on the RumourEval2017 test dataset.

5.1.4. Vanilla LSTM

In addition to the baselines described above we also use a vanilla LSTM280

without the inner-attention mechanism. This is to evaluate whether recurring

terms applied through the attention mechanism have an impact on the results
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or not. Apart from omitting the inner-attention part, the remaining parts of

the model shown in Figure 2 are kept for the vanilla LSTM baseline.

5.1.5. LSTM with Soft Attention285

In the last years attention mechanism methods have been applied on the

rumour detection task to highlight terms that are helpful to distinguish between

rumour/non-rumour representations [27]. To compare our proposed Inner-Attention

LSTM we use such an attention mechanism, also referred to as soft attention

mechanism [34], as additional baseline. This approach makes use of LSTM290

working with an attention model. However, unlike our inner attention model,

this one does not require recurring term as input to draw attention on the in-

dicative words in the source tweet. LSTM model with soft attention applies

attention on top of the LSTM layer in order to determine the important parts

of the source tweet after it passes the LSTM layer (see Figure 3). The outputs of295

the LSTM layer (at each timestamp) are weighted and aggregated. The weights

are learned through the attention mechanism. The result after the aggregation

is a context vector c:

c =

T∑

t=1

αtht (3)

where T is the total number of time steps in the hidden state sequence h and

αt is an individual weight factor at each time step t. Each weighting factor αt300

is derived by Formula 4.

αt = σ(tanh(Wsht)) (4)

αt is determined by a learning function that is composed of its hidden unit ht

and a trainable weight vector Ws. Softmax is applied to transform the weighting

factors into a probability distribution.
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Figure 3: LSTM network with Soft Attention

5.2. Experimental Set-up305

5.2.1. Experiments on RumourEval2017 and RumourEval2019

For the rumour veracity classification task we conduct two experiments based

on different data set-ups. We also conduct an experiment where we apply exist-

ing models on the news headlines. In total we have three experiments. As noted

above rumours (source tweets) (Section 3.2.1) in our datasets carry some pieces310

of information put forward about an event and thus require verification. Each

such piece of information is independent from the others and thus the rumours

about an event do not have timely ordering. This is also the case for the head-

lines. Therefore in our experiments we treat each rumour/headline independent

15



from others and assess its veracity only based on the recurring information.315

First Experiment. :

The first experiment uses the same train/dev/test split as used in the Ru-

mourEval2017 Task (cf. Table 1). This means we train our models on the train

set, tune the parameters using the dev set and test the tuned model on the test

set.320

Second Experiment:. The second experiment makes use of the RumourEval2019

dataset. In this second experiment we have two different settings.

Setting 1:. In the first setting we keep the training from RumourEval2017

dataset as it is, however, merge the dev and test sets together and use this

merged dataset for parameter tuning. The entire RumourEval2019 dataset is325

used as testing data. This tests the performance of a domain independent model

(RumourEval2017) on a foreign domain (RumourEval2019).

Setting 2:. In the second setting, we extend the previously training data with

additional RumourEval2019 data (20% – we will release the splits for the com-

munity to re-produce our experiments). The merged dev and test sets from330

RumourEval2017 are still used for tuning the model parameters. This tests

the contribution of in-domain data on out-domain trained models. The test

happens then on the remaining 80% of the RumourEval2019 data.

Third Experiment:. In this experiment, we replicate the settings as done in

experiment 2 but replace the testing data with the news headlines. This means335

we have again two settings:

Setting 1:. Same as in experiment 2 with setting 1 but the testing data is the

entire news headline dataset. The RumourEval2019 dataset is not used.

Setting 2:. Again same as in experiment 2 with setting 2 but the injected ad-

ditional data comes from the headline dataset. Also the testing is purely per-340

formed with the news headlines.
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In all settings the results are macro-averaged. Figure 4 shows the distribution

of train/dev/test sets of all experiments and settings.

Figure 4: Train/Dev/Test Distribution Sets of all experiments and settings.

5.3. Hyperparameters

For the baselines reported by related work (NileTMRG*, branch LSTM and345

multi-task learning approaches) we use the models as reported. In the following

we describe the hyperparameter tuning performed on the three LSTMs imple-

mented in this work.

17



5.3.1. Inner-Attention LSTM

Hyperparameter tuning is used for finding the best model configuration. We350

trained several models based on different LSTM sizes, dropout rates, batch sizes,

learning rates and epochs. Our best model is trained for 11 epochs with ADAM

optimization algorithm, an LSTM size of 10, a learning rate of 0.01, a dropout

rate of 0.1 and a batch size of 16.

We also investigated both GloVe and Word2Vec embeddings. The 25 dimen-355

sional GloVe word embeddings performed better than Word2Vec.

5.3.2. Vanilla LSTM

The best Vanilla LSTM model is trained on 10 epochs with ADAM opti-

mization algorithm, an LSTM size of 64, a learning rate of 0.01, a dropout rate

of 0.1 and a batch size of 16.360

5.3.3. Soft Attention LSTM

Our second attention-based model gains best performance results by train-

ing for 11 epochs with ADAM optimization algorithm, an LSTM size of 16, a

learning rate of 0.01, a dropout rate of 0.1 and a batch size of 16. In terms

of hyperparameters this model does not differ much from our inner-attention365

attention-based model.

5.4. Usage of Recurrent Terms

Our recurrent terms are extracted based on two conditions: (1) We use

distinct terms for each class, i.e. we make sure terms occurring frequently in one

veracity class never occur in the other veracity classes. (2) A term must appear370

in at least 2 events. The second condition aims to generalize the term extraction

by avoiding terms from one event dominating the entire set of recurring terms

which are provided as input to the LSTM model.

We tried several strategies to use the recurring terms in our inner-attention

LSTM model. In out first strategy, we extracted from each rumour class up375

to 20 frequent terms and used them all in our model. In the second strategy,

18



we included only terms from the true and unverified classes and omitted terms

from the false class. Finally we used terms only from the false class. Note

that the last two settings aim to distinguish the false class from the other two

classes. We achieve the best results when we guide our LSTM model with the380

false terms only. The results reported in this work are all based on recurring

terms extracted from the false rumours. These terms are extracted from the

RumourEval2017 dataset.4

6. Results

Table 5 shows the evaluation results of our proposed method compared to385

the baseline approaches. We first report results on the RumourEval2017 dataset

(experiment 1).

First we see that all systems outperform the majority vote baseline which

simply outputs the class tĥat has the majority class in tĥe training data. The

baselines NileTMRG* and multi-task learning achieve the same accuracy score390

of 57.1% and differ in F-1 scores (53.9% vs. 55.8% F-1) . Both systems are

currently known state-of-the-art systems on the RumourEval2017 dataset. The

branchLSTM performs slightly worse and achieves only 50% accuracy and 49.1%

F-1. A similar performance is achieved with the soft attention model leading to

50% accuracy and 49.6% F-1. The Vanilla LSTM model performs better than395

the branchLSTM and the soft attention models and achieves 53.7% accuracy

and 52.8% F-1. On the other hand, the proposed inner-attention based LSTM

model outperforms the state-of-the-art models by 3% in the accuracy metric

and almost by 6% in F-1.5 This shows that injecting the model with recurrent

words indeed helps the model to do better distinction between the classes.400

4Note terms can also be prepared manually and injected to the system. This is especially

useful if the manual terms present a better distinction between certain classes of a given

problem.
5These are results of the model after parameter tuning. We also experimented with models,

this is also the case for all subsequent experiments, where no parameter tuning was performed.

Rresults of this experiment are shown in Appendix A.
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Major-

ity

Vote

Nile

TMRG*

Multi

Task

Learn-

ing

branch

LSTM

Vanilla

LSTM

Soft

Atten-

tion

LSTM

Inner-

Attention

LSTM

Macro

F-1
0.429 0.539 0.558 0.491 0.528 0.496 0.616

Accu-

racy
0.2 0.571 0.571 0.5 0.537 0.5 0.607

Table 5: Results from experiment 1. Comparison of performance of several baselines with

Inner-Attention LSTM model tested on RumourEval2017 dataset.

Multi Task

Learning
Vanilla

LSTM

Soft

Attention

LSTM

Inner-

Attention

LSTM

Macro

F-1
0.285 0.333 0.413 0.399

Accu-

racy
0.304 0.482 0.464 0.554

Table 6: Results from experiment 2, setting 1. Comparison of models implemented in this

work and strong baseline from related work (according to F-1).

The results of the second experiment (experiment 2), setting 1, are shown

in Table 6. Note that in this experiment, we evaluate the performance of an

existing model on out-of-domain data. For this experiment, we use the mod-

els implemented in this work – the proposed inner-attention model, the re-

implementation of the soft attention model and finally the vanilla LSTM model405

– and compare it with the best performing baseline from related work (according

to F-1), which is the multi-task learning model.

From the results, we see that there is a performance drop by all the systems

due to the out-of-domain application. The biggest drop happens for the multi-

task learning system and the least drop is seen for the soft-attention LSTM410

approach. In case of performance the proposed inner-attention approach is

superior to all other models in terms of accuracy. It is able to classify the
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Multi Task

Learning
Vanilla

LSTM

Soft

Attention

LSTM

Inner-

Attention

LSTM

Macro

F-1
0.477 0.396 0.633 0.478

Accu-

racy
0.489 0.636 0.636 0.705

Table 7: Results from experiment 2, setting 2. Comparison of models implemented in this

work and strong baseline from related work (according to F-1)

instances with 55.4% accuracy. In terms of F-1 although it has a huge drop on

this metric it is only outperformed by the soft attention approach and achieves

better results compared to the other two baselines.415

We also tested the scenario of recover by injecting some additional data from

the RumourEval2019 testing data to the training data. This is the experiment

2 with setting 2. The results for this experiment are shown in Table 7.

From the results in Table 7, we can see that all systems recover and get a

boost in performance after seeing 20% of the new data during training. The420

trend in terms of performance ranking continues among the systems. In terms of

accuracy, the inner-attention approach is superior to all other systems. However,

according to F-1, the soft attention method shines and outperforms all other

systems by a large margin.

7. Discussion425

For results shown in Table 5:. Based on the experiment 1 we noted that our

inner-attention approach performs substantially better than the current re-

ported state-of-the-art systems such as NileTMRG* and the multi-task learning

approaches. This shows that the recurrent terms indeed help to guide the model

in terms of better classification. In addition, it should be noted that these sys-430

tems use additional information such as stance from the replying tweets. Thus
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they are forced to wait until some number of replies happen for the source tweet.

Our system does not have this limitation and thus have also another advantage

that it can be used whenever there is a source tweet. For instance, in the ab-

sence of stance information, the multi-task learning system’s performance drops435

to 37% in F-1 and 41% in accuracy [13]. Also systems similar to NileTMRG*

like e.g. [23] that focus on feature engineering – but unlike NileTMRG* omit

crowd wisdom such as stance information – achieve an accuracy of only 46.4%

on the RumourEval2017 shared task. The proposed approach outperforms also

the vanilla LSTM and the soft attention based LSTM approaches with great440

differences in the scores.

As described in Section 5.4, the inner-attention model uses terms that are

selected by conditioning e.g. that they occur in one class (false) but do not

appear in the other class (true). So there is in advance a clear distinction in

the e.g. false-vs-true rumour terms and the results show that exactly this clear445

distinction helps the model to perform best. The other systems try to learn this

distinction on their own, but given the small training data size the distinction

stays blurry and they perform poorly.

However, we also injected stance information in our proposed inner attention

model to investigate any positive impact the stance would have in the task. The450

resulting architecture is shown in Figure 5. In this model we simply aggregate

the stance information from the replying tweets (e.g. total number of supporting

stances) and merge them with the output of the LSTM before inputting to

tĥe softmax layer. This late fusion of stance to tĥe LSTM output aims to

emphasize on the importance of stance features and should help to use tĥe455

stance information effectively.

The late fusion architecture shown in Figure 5 leads to 56% in macro F-1 and

57.1 accuracy. This is less than what our original model alone achieves. A reason

for this, as also shown by [15], is the way how stance information is passed to the

system. Dungs et al. [15] show that stance orientation changes over time and460

thus is important to capture this development to better capture the wisdom from

the crowd and employ it on the verification problem. Our simple aggregation
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Figure 5: Inner-Attention LSTM network with Replies Stance Distribution.

model does not have tĥis capturing characteristics and simply collapses the

different stance information given at different time stamps together and employs

the aggregated information on the verification problem. This leads to confusion465

of the system and affects the results negatively. In our future studies we plan to

investigate alternative architectures that capture also stance information well.

Finally, as discussed in Section 4.1 the false rumour recurring terms tend to

use an exaggerating and the true rumours a reporting language (cf. Table 4).
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In Table 8 we show an example of a false rumour predicted as such. The table470

shows where the model focuses most (the higher the value the more important

is the term for the model for performing the right class prediction). It is clearly

recognizable that the words “Muslim”, “big”, “fat” and “mistake” are highly

weighted by the model. Most of them also follow an exaggeration pattern and

thus the model decides the false label for this particular example. In Table 9 we475

also show an opposite example with a true rumour that is also correctly classified

by our system. The model does not pay almost no attention on stop words, the

number and the month name “september”. It pays attention on the other terms

which follow unlike in the false rumour example rather a reporting style. The

model makes use of this difference in the style of reporting and classifies this480

rumour as true.

Merkel

0

ad-

mits

0.9

bring-

ing

0.01

Mus-

lim

0.99

Refugees

0.4

was

0.2

a

0.01

big

0.99

fat

0.99

mis-

take

0.99

Table 8: Attention Weighting of a correctly classified false rumour post example.

New

0.81

car

0.99

sales

0.5
plunge

0.2

20

0.01

%

0.01

in

0.01

Septem-

ber

0

Table 9: Attention Weighting of a correctly classified true rumour post example.

The unverified rumours have vague terms but they tend to look similar to the

true rumour terms. This means that the false rumours are lexically different

from the other two classes. To understand whether this phenomenon is also

reflected in the model behaviour, we computed the confusion matrix (Figure 6)485

of the model trained on experimental 1 setting (experiment 1).

From the matrix we can see that the model is able to make the correct pre-
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Figure 6: Confusion matrix of the inner-attention based LSTM model on the RumourEval

test dataset.

diction for 88% of the time for the true class and confuses them only in 12%

of the cases with the false class. This shows that the recurring terms helped

to guide the model to perform the class distinction during the classification. It490

learned that true instances do follow different behaviour than false instances.

However, interestingly the false class is confused with the true and the unveri-

fied classes. The model miss-classifies 50% of the false messages to the true and

unverified categories. We think this is the case when the false rumour starts

using the reporting style as in those two classes and omits indicators of exag-495

geration. This is e.g. shown in Table 10 with a false rumour that is classified by

our model as unverified. The model focuses mostly on the terms like “murder”,

“every” and “life” which seem to try exaggerate a phenomenon. However, they

are also put into context with reporting style words like “declare”. Because of
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this the model confuses the false rumour with the unverified class. For real use500

scenario this means that the proposed system is good in detecting obvious false

rumours i.e., rumours that follow no reporting style at all but contain exaggera-

tions, and struggles to capture false rumours following reporting style. Thus in

real use scenario we think that the proposed system could work as a pre-filter

to detect such obvious false rumours. To also detect false rumours that follow505

reporting style the system requires to look deeper on other aspects such as user

meta information, communication network but also at the replies. We aim to

enrich the proposed approach with such aspects in our future work.

Pro-

Lif-

ers

0

de-

clare

0.01

ejac-

ula-

tion

0.01

is

0.01

mur-

der

0.99

ev-

ery

0.99

sperm

0.01

cell

0.01

is

0.01

a

0.01

life

0.99

Table 10: Attention Weighting of a wrongly classified false rumour post example as unverified.

Finally, we have also mis-classification in the unverified category (confusion

with the true class). As discussed in Section 5.4 the unverified messages are510

rather vague and we think this is reflected in the results.

For results shown in Table 6 and 7:. In the second experiment (setting 1 and

setting 2) we performed an out-of-domain evaluation. The results showed that

overall there is a performance drop in all systems when the model is trained

using the RumourEval2017 dataset and tested on the RumourEval2019 testing515

data. This drops show that all systems are somewhat domain dependent and

thus have difficulties to perform decisions on an unseen domain. The most severe

case was observed with the multi-task learning approach and least with the soft-

attention LSTM. Overall the best performing systems were the inner-attention

approach according to accuracy and the soft attention LSTM according to F-1.520

Later in the setting 2 we injected (see Table 7) some out-of-domain data to the

training set and could observe recoveries in all systems. The highest recovery

was observed in the soft attention LSTM and less in the other models.
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These behaviours are connected with how the models are focused on the

task. The multi-task learning as well as the vanilla LSTM approaches have no525

attention mechanisms integrated. They have only the LSTM units to adopt

themselves to the task – learn what terms are useful to distinguish between the

classes. However, this can only happen with a lot of data which is unfortunately

not available. This is why these models do not have much chance to adopt

themselves to the task.530

The soft attention model has also an LSTM in its core but it has the advan-

tage that it uses an attention part on top of the LSTM which helps the entire

model to focus on terms that are indicative for the different classes. It is an

extra help for the model to do something more quickly. The recovery results

from Table 6 to 7 show this phenomenon.535

In case of the inner-attention, the selection of the recurrent terms is very

important. This is the extra bit that helps the model to quickly focus itself

to the right classes. However, as described in 5.4 our terms are taken from

the false rumours and also only from the training data. In experiment 2 with

setting 1 all the false rumours come from the RumourEval2017 data and more540

than 90% in case of setting 2 (4 false rumours from RumourEval2019 have been

injected to the training data). This means the recurrent terms still represent

the RumourEval2017 domain and how false rumours are expressed in man made

disasters. However, unlike the man made disasters the natural catastrophes

follow rather a different language usage and have little in common with the false545

terms. For instance, recurrent terms extracted from the RumourEval2019 entire

dataset contain in the false category are terms like wiping, illegal, incredible,

never (see Table 11). These are certainly different from those extracted from the

RumourEval2017 dataset (see Table 4) and thus the model has little information

from the attention part to be guided. This is why we think that the inner550

attention approach struggles with out-of-domain data.

The weakness is maybe a strength on something else:. In Section 4.1 we dis-

cussed that the true/unverified recurrent terms follow a reporting and that the
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Veracity Class Example Terms

False WTF, wiping, illegal, incredible, never, flooded, infidels, THUGS

True weather, islands, hurricanes, guard

Unverified nuclear, ocean, drop, helping

Table 11: Example recurring terms extracted for each veracity class from RumourEval2019

dataset.

Vanilla LSTM
Soft Attention

LSTM

Inner-Attention

LSTM

Macro

F-1
0.295 0.323 0.539

Accu-

racy
0.485 0.545 0.805

Table 12: Some models trained on RumourEval2017 dataset and tested on headlines data

(Experiment 3, setting 1).

terms extracted from the false message follow an exaggerating style. From the

results shown in Table 5, we have seen that our inner attention model has learned555

to use them well to distinguish between the different classes. A logical ques-

tion which arises with this is whether such a model is also able to distinguish

between news headlines of legitimate news (which follow rather reporting style)

and fake news headlines where the language is rather exaggerated. To analyse

this we performed the experiment 3 with setting 1 and 2. For these experiments560

the headlines dataset described in Section 3 is used.

According to experiment 3 setting 1 we first apply the RumourEval2017

trained model on the entire headlines dataset – this means the entire headlines

dataset is treated as testset. In the second case (setting 2) we inject 20% from

the headlines data to the RumourEval2017 training set and test the resulting565

model on the remaining 80% headlines. We use the vanilla, soft attention and

the inner-attention LSTM approaches. Note, these are the only models which

do not use additional information such as stance and thus are directly applicable

to the headlines use case. The other systems require also stance information

from replies which do not exist in the headlines case.570
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Vanilla LSTM
Soft Attention

LSTM

Inner-Attention

LSTM

Macro

F-1
0.49 0.344 0.811

Accu-

racy
0.734 0.581 0.813

Table 13: Some models trained on RumourEval2017 dataset with 20 % reserved headlines

data and tested on remaining headlines (Experiment 3, setting 2).

From the results shown in Table 12, we see that the inner-attention LSTM

approach outperforms the other two baselines significantly (p < 0.001).6 It

clearly learned how to distinguish between reporting style (true messages) and

exaggerated language (false messages). It achieves an accuracy of 80.5% and

53.4% F-1. Furthermore, it learns to adopt itself more on the task after seeing575

20% of the headlines (results shown in Table 13). In this case its F-1 performance

gets boosted to 81.1% and gains slightly further on accuracy. In the two other

models the difference between reporting and exaggeration is not captured and

thus they fail to perform well on this second out-of-domain data.

8. Conclusion and Outlook580

We have proposed a rumour veracity system that solely works on the content

of source rumour post without requiring reply messages and additional crowd

wisdom such as stance information. By leveraging the fact that false rumours are

reported with different recurring terms in contrast to true as well as unverified

rumours, we use the recurring false terms and inject them in our inner-attention585

LSTM in order to guide it in the distinction between the rumour classes. We

compare the results of the proposed approach to vanilla LSTM and soft attention

model where no attention on these (false) indicators is performed along with

three baselines which reported state-of-the-art results on known bench mark

6We performed an independent 2-samples t-test with Bonferroni correction.
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data. In the RumourEval2017 experiment our model outperforms the state-of-590

the-art classifiers leading to 60.7% accuracy and 61.6% F-1. We also showed

that simple aggregation of the stance information from the replies and merging

it with the inner-attention network does not lead to better performance but

rather confuses the system slightly. Additionally we conducted an experiment

using the RumourEval2019 as test set and showed that our model is competitive595

compared to the baselines, achieves even best results in terms of accuracy but

fails to take the lead in terms of F-1. Finally we showed that our proposed model

shines in the headline experiments and clearly outperforms baselines with large

margin.

In the future we aim to investigate alternative architectures that capture600

both recurring patterns and stance information. However, we also plan to in-

vestigate user information as well as communication network as additional fea-

tures in our system. Next, we aim to also apply our model to different problems

such as hate speech and help seeking/offering detection in disaster situations.

In both cases, users reporting in social media will tend to use recurring terms.605

We think that capturing and using these terms will help to tackle these tasks.

Acknowledgements

This work was partially supported by the European Union under grant

agreements No. 654024 SoBigData, No. 825297 WeVerify and the Deutsche

Forschungsgemeinschaft (DFG, German Research Foundation) - GRK 2167, Re-610

search Training Group “User-Centred Social Media”.

Appendix A

Table 14 shows the performance of our inner attention model with and with-

out parameter tuning.
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Inner-Attention

LSTM

Inner-Attention LSTM

w/o parameter tuning

Experiment 1 0.607/0.616 0.534/0.536

Experiment 2

(Setting 1)
0.399/0.554 0.373/0.536

Experiment 2

(Setting 2)
0.478/0.705 0.467/0.659

Experiment 3

(Setting 1)
0.539/0.805 0.505/0.76

Experiment 3

(Setting 2)
0.811/0.813 0.778/0.781

Table 14: Performance comparison of inner-attention LSTM model w/ and w/o parameter

tuning. The first number refers to Macro F1-score while the second number represents accu-

racy.
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