
Selecting and combining complementary feature representations
and classifiers for hate speech detection

Rafael M. O. Cruza,∗, Woshington V. de Sousab, George D. C. Cavalcantib

aLIVIA, École de Technologie Supérieure, University of Quebec, Montreal, Québec, Canada -
www.liviamtl.ca

bCentro de Informática, Universidade Federal de Pernambuco, Recife, PE, Brazil

Abstract

Hate speech is a major issue in social networks due to the high volume of data generated daily.

Recent works demonstrate the usefulness of machine learning (ML) in dealing with the nu-

ances required to distinguish between hateful posts from just sarcasm or offensive language.

Many ML solutions for hate speech detection have been proposed by either changing how

features are extracted from the text or the classification algorithm employed. However, most

works consider only one type of feature extraction and classification algorithm. This work ar-

gues that a combination of multiple feature extraction techniques and different classification

models is needed. We propose a framework to analyze the relationship between multiple fea-

ture extraction and classification techniques to understand how they complement each other.

The framework is used to select a subset of complementary techniques to compose a robust

multiple classifiers system (MCS) for hate speech detection. The experimental study consid-

ering four hate speech classification datasets demonstrates that the proposed framework is a

promising methodology for analyzing and designing high-performing MCS for this task. MCS

system obtained using the proposed framework significantly outperforms the combination of

all models and the homogeneous and heterogeneous selection heuristics, demonstrating the

importance of having a proper selection scheme. Source code, figures and dataset splits can

be found in the GitHub repository: https://github.com/Menelau/Hate-Speech-MCS.

Keywords: Hate speech, text classification, multiple classifiers system, natural language

processing, machine learning

Preprint submitted to Journal of LATEX Templates January 19, 2022

ar
X

iv
:2

20
1.

06
72

1v
1 

 [
cs

.C
L

] 
 1

8 
Ja

n 
20

22

https://github.com/Menelau/Hate-Speech-MCS


1. Introduction

Social networks are an essential communication channel with an exponential increase in

the last years. It is considered relevant in several contexts because it allows users to express

opinions, share content, and disseminate news. They impact millions of users every day and

change the general socialization perspective [1].

Social media allows users to register quickly and propagate content from the most di-

verse subjects [2]. Due to a large amount of content published daily on these platforms,

the task of monitoring and control its contents is arduous. The lack of proper moderation

provides freedom for users to perform cyberbullying or other forms of attacks. The dissemi-

nation of hate speech becomes very common in this scenario since anybody with an Internet

connection can become a disseminating agent. Users can also use creating fake profiles to

avoid identification, thus becoming more confident that they will not be punished. Another

problem is bots, which are programmed algorithms that behave like humans in performing

tasks like disseminating news and information. Therefore, it can also act as disseminating

hate speech agent [3]. According to the data provided by Twitter, approximately 8.5% of

users in the platform are bots [4].

Hate speech often appears in incidents with a tremendous social repercussion such as the

American presidential election, Brexit [5], terrorist attacks associated with Islamic groups [6]

and the COVID-19 pandemic, that provoked discrimination against Chinese and Asians [7].

Detecting hate speech is a complex task because it can be easily mistaken with offensive

language and humor posts that, in many situations, are protected by laws of freedom of

speech, as the Brazilian Civil Rights Framework for the Internet, which was established in

2014. Hate speech is usually defined as any sort of speech targeting a particular group,

especially based on race, religion, or sexual orientation. Davidson et al. [8] defined hate

speech as: “Language that is used to express hatred towards a targeted group or intended to

be derogatory, to humiliate, or to insult the members of the group”. In contrast, offensive

∗Corresponding author. Email Address: rafael.menelau-cruz@etsmtl.ca
Email addresses: rafael.menelau-cruz@etsmtl.ca (Rafael M. O. Cruz), wvs2@cin.ufpe.br

(Woshington V. de Sousa), gdcc@cin.ufpe.br (George D. C. Cavalcanti)

2



language is characterized by the use of terms that are highly offensive to some groups, such as

n*gga, and f*g, which are prevalent on social media. However, the text itself is not targeting

or inciting violence to a specific group. Figure 1 illustrates two examples of hateful and

two offensive tweets extracted from the Thomas Davidson dataset [9]. This nuance makes

human moderation a slow and challenging process. Hence, impossible to deal with a large

amount of content created daily.

Figure 1: Examples of hateful and offensive tweets extracted from the Thomas Davidson dataset [9]. The

ID tag indicate their corresponding unique ids in the full dataset.

In this paper, we explore the problem of automatic hate speech detection in English posts

from social media. Two crucial aspects of creating a machine learning solution are extracting

features from the text and the classification algorithm employed [10]. There are several

feature extraction techniques such as Bag of Word approaches [11], lexical resources [12],

sentiment analysis [13] and dense word vectors [14, 15]. The classification algorithm can be

classical methods (e.g., Logistic Regression and Naïve Bayes) or Deep Learning approaches

like Convolutional Neural Networks (CNN) [16]. Multiple works in hate speech detection

are now using an ensemble model to achieve higher performance. However, comparative

studies showing which are the most effective feature extraction techniques and classification

3



methods for this problem is still an open research question [10]. Furthermore, the field

lacks a methodology to analyze multiple feature representation techniques and classification

algorithms.

We propose a framework based on classification diversity to analyze different feature rep-

resentation methods’ behavior and their impact on multiple classification algorithms. The

framework allows us to select a set of complementary feature representation and classifier

models to obtain a Multiple Classifier System (MCS) that significantly improves hate speech

detection. The framework also allows evaluating the impact of changing the feature extrac-

tion method and the classification model to know which component has a more significant

impact on hate speech detection performance.

We considered four English hate-speech detection datasets in this study. Results demon-

strate that combining all models without any proper selection scheme produces sub-optimal

results. Selecting a suitable combination of feature extraction techniques and classification

algorithms achieves state-of-the-art performance for multiple datasets, demonstrating the

importance of carefully selecting a complementary set of models for improving performance.

Hence, the contributions of this work are:

1. A novel framework to analyze the relationship between multiple feature representation

techniques and classification algorithms.

2. The evaluation of different strategies to compose an MCS and their interpretation

based on the proposed framework.

3. A Multiple Classifier System with a diverse set of feature representation and classifi-

cation models to achieve state-of-the-art results for this task.

This paper is organized as follows: Section 2 introduces hate speech detection problems

and discusses the related works involving machine learning. Section 3 presents the pro-

posed multi-view hate speech detection framework. Section 4 describes the datasets and

the experimental methodology used in this study. Section 5 presents an analysis of multiple

classifier models and feature extraction techniques to build a high-performance MCS for the
4



hate speech detection problem. Experimental results and their analyses are conducted in

Section 6. Conclusion and future works are presented in Section 7.

2. Related work

Supervised learning requires each instance’s association to a label for a machine learning

algorithm’s training process. The hate speech detection task is cast as a supervised one,

and, regarding the classification phase, it can be divided into two approaches: monolithic or

ensemble. In the former, only one model is employed, while, in the latter, many models are

trained and combined to output the predicted class of query instances.

Table 1 shows literature works that address hate speech using monolithic classifiers and

ensemble learning. Recent papers use word embedding methods more frequently than bag-

of-words and n-grans because the former can extract semantic information from the text;

consequently, an improvement in the performance is expected. Regarding the classifier,

different paradigms have been employed; tree-based algorithms such as decision trees and

random forest (RF) [17, 8, 18, 19], artificial neural networks such as multi-layer perceptron

(MLP) and convolution neural networks (CNN) [20, 21, 22, 16, 23, 24, 25, 26, 27, 28, 29],

Bayesian as the naive bayes (NB) [17, 8], support vector machines (SVM) [17, 8], and

ensemble learning, which is marked (3) in the last column of the table.

5



Y
ea
r

C
it
at
io
n

D
at
as
et

D
at
as
et

C
at
eg
or
y

Fe
at
ur
e

C
la
ss
ifi
er

E
ns
em

bl
e

20
15

B
ur
na

p
an

d
W

ill
ia
m
s
[1
7]

1,
90

1
tw

ee
ts

ra
ce

et
hn

ic
ity

,r
el
ig
io
n

B
oW

an
d
n-
gr
am

B
LR

,R
F
,S

V
M

3

20
17

D
av

id
so
n
et

al
.[
8]

24
,8
02

tw
ee
ts

ra
ci
sm

,s
ex
is
m
,h

om
op

ho
bi
a

n-
gr
am

LR
,N

B
,D

T
,R

F
,S

V
M

7

20
17

P
ar
k
an

d
Fu

ng
[2
0]

Tw
it
te
r
fr
om

[3
0,

31
]

ra
ci
sm

,s
ex
is
m

ch
ar
ac
te
rs
,w

or
ds
,a

nd
bo

th
C
N
N

7

20
18

Zi
m
m
er
m
an

et
al
.[
21

]
Tw

it
te
r
fr
om

[3
0]

ra
ci
sm

,s
ex
is
m

em
be

dd
in
g

de
ep

le
ar
ni
ng

3

20
18

P
it
si
lis

et
al
.[
22

]
Tw

it
te
r
fr
om

[3
0]

ra
ci
sm

,s
ex
is
m

de
fin

ed
by

th
e
au

th
or
s

LS
T
M

3

20
18

M
on

ta
ni

an
d
Sc
hu

lle
r
[1
8]

G
er
m
E
va
l2

01
81

ge
ne
ra
l

T
F
ID

F
,W

or
d2

V
ec
,n

-g
ra
m

LR
,R

F
,E

T
3

20
19

Zh
an

g
an

d
Lu

o
[1
6]

Tw
it
te
r
fr
om

[1
7,

30
]

[1
7]
:r
ac
e
et
hn

ic
ity

,r
el
ig
io
n
[3
0]
:r

ac
is
m
,s

ex
is
m

W
or
d2

V
ec

C
N
N

7

20
19

Li
u
et

al
.[
32

]
Tw

it
te
r
fr
om

[1
7]

ra
ce

et
hn

ic
ity

,r
el
ig
io
n

em
be

dd
in
g,

LD
A

fu
zz
y
en
se
m
bl
e

3

20
19

R
am

ak
ri
sh
na

n
et

al
.[
19

]
O
ffe

ns
E
va
l[
33

]
ge
ne

ra
l

n-
gr
am

,G
lo
V
e,

ot
he
rs

LR
,R

F
,X

G
3

20
20

P
as
ch
al
id
es

et
al
.[
23

]
Tw

it
te
r
fr
om

[8
]

ra
ci
sm

,s
ex
is
m
,h

om
op

ho
bi
a

n-
gr
am

,T
F
ID

F
,P

oS
ta
gs
,o

th
er
s

C
N
N
,R

N
N

3

20
20

A
l-M

ak
ha

dm
eh

an
d
To

lb
a
[3
4]

Tw
it
te
r

ge
ne

ra
l

fo
ur

di
ffe

re
nt

fe
at
ur
es
:

de
ep

le
ar
ni
ng

3

St
or
m
fr
on

t:
10

,5
68

tw
ee
ts

se
m
an

ti
c,

se
nt
im

en
t-
ba

se
d,

C
ro
w
dF

lo
w
er
:
24
,7
83

tw
ee
ts

un
ig
ra
m
,a

nd
pa

tt
er
n
fe
at
ur
es

20
20

Zh
ou

et
al
.[
24

]
H
at
E
va
l2

[3
5]

m
is
og

yn
y,

xe
no

ph
ob

ia
E
LM

o,
B
E
R
T

C
N
N

3

20
20

A
lo
ns
o
et

al
.[
25

]
H
A
SO

C
be

nc
hm

ar
k3

ge
ne
ra
l

R
oB

E
R
TA

C
N
N

3

20
20

A
ls
af
ar
ie

t
al
.[
26

]
A
ra
bi
c-
Tw

it
te
r
da

ta
se
t

ge
ne
ra
l

Fa
st
te
xt
-S
ki
pG

ra
m
,M

B
E
R
T
,A

ra
B
E
R
T

C
N
N
,B

iL
ST

M
3

20
20

B
an

er
je
e
et

al
.[
27

]
H
in
di
-E

ng
lis
h
Tw

it
te
r

ge
ne
ra
l

B
E
R
T
,R

oB
E
R
TA

,X
LN

et
,D

is
ti
lB
E
R
T

C
N
N

3

20
21

P
la
za
-d
el
-A

rc
o
et

al
.[
28

]
H
at
er
N
et

4
an

d
H
at
E
va
l[
35

]
H
at
er
N
et
:g

en
er
al

[3
5]
:m

is
og

yn
y,

xe
no

ph
ob

ia
B
E
R
T
,X

LM
,B

E
T
O

LS
T
M
,B

iL
ST

M
,C

N
N

7

20
21

Ja
in

et
al
.[
29

]
K
ag

gl
e5

ra
ci
st
,s

ex
is
t

W
or
d2

V
ec
,G

lo
V
e,

fa
st
Te

xt
,E

LM
o

M
LP

,B
iL
ST

M
7

T
ab

le
1:

R
el
at
ed

w
or
ks
.
B
oW

:B
ag

of
W
or
ds
.
B
LR

:B
ay
es
ia
n
Lo

gi
st
ic

R
eg
re
ss
io
n.

D
T
:D

ec
is
io
n
T
re
e.

E
T
:E

xt
ra
T
re
es
.
LD

A
:L

at
en
t
D
ir
ic
hl
et

A
llo

ca
ti
on

.
LR

:l
og
is
ti
c
re
gr
es
si
on

.
LS

T
M
:L

on
g
Sh

or
t-
T
er
m

M
em

or
y.

N
B
:N

ai
ve

B
ay
es
.
R
F
:R

an
do

m
Fo

re
st
.
SV

M
:S

up
po

rt
V
ec
to
r
M
ac
hi
ne
.

X
G
:X

G
B
oo

st
.

1
ht

tp
s:

//
gi

th
ub

.c
om

/u
ds

-l
sv

/G
er

mE
va

l-
20

18
-D

at
a

2
ht
tp
s:
//
co
m
pe

ti
ti
on

s.
co
da

la
b.
or
g/
co
m
pe

ti
ti
on

s/
19
93
5

3
ht

tp
s:

//
ha

so
cf

ir
e.

gi
th

ub
.i

o/
ha

so
c/

20
19

/
4
ht

tp
s:

//
ze

no
do

.o
rg

/r
ec

or
d/

25
92

14
9#

.Y
AH

X8
S2

71
-V

5
ww

w.
ka

gg
le

.c
om

/a
rk

ho
sh

gh
al

b/
tw

it
te

r-
se

nt
im

en
t-

an
al

ys
is

-h
at

re
d-

sp
ee

ch
#t

ra
in

.c
sv

6

https://github.com/uds-lsv/GermEval-2018-Data
https://hasocfire.github.io/hasoc/2019/
https://zenodo.org/record/2592149#.YAHX8S271-V
www.kaggle.com/arkhoshghalb/twitter-sentiment-analysis-hatred-speech#train.csv


The most common social media used to extract information to compose a dataset for

hate speech detection is Twitter. Despite English being the most used language, there are

datasets from many other languages, such as the Arabic-Twitter dataset [26] and Hindi-

English Twitter dataset [27]. However, independently of the language, the construction of

such datasets is a time-consuming task, not only because the number of hateful instances

in online communities is relatively low compared to regular instances, but also because of

the labeling process, i.e., which indicates if a sentence is hateful or not, is not a trivial piece

of work. The labeling process is of utmost importance since supervised learning algorithms

use the labels to extract relevant information from the data. Waseem [31] evaluated his own

hate speech detection dataset (provided in [30]) to examine the influence of the annotator.

He demonstrated that amateur annotators are more likely than expert annotators to label

items as hate speech. Moreover, based on his results, systems trained on expert annotations

outperform systems trained on amateur annotations.

2.1. Ensemble for hate speech detection

Ensemble learning, or multiple classifier systems (MCS), has proven its effectiveness

compared with many monolithic classifiers [36, 37]. MCS are composed of three main parts:

generation, selection, and integration [37]. In the first part, generation, the pool of classifiers

is trained, and it can be homogeneous (all the classifiers use the same learning algorithm,

e.g., a pool composed of hundred decision trees) or heterogeneous, where different learning

algorithms are adopted. The second part is optional, and it aims at selecting the best

classifiers to compose the final pool. All the selected classifiers’ outputs are combined to

predict the query pattern class in the integration part.

Different approaches can be used to integrate the classifier’s output. Regarding the

ensemble papers listed in Table 1, the integration methods most used are static rules (such

as majority vote, mean, max, mean, and product) and stacked generalization [38]. The latter

is a trainable strategy, in opposition to non-trainable strategies such as the static rules, that

generates a model that learns the best combination of the pool models’ predictions.

Burnap and Williams [17] presented a supervised machine learning text classifier to

7



identify hate speech. They extracted 450,000 tweets in the immediate aftermath of Lee

Rigby’s murder. From this amount, a total of 2,000 were labelled by humans and after some

preprocessing, only 1,901 tweets (11.68% of hate and 88.32% of non-hate) were used. Each

tweet was represented using BoW and n-Gram and the following learning algorithms were

evaluated: Bayesian Logistic Regression (BLR), Random Forest (RF), and Support Vector

Machine (SVM). The authors also evaluated a static ensemble composed of BFR, RF and

SVM using the majority vote. This was the first work to address the hate speech detection

task employing an ensemble to the best of our knowledge.

More recently, many works [21, 22, 23, 34, 24, 25, 26, 27] combine deep neural networks,

which is a time-consuming model compared to other algorithms such as decision trees and

logistic regression. For instance, Paschalides et al. [23] proposed a three-layer stacked en-

semble classifier for hate speech detection where the deep neural networks use features from

different levels: word, character, and metadata. Similarly, Montani and Schuller [18] also

used stacking, but the meta-classifier was Logistic Regression. Regarding LR, it is worth

remarking that in [20, 23], LR obtained very competitive rates compared to the proposals.

In a different perspective, Liu et al. [32] formulated the hate speech detection task as

multi-label learning where each instance can be assigned to multiple labels. For the classi-

fication phase, they proposed a fuzzy ensemble approach.

2.2. Literature gap

Based on Table 1, we can see that more and more research works are considering an

ensemble model to improve hate speech detection [24, 26, 23, 19, 17]. Some works generate

an ensemble by just changing the classification model [17] employed, while others consider a

homogeneous ensemble trained with different input features [25, 24]. Furthermore, multiple

works only consider features from the same families such as [25, 24, 28] which are only based

on language models like BERT and other variations. As reported by Schmidt et al. [10],

there exists several families of techniques that can be used either at the representation level

or at the classification level for hate speech detection.

Furthermore, none of these works presents a clear methodology for analyzing multi-

8



ple classification techniques and feature representation. Therefore, the field lacks a proper

methodology to analyze multiple feature representation techniques and classification algo-

rithms and use this information to optimize ensemble models. Thus, we propose a new

framework to analyze the relationship between multiple techniques in order to fill this gap.

The proposed framework is presented in the following section.

3. Proposed Method

The proposed framework presents a visualization tool for comparing multiple classifier

models based on their prediction differences. These classifier models can be either trained

using the same feature representation or a distinct one. The framework works by project-

ing the base models to a space called the Classifier Projection Space (CPS) [39] in which

each point in this space represents a single model, and the distances between points repre-

sent the dissimilarity between distinct models (i.e., how they differ in terms of prediction).

Models closer together in this space are more likely to have the same behavior, having the

same prediction performance. In contrast, distant ones are more likely to behave differ-

ently (i.e., correctly classify different input samples). So they have more complementary

information [40].

Figure 2 presents an overview of the proposed scheme. It is composed of 6 main steps:

feature extraction, training, dissimilarity matrix, dimensionality reduction, sensitivity anal-

ysis, and classifier combination. This framework is then used to analyze the interaction

between multiples feature extraction, classifier pairs and select a set containing the most

complementary ones to obtain a high-performing ensemble model.

This work considers a diverse set of classification models (e.g., SVM, Logistic Regression,

Random Forest) and multiple feature representation techniques. Hence, we can have a global

analysis of the relationship between state-of-the-art machine learning techniques for this

application. Besides, by changing both the classifier type and feature representation, we

can analyze which of these two steps contribute more to creating a complementary set of

classifiers.

9



Feature 
Extraction 1

𝚪

...

Dissimilarity Matrix

...

Dimensionality Reduction

Sensitivity Analysis

Classifiers Combination

class(xq)

Δ

Ⲧ

Feature 
Extraction 2

Feature 
Extraction n

Training 
Classifier 1

Training 
Classifier 2

Training 
Classifier n

xq

E1 E2 En

C1 C2 Cn

D

D~

S

Figure 2: Proposed architecture. Γ, ∆, and τ are the training, validation and testing datasets, respectively.

ci is the classifier trained with the feature vector Ei. D̃ is the 2D projection of the dissimilarity matrix D.

S is a subset containing the selected classifiers. class(xq) is the predicted class of the query instance xq.

3.1. Feature extraction

In this project, five representation techniques were considered for getting a text embed-

ding: GLoVe [41], Word2Vec [15] and fastText [42] representing dense word vector methods

while Term-Frequency (TF) and Term-Frequency Inverse Document Frequency (TF-IDF)

representing sparse feature extraction techniques based on the Bag-of-Words paradigm. At

the end five sets are obtained {EGLoV e, EWord2V ec, EfastText, ETF , ETF−IDF}.

Each feature extraction technique6 can be seen as a different view of the problem cap-

turing complementary information from the input text. Adopting a multiple representation

approach in this scenario may be beneficial since each representation captures distinct as-

pects of the text. As stated by Zhao et al. [43], the most significant advantage of considering

6Also referred to as feature representation or embedding.

10



multiple views of a pattern recognition problem comes from the observation that a single

view cannot represent the information of all examples. With a proper combination of mul-

tiple techniques, we can increase the number of patterns represented by the system and

significantly improve classification performance.

3.2. Training

Eight learning algorithms models are used in our framework: Support Vector Machines

(SVM), Logistic Regression (LR), Random Forest (RF), Extra Forest (Extra), Naive Bayes

(NB), K-Nearest Neighbors (KNN), Multi-Layer Perceptron Neural Network (MLP), and

Convolutional Neural Network (CNN) giving a set of classifiers C = {CSVM , CLR, CRF , CEXTRA, CNB, CKNN , CMLP , CCNN}.

Each classifier ci, from the set of classifiers C, is trained with a single representation of the

problem Ej extracted from the input training dataset Γ.

After all base models ci are trained, their predictions yi are computed over the validation

dataset V . The use of validation data is important in order to avoid overfitting in the

dissimilarity analysis.

3.3. Dissimilarity Matrix

This step consists in estimating the dissimilarity in the prediction behavior from a set

of classifiers C = {c1, c2, . . . , cN}. In order to estimate this dissimilarity, we use diversity

metrics [44] which are metrics commonly used in the ensemble learning literature, as a way

to analyze and generate a set of classifiers C in which members present complementary

behavior. Many diversity metrics are present in literature, such as classifier disagreement,

Q-statistics, and the ratio of errors [45, 46].

In this paper, we considered the double-fault measure proposed by Giacinto & Roli [47]

since it presents the highest correlation with the ensemble accuracy [45]. The Double Fault

calculates the proportion of misclassified instances by two distinct classification models.

Equation 1 illustrates the double fault measure.

double-fault(i, j) =
N00

N00 + N01 + N10 + N11
(1)

11



N i,j is the number of instances correctly classified (1) and misclassified (0), for the ci and cj,

respectively. The metric equals 1 when both the classifiers always miss the same instances,

make the same classification mistakes, and 0 when they never misclassify the same instance.

Hence, minimizing this metric reduces the number of instances in which different classifica-

tion models make the same error, achieving a more complementary classifier ensemble. We

use the Double Fault implementation provided by DESlib Python library [48].

Since the metric is higher for similar classifiers [45] and lower for dissimilar ones, we

take its inverse to compute the dissimilarity matrix so that higher values represent more

dissimilar classifiers: di,j = 1
double-fault(i,j) . After calculating di,j, for each pair of classifiers

in the pool, we obtain an N × N matrix D, containing the complete diversity information

between the classifiers.

3.4. Dimensionality Reduction

The following step is to project the matrix into a 2-dimensional representation to perform

visual analysis. We use the Uniform Manifold Approximation and Projection (UMAP)

proposed by McInnes et al. [49]. UMAP is a new manifold learning for dimensionality

reduction technique based on Riemannian geometry [50, 51] that can preserve the local and

the global structure of the data. Hence, it is a suitable dissimilarity reduction technique for

our visualization as it preservers the distances between groups of models.

UMAP takes as input the dissimilarity matrixD and computes the N×2 matrix D̃. Each

row of the new matrix corresponds to the position of each classifier model ci. Therefore, each

model ci is represented as a point in this 2-dimensional space, and the distances between

points represent their dissimilarity.

3.5. Sensitivity Analysis

The CPS allows us to visualize the relationship between multiple classification algorithms

and identify groups of models that are either similar, represented by points close to each other

in the visualization tool, or dissimilar, represented by points that are distant to each other

in the CPS. Hence, this representation gives us a global view of the relationship between all

models in the set of classifiers C.
12



This analysis identifies which models are more likely to improve performance by having

complementary information and detecting which are redundant and should be removed from

the system. Another usage of this representation is to understand how different feature

representation algorithms and classification algorithms behave.

The idea is to identify groups of techniques (feature representation + classification model)

close in this space and select the best performing one. Hence, we expect to reduce the

computational cost by having less feature representation and classification models in the

ensemble and improve classification performance as redundant models are removed in the

process.

3.6. Classifiers combination

This module consists of combining the selected classifier’s outputs to give the final pre-

diction. Each selected model produces a vector containing the support given to each class

which is aggregated to decide. There are several techniques to aggregate the outputs of

multiple classifiers ranging from non-trainable, trainable, and dynamic techniques [37, 44].

In this work, we propose the use of stacked generalization, which is a trainable aggre-

gation method [38]. Stacked generalization consists of dividing the classification process

into two levels of classifiers [52]. At the first level, the base classifiers are trained with the

training dataset. These base classifiers are then used to transform the validation dataset

to a vector containing the support given to each class (predictions). Those vectors are fed

to a classifier in the second level, also called meta-classifier, trained to aggregate the base

models’ decisions into a final one. This methodology is more robust than fixed combination

rules as no assumptions about the base model’s behavior are required. The meta-classifier

can adapt to intrinsic characteristics of the classification problem [53]. Thus, it is a more

robust combination scheme.

It is essential to mention that the proposed framework is general enough to work with

any feature extraction and classification model. New techniques can be added to the sys-

tem requiring only adjustments on the dissimilarity matrix computation. The proposed

methodology can continuously improve classification results as new feature representation

13



techniques and classifiers are proposed for this application. In addition, the framework is

based on comparing base models predictions in terms of diversity and requires no further

information from the given task. Hence, it is application-agnostic and can be used for design-

ing multiple classifier systems for any text classification task such as fake news detection [54]

and sentiment analysis [55].

4. Experimental Methodology

The experiments are conducted in order to analyze the following points:

1. A comparative study considering multiple machine learning algorithm and feature

representation techniques for text embedding.

2. Analyze the relationship between multiple models, e.g., how they differ in terms of

prediction performance.

3. Propose an MCS to improve classification performance in the hate speech domains.

4.1. Datasets

We considered four English hate-speech detection datasets in this study:

1. Thomas Davidson (TD): was proposed by Thomas Davidson et al. [8] and is pub-

licly available7. This dataset consists of 24,783 labeled instances distributed over three

classes: “Hate”, “Offensive” and “Non-offensive”. The dataset was built using the Twit-

ter API to collect the sentences that contained compiled hateful terms defined on

hatebase.org.

2. Zeerak Waseem (ZW): This dataset was proposed by Zeerak Waseem & Dirk Hovy

[30] and is publicly available on GitHub 8. The ZW dataset contains 16,907 labeled

instances belonging to three classes: “Racism”, “Sexism” and “Neither”. Data was

7https://data.world/thomasrdavidson/hate-speech-and-offensive-language
8https://github.com/ZeerakW/hatespeech

14

hatebase.org
https://data.world/thomasrdavidson/hate-speech-and-offensive-language
https://github.com/ZeerakW/hatespeech


collected based on a manual search on standard terms used as insults to religious,

sexual, gender, and ethnic minorities. The data was labeled by the authors first. Then

it was reviewed by external evaluators to reduce the possibility of annotations being

biased by either party.

3. TD + ZW: This dataset was developed by combining the previous two datasets.

We modified the labels racism and sexism of the ZW dataset to hate to unify the

records, resulting in a single dataset containing 30,131 instances. We removed the

records labeled as “Neither” since they do not have a clear class description. Since the

combined datasets were proposed with different types of hate speech, their combination

is expected to present multi-modal properties.

4. HatEval: This dataset is part of the SemEval 2019 Task 5 [56] competition which

consists of hate speech detection against immigrants and women. We consider the

subtask A English, a binary classification problem to detect whether a tweet in English

contains hate speech. The class distribution of this dataset is almost balanced, with

42% of the data points corresponding to a hateful text and 58% to a non-hateful

text. More information about the HatEval dataset can be found on its GitHub page:

https://github.com/msang/hateval.

We considered those datasets because they have very different characteristics in the

data collection and how they address the hate speech detection problem. The TD dataset

focuses on the distinction between hate, offensive, and non-offensive texts. The ZW focuses

on specific types of hate speech (racism, sexism, and non-hateful). The HatEval has a

distinct characteristic, having an almost balanced class distribution and presenting different

types of hateful tweets (e.g., immigrants and women). Hence, by having such a diverse

set of datasets, we can have a substantial evaluation of multiple feature representation and

classification techniques for this task and compare the proposed method for selecting an MCS

under different hate-speech detection scenarios. Furthermore, these datasets are commonly

used in hate speech and offensive language detection, as illustrated in Table 1.

15

https://github.com/msang/hateval


Dataset #Total

Thomas Daivdson (TD)

hateful: 1430

offensive: 19,190

non-offensive: 4,163

Zerak Wassem (ZW)

racism: 1,970

sexism: 3,378

none: 11,559

TD + ZW

hate: 6,678

offensive: 19,190

non-offensive: 4,163

HatEval
hateful: 3783

non-hateful: 5271

Table 2: Class distribution for each dataset.

It is important to mention that all these datasets are for the English language. We decide

to focus on English hate speech detection in this work as it simplifies the text preprocessing

steps and the evaluation analysis. Hate speech detection for different languages such as

Italian [57] and Arabic [58] is out of the scope of this work and will be investigated in future

works.

Table 2 summarizes all datasets and their corresponding class divisions. We conducted

our experiments using a stratified 5-fold cross-validation. This methodology helps in achiev-

ing a more precise estimator of the algorithm performance as well as computing the mean

and standard deviation of the results [59]. Furthermore, using a stratified version of cross-

validation was necessary in order to avoid class bias in any of the partitions [60].

For the HatEval dataset, we did not employ the 5-fold cross-validation procedure since

it is originally divided into training, developing, and testing as part of the competition9. In

9Dataset used in competition can be requested in the following website: http://hatespeech.di.unito.

it/hateval.html

16

http://hatespeech.di.unito.it/hateval.html
http://hatespeech.di.unito.it/hateval.html


this way, our results can be directly compared with the state-of-the-art from the SemEval

2019 competition.

4.2. Performance Metrics

We evaluated our proposed approach using the F1-score, which is well suited for accessing

machine learning models’ performance under the presence of class imbalance. The F1-score

is obtained by computing the harmonic mean of Precision and Recall. When dealing with

multi-class classification problems, the F1-score is usually applied to each class individually

and averaged using the Micro or Macro rule to give the final results. In this work, we use

the Macro rule to obtain the F-Measure for the multi-class problem since it is more suited

for imbalanced datasets [61]. Although most hate-speech detection works use the Micro

averaging scheme, this metric can mask the performance of the minority classes. As such,

they are not suitable for measuring the performance of hate speech detection methods [16].

On the other hand, the Macro averaging scheme calculates F-Measure for each label

individually and then computes the results’ unweighted average. Hence, all classes have

the same influence on the final results despite the number of examples per class. The best

method is then the one that performs well over all individual classes.

4.3. Pre-processing and features extraction

Before the feature extraction stage, we applied several pre-processing steps to standardize

all tweets. The first step is to clean up the tweets by removing URLs, tags (i.e., "@user"),

RT symbols, numbers, stop words, and redundant white spaces. We also normalized Unicode

text into NFKD and converted the whole text to lowercase.

We considered five feature extraction techniques in this study: Term Frequency (TF)

and Term Frequency Inverse Document Frequency (TF-IDF) belonging to the Bag-of-Words

paradigm, while Word2Vec, Global Vectors for Word Representation (GLoVe), and fastText

representing dense word embeddings.

When using the Bag-of-Words (Bow) approach, the feature vector’s size for each instance

is equal to the vocabulary size. In contrast, the Word Embedding models have a fixed size

17



defined in their training step. For the Word2Vec and fastText, we use the model trained over

Twitter with the number of features extracted per instance was equal to 300. The GLoVe

method obtained a features vector of 25 dimensions. For extraction of type BoW, we used

the implementations from scikit-learn [62]. For Word Embedding, the Zeugma library10 was

used. This implementation generates an average features vector for each instance, which is

then considered the text representation.

4.4. Monolithic Classifier

We considered 8 learning algorithms in this study: Support Vector Machines (SVM) [63,

64], Logistic Regression [9, 8], Random Forest [64], Naive Bayes [9], Extra Trees [65], K-

Nearest Neighbors [66], Multi-Layer Perceptron Neural Network (MLP) [67, 68], and Con-

volutional Neural Network (CNN) [63, 16]. These models were selected based on the results

obtained by previous work conducted in the TD, ZW and HatEval datasets. For example,

the SVM classifier achieved the best performance in the HatEval competition [69], while

Zhang et al [16] demonstrated the efficiency of CNN based models for hate speech detec-

tion using the ZW dataset. Each learning algorithm was trained with each of the feature

extractors, totaling 40 (8 learning algorithm × 5 feature representation) models generated.

10https://zeugma.readthedocs.io/en/latest/

18



Method Hyperparameters

SVM
Kernel:[Linear, Sigmoid, rbf]

Gamma: [0.1, 1, 0.5]

Logistic Regression penalty: [l1, l2]

Random Forest n_estimators: [10. 20. 50]

Naive Bayes
alpha: [0.1, 0.5, 1]

fit_prior: [False, True]

MLP
activation: [relu, logistic]

solver: [adam, lbfgs]

Extra Trees n_estimators: [10. 20. 50]

CNN
activation: [sigmoid, ReLU]

optimizer: [rmsprop, adam]

KNN n_neighbors: [3, 5]

Table 3: Hyperparameter grid considered for all datasets.

We used a grid search to find the best set of hyperparameters for each of the 40 models

evaluated in this experimental study. Table 3 shows the hyperparameter values considered

for each classifier model. The learning algorithm was trained using the training set, while

its generalization performance was measured using the validation set. For each model, the

hyperparameter configuration that obtained the best performance in the validation set was

selected.

For the neural network models, it was necessary to define the network architecture first.

A standard architecture for the MLP was defined as consisting of a single hidden layer

containing 100 neurons. For CNN, we adopted the same 1D-CNN architecture used in

previous work [16, 63]:

1. Embedding - Input layer containing the text embedding.

2. Dropout1 - Dropout layer with 20% dropout rate.

3. Convolution1 - 1D convolutional layer with 64 filters, kernel size = 3, step size = 1.

4. Subsampling1 - 1D Max pooling operation reducing the dimensionality of the con-

volutional layer.

19



5. FC1 - Fully connected layer containing 256 neurons.

6. Dropout2 -Dropout layer with 20% dropout rate.

7. Softmax - Classification layer which produces the probabilities for each class.

5. Sensitivity Analysis

In this section, we use the proposed framework (Section 3) to analyze the dissimilarity

between different classifier types and feature representation techniques as well as define

an MCS system for the hate speech detection problem. This step is conducted using the

validation dataset, V , to prevent any bias in the final system.

Taking into account the 40 trained classifiers (5 feature representation × 8 classification

algorithms), we can consider four heuristics (groups) to compose an MCS:

• Group A - It is a homogeneous pool composed of five classifiers that use the same

classifier model (e.g., SVM), where each classifier is trained using a different feature

extraction technique. The goal here is to evaluate the impact of the feature repre-

sentation technique and help achieve complementary machine learning models. Eight

subgroups are created using this methodology, one for each classifier model.

• Group B - Single feature representation technique (e.g., Word2Vec) used to generate

eight classifier models. This group is evaluated to know the impact of changing the

classifier model while maintaining the same feature set. Five groups (heterogeneous

pools) are created with this methodology, one for each feature representation technique

considered in this work.

• Group C - It is a heterogeneous pool composed of all 40 trained classifiers (5 fea-

ture extraction × 8 classifier model). This group aims to evaluate performance by

combining all classifiers.

• Group D - MCS created selecting a complementary set of models by changing the

feature representation and classification algorithm employed.

20



5 0 5 10 15 20

15

10

5

0

5

10

SVM SVM

SVM

SVM

SVM

LR
LR

LR

LR

LR

RF

RF

RF

RF

RF

NB
NB

NB
NB

NB

MLP
MLP

MLP

MLP

MLP

EXTRA

EXTRA

EXTRA

EXTRA

EXTRA

KNN

KNN

KNN

KNN
KNN

CNN
CNN

CNN

CNN

CNN

CPS HATEVAL dataset

CV
TFIDF
Glove
Word2Vec
FastText

Figure 3: Classifier Projection Space (CPS) for each algorithm evaluated on the HatEval dataset.

Figure 3 shows the CPS plot for the HatEval dataset. Based on the projection, we can

easily spot a few groups of classifiers. These represent models that have the same prediction

behavior and can be considered redundant. One interesting point is that many groups consist

of different classifier models trained using the same feature representation. For instance, all

models trained using Word2Vec as input features (represented by green triangles in Figure 3)

are close together, forming a group. As such, they are likely to make the same classification

mistakes.

We can also observe that, in general, we can achieve highly dissimilar models by just

using a diverse set of feature representation techniques as input to train the pool of classifiers.

Figure 3 demonstrates that MLP classifiers having different representations as input are

members of different clusters. The same behavior can be spotted for the SVM classifier.

The only exception is when considering the extraction techniques from the same family,

21



like TF and TF-IDF. In this case, the same machine learning algorithm trained with these

two representation techniques is very likely to produce similar models. For instance, the

models (TF→ SVM) and (TF-IDF→ SVM) belong to the same cluster for all the datasets

evaluated in this work. The same occurs for (NB→ TF) and (NB→ TF-IDF), which always

belong to the same cluster.

Another interesting fact is the similarity between the Random Forest and Extra Trees

results which often creates a cluster. Those two classification models come from the same

family (tree-based ensemble) with very little difference in how the training process is con-

ducted [70]. These observations indicate a high level of correlation between classification

algorithms from the same family. In contrast, feature extraction belonging to different fam-

ilies (e.g., TF and GLoVe) and classification algorithms belonging to distinct families (e.g.,

SVM and Random Forest) are more likely to compose different clusters.

10 0 10 20 30

10

5

0

5

10

15

20

SVMSVM

SVM

SVM

SVM

LRLR

LR

LR

LR

RFRF

RF

RF

RFNBNB

NB

NB

NB

MLP

MLP

MLP

MLP MLP

EXTRAEXTRA

EXTRA

EXTRA

EXTRA

KNNKNN

KNN

KNNKNN

CNN

CNN

CNNCNN
CNN

CPS TD dataset
CV
TFIDF
Glove
Word2Vec
FastText

Figure 4: Classifier Projection Space (CPS) for each algorithm evaluated on the TD dataset.

22



15 10 5 0 5 10 15 20 25

20

15

10

5

0

5

10

15

20

SVM

SVM

SVM

SVM
SVM

LR
LR

LR

LR

LR

RFRF

RF

RF

RF

NBNB

NB
NB

NB

MLP

MLP MLP
MLP

MLP

EXTRAEXTRA

EXTRA

EXTRA

EXTRA

KNN

KNN

KNN
KNN

KNN

CNN
CNN

CNN

CNN

CNN

CPS ZW dataset
CV
TFIDF
Glove
Word2Vec
FastText

Figure 5: Classifier Projection Space (CPS) for each algorithm evaluated on the ZW dataset.

23



20 10 0 10 20

30

20

10

0

10

20

SVM

SVM

SVM

SVM

SVM

LRLR

LR

LR

LR

RFRF

RF
RFRF

NBNB

NB

NB

NB MLP

MLP

MLP

MLP

MLP

EXTRAEXTRA

EXTRA

EXTRA

EXTRA

KNNKNN

KNNKNN

KNN

CNN

CNN

CNN

CNN

CNN

CPS UNION dataset
CV
TFIDF
Glove
Word2Vec
FastText

Figure 6: Classifier Projection Space (CPS) for each algorithm evaluated on the TD+ZW dataset.

Figures 4, 5 and 6 present the CPS plot for the first cross-validation fold for the TD,

ZW and TD+ZW datasets respectively. Since the CPS for each fold are consistent across

multiple folds, we present only the CPS for the first cross-validation fold. CPS plot and

selected models per fold are available as supplementary material on the paper GitHub page:

https://github.com/Menelau/Hate-Speech-MCS.

Analyzing the CPS for these three datasets, we can observe the same behavior shown in

Figure 3: results of similar models such as Random Forest and Extra Trees often appear close

together in the projection. The same goes for feature representation techniques similar in

nature, such as TF and TF-IDF, which tend to form clusters together. The only exception is

the models trained using the GloVe as feature representation which presented a more diverse

behavior for TD and ZW datasets.

24

https://github.com/Menelau/Hate-Speech-MCS


5.1. Feature representation and classifier selection

In order to select a complementary set of classifiers by changing both the feature repre-

sentation and classification models, we can use the visual information from the CPS. The

goal is to avoid redundant models in the final system, as they will both decrease performance

and increase the computational cost [44].

As each group represents a set of models with similar prediction behavior, only a single

classifier per group can be selected to compose the final ensemble. Small groups composed

of classifiers presenting much lower F1 score compared to the other groups (e.g., (TF→ RF)

and (TF→ EXTRA)), were discarded from the MCS since the objective is to select a group

of complementary and high performing models while having a lower quantity of selected

models. At the end, the following pairs of feature extraction and classification algorithms

were selected for composing the Group D for the HatEval dataset.

• HatEval: (GloVe → MLP) + (GLoVe → RF) + (GLoVe → SVM) + (W2V → NB)

+ (Fast → LR) + (W2V → SVM)

Since we run a 5-fold cross-validation experiment for the TD, ZW, and TD+ZW datasets,

the selected models may slightly change per fold. Sometimes, a different model belonging

to the same cluster is selected among distinct folds (e.g., Extra trees instead of Random

Forest). For the sake of clarity, we only present the techniques selected to compose Group

D for the first fold of the experiments. They are shown below:

• ZW: (TFIDF → EXTRA) + (W2V → NB) + (TF → NB) + (GLOVE → KNN) +

(W2V → MLP) + (W2V → CNN)

• TD: (W2V→ MLP) + (FAST→ LR) + (TF→ SVM) + (W2V→ CNN) + (TFIDF

→ NB) + (W2V → NB)

• Union: (W2V → CNN) + (TFIDF → RF) + (W2V → NB) + (TFIDF → NB) +

(TFIDF → MLP) + (W2V → MLP)

25



The selected models per fold are available as supplementary material on GitHub.

Nevertheless, we can observe that a combination of multiple feature representation tech-

niques and learning algorithms are obtained at the end in all cases. Hence, the proposed

visualization tool allows designing a complementary pool of classifiers containing a mix be-

tween different classification algorithms (e.g., MLP, SVM, RF, LR) and feature extraction

methods (e.g., TF, W2V, GLoVe). The four groups described in this section are then used

in our comparative study.

6. Results

6.1. Multiple Classifier System

Table 4 shows the Macro F1 results for the combination techniques described in Section 5

as (A), (B), (C), and (D). Each Group A is a homogeneous pool composed of five classifiers,

where each classifier is trained using a different feature extraction algorithm. For example,

the first line in the table shows “SVM(Group A)”; so, the pool in this line has five SVM, each

having a different set of features. In contrast, Group B comprises eight different classifiers

trained using the same feature extraction algorithms. Group C is also a heterogeneous

pool, and it contains all the possible combinations between classifier and feature extraction

algorithm; so, Group C has 40 classifiers (8 classifier algorithms × 5 features extraction

methods). The selected classifiers using the proposed approach (described in Section 3)

composes Group D, which comprises of a mix between different set of features and classifiers

selected using the visual framework.

All the classifiers in the pool, independent of the Group, are combined using the same

static rule: Stacking generalization [38] with the Logistic Regression as meta-classifier. The

Logistic Regression used as a meta-classifier was trained to take into account the proportion

of each class to tackle the class imbalance found in these datasets. Its regularization pa-

rameter (Cost) was optimized through a 5-fold cross-validation approach over the validation

data using the LogisticRegressionCV class from scikit-learn. The Macro F1 was used as the

optimization metric in this process.

26



Stacking LR

TD ZW TD+ZW HatEval

SVM (Group A) 0.725 0.753 0.866 0.500

Logistic Regression (Group A) 0.725 0.760 0.867 0.478

Random Forest (Group A) 0.635 0.748 0.851 0.397

Naive Bayes (Group A) 0.653 0.736 0.830 0.431

MLP (Group A) 0.698 0.735 0.844 0.553

ExtraTrees (Group A) 0.611 0.710 0.832 0.408

KNN (Group A) 0.658 0.586 0.780 0.548

CNN (Group A) 0.723 0.747 0.868 0.438

TF (Group B) 0.704 0.739 0.866 0.432

TF-IDF (Group B) 0.663 0.765 0.870 0.397

Word2Vec (Group B) 0.577 0.678 0.793 0.550

GLoVe (Group B) 0.561 0.601 0.773 0.554

fastText (Group B) 0.557 0.632 0.753 0.514

Group C 0.655 0.738 0.864 0.418

Group D 0.735 0.775 0.873 0.602

Table 4: Macro F1 results for four different groups of multiple classifier systems. The best result per dataset

is in bold.

27



First, we can observe that the combination of all models (Group C) always produces

inferior results than the proposed selection scheme. For instance, for the TD dataset, Group

C achieved a 0.655 Macro F1-score, while Group D obtained 0.735. The same behavior

happens for all datasets, showing that combining all models without applying any selection

mechanism can damage the system’s classification performance. Furthermore, it is more

computationally expensive as it considers 40 models while the selection scheme (Group

D) selects an average of six models. Thus, selection favors the overall accuracy and the

computational burden.

Group C always presents inferior results compared to Groups A and B, which can be

explained by the fact that either changing the feature representation or the classification

algorithm leads to a set of complementary models (as illustrated by the Figure 3 CPS plot).

Taking “MLP (Group A)” for example, we can see that each MLP model, trained with

a distinct feature representation, is distant in the visual analysis and belongs to different

clusters. Hence, they have complementary behavior. The same conclusion can be inferred

while analyzing ‘GLoVe (Group B)”. The vast majority of models trained with GLoVe are

far apart, with only a few redundant models like Random Forests and Extra-Trees, which

belong exactly to the same family.

In all scenarios, the best result is always obtained by Group D, which consists of using

the proposed framework to select a complementary set of distinct feature representations

classification models. Even though changing the input features (Group A) or the classifier

model (Group B) can produce a diverse ensemble, their performance is always inferior to

the selection. In particular, for the HatEval dataset, the difference in performance is more

evident as Group D obtained a macro F1-score of 0.602 compared to 0.554 and 0.553 of

Groups A and B, respectively. This difference in results can be explained by just varying

either the classifier model or the input features is not optimal, and a combination of both

is required for achieving higher classification performance. In addition, there still is some

redundancy in the base models, which happens when either classifier is similar in behavior,

such as Random Forests and Extra Trees, or the input features are similar (e.g., TF and

TF-IDF). Thus, the results confirm our hypothesis that we can build a more robust MCS

28



Method Macro F1

Fermi [69] 0.650

Group DProposed 0.602

GLoVe (Group B)Proposed 0.554

MLP (Group A)Proposed 0.553

UTFPR [71] 0.524

Tw-StAR [72] 0.503

CIC-2 [73] 0.494

Table 5: Macro F1 results for the HatEval subtask A – English language.

by leveraging the visual tool provided by the proposed framework.

6.2. Discussion

Table 5 shows macro F1 results for the HatEval subtask A (English language). The

proposed approach (Group D) obtained the 2nd best place (out of 72 submissions11) with

macro F1 equal to 0.602 (Table 4). Table 6 shows the confusion matrix of the proposed

system that correctly classified 1010 (from 1260 hateful instances) and 938 (from 1740 non-

hateful instances).

The Fermi system [69] obtained the highest macro F1 using the Universal Sentence

Encoder [74] as features and SVM as the classifier. Keeping in mind that the proposed

approach showed herein is a general framework that can accommodate many different feature

extraction methods, adding new features, such as the one used in Fermi, benefits the proposal

in improving its overall accuracy since more diversity is embedded into the system.

The best results for Groups A and B (Table 4) were obtained by the proposed “MLP

(Group A)” and “GLoVe (Group B)” respectively. These two proposals are ranked 3rd in

the Ranking HatEval 2019. Such results show that combining different feature extraction

11Ranking HatEval 2019 https://docs.google.com/spreadsheets/d/1wSFKh1hvwwQIoY8_

XBVkhjxacDmwXFpkshYzLx4bw-0/edit#gid=0

29

https://docs.google.com/spreadsheets/d/1wSFKh1hvwwQIoY8_XBVkhjxacDmwXFpkshYzLx4bw-0/edit#gid=0
https://docs.google.com/spreadsheets/d/1wSFKh1hvwwQIoY8_XBVkhjxacDmwXFpkshYzLx4bw-0/edit#gid=0


Predicted label

Non-hateful Hateful

True label
Non-hateful 802 938

Hateful 250 1010

Table 6: Confusion matrix for the Group D – HatEval subtask A – English language.

methods and classifiers is a promising alternative to deliver robust and accurate results.

Logistic Regression (LR) was the meta-classifier employed in the experiments. In LR, each

input variable affects the target output that is expressed by the variable’s coefficient. In

other words, these coefficients could help to understand the importance of each input variable

to the meta-classifier decision. The input of our meta-classifier is the output of the trained

models. Given that all classifiers’ outputs are in the same range, this standardization helps

make the coefficient scale comparable with each other. For instance, the proposed approach

(Group D) selected 6 out of 40 pairs of classifier and feature extraction algorithms, which are:

MLP-GloVe, RF-GLoVe, SVM-GLoVe, NB-W2V, LR-Fast, and SVM-W2V. These pairs are

ordered from the one having the highest coefficient (≈ 1.06 for MLP-GLoVe) to the smallest

(≈ 0.03 for SVM-W2V) one. In other words, MLP-GLoVe plays a more important role than

SVM-W2V in the meta-classifier prediction.

HatEval makes available a clear experimental protocol where the dataset is already split.

Thus, the comparison between the proposal and the literature is simplified. Unfortunately,

this is not the case for the other datasets evaluated in this paper. There is no standard

methodology for the TD and ZW datasets, and literature works use many different train-

ing/testing split strategies and measures. Besides, the source code is rarely publicly available.

So, the comparison with the literature methods is quite challenging in these conditions. This

paper fulfills this gap by publicly making all the splits per dataset and the source code of

the methods used herein. In this vein, the community can replicate the results and use the

repository to further extend the area’s knowledge.

30



7. Conclusion

Automating hate speech detection in social networks is a difficult task due to the high

volume of data generated daily, and the definition of what is considered hate speech is still

much discussed. This work presented an empirical evaluation of multiple feature extrac-

tion techniques and classification models for detecting hate speech in social networks. We

adopted five different feature extraction methods and eight classification algorithms, giving

a total of 40 hate-speech classification models in our experimental study. Then we propose

a framework based on diversity metrics in the classifier projection space to understand the

relationship between them.

The proposed framework is used to analyze the behavior of four heuristics to design an

MCS for hate-speech detection:

• Same classifier model trained with different feature representation;

• Multiple classifier models having the same feature representation as input features;

• A combination of all classifiers generated;

• An MCS containing the most complementary set of classifiers selected using the pro-

posed framework.

Experimental results considering four hate-speech classification datasets show that com-

bining all models (Group C) hinders classification performance compared to any of the

selection heuristics evaluated in this work. We also observed that changing the feature

representation and using classification algorithms from different families (e.g., SVM, Ran-

dom Forest, Naive Bayes) can lead to good MCS as they generate complementary models

according to the proposed framework for analyzing their relationship. Furthermore, using

the proposed framework as a guide for selecting a complementary set of models mixing the

classification algorithm and the input feature representation achieved the best results for

the four datasets considered in this study.

We also compared the performance of the proposed combination schemes against state-

of-the-art techniques. The selection of feature representation and classification methods
31



using the proposed framework (Group D) is ranked second in the Hateval 2019 competition.

Furthermore, we also observed that Group B and Group A are ranked third and fourth,

respectively, in the competition. Such results show that combining a complementary set

of feature extraction methods and classification algorithms is a promising alternative to

deliver robust and accurate results for hate speech detection. Thus, we believe the proposed

framework is a promising alternative for analyzing and designing better MCS.

It is essential to mention that the proposed framework for feature representation and

classifier selection works just by comparing the predictions of different pairs (feature repre-

sentation, classifier) and requires no specific information about the given classification task.

Hence, the framework is application-agnostic and can be applied for different text classi-

fication tasks such as fake news classification [54] as well as for detecting hate speech in

different languages such as Spanish [56], Arabic [58], and Italian [57]. We will investigate

these points in future works.

References

[1] R. Batool, W. A. Khan, M. Hussain, J. Maqbool, M. Afzal, S. Lee, Towards personalized health profiling

in social network, in: International Conference on New Trends in Information Science, Service Science

and Data Mining, 2012, pp. 760–765.

[2] M. A. Fauzi, A. Yuniarti, Ensemble method for indonesian twitter hate speech detection, Indonesian

Journal of Electrical Engineering and Computer Science 11 (1) (2018) 294–299.

[3] P. N. Howard, B. Kollanyi, S. Woolley, Bots and automation over twitter during the us election,

Computational Propaganda Project: Working Paper Series.

[4] V. S. Subrahmanian, A. Azaria, S. Durst, V. Kagan, A. Galstyan, K. Lerman, L. Zhu, E. Ferrara,

A. Flammini, F. Menczer, The darpa twitter bot challenge, Computer 49 (6) (2016) 38–46.

[5] A.-M. Daftary, P. Devereux, M. Elliott, Discrimination, depression, and anxiety among college women

in the trump era, Journal of Gender Studies 0 (0) (2020) 1–14.

[6] E. Scharwächter, E. Müller, Does terrorism trigger online hate speech? on the association of events

and time series, arXiv preprint arXiv:2004.14733.

[7] J.-R. Hu, M. Wang, F. Lu, Covid-19 and asian american pacific islanders, Journal of General Internal

Medicine (2020) 1–2.

[8] T. Davidson, D. Warmsley, M. Macy, I. Weber, Automated hate speech detection and the problem of

offensive language, in: International AAAI Conference on Web and Social Media, 2017, pp. 512–515.

32



[9] A. Gaydhani, V. Doma, S. Kendre, L. Bhagwat, Detecting hate speech and offensive language on twitter

using machine learning: An n-gram and TFIDF based approach, CoRR abs/1809.08651.

[10] A. Schmidt, M. Wiegand, A survey on hate speech detection using natural language processing, in:

International Workshop on Natural Language Processing for Social Media, 2017, pp. 1–10.

[11] S. George K, S. Joseph, Text classification by augmenting bag of words (bow) representation with

co-occurrence feature, IOSR Journal of Computer Engineering.

[12] N. D. Gitari, Z. Zuping, H. Damien, J. Long, A lexicon-based approach for hate speech detection,

International Journal of Multimedia and Ubiquitous Engineering 10 (4) (2015) 215–230.

[13] C. Van Hee, E. Lefever, B. Verhoeven, J. Mennes, B. Desmet, G. De Pauw, W. Daelemans, V. Hoste,

Detection and fine-grained classification of cyberbullying events, in: International Conference Recent

Advances in Natural Language Processing, 2015, pp. 672–680.

[14] J. Pennington, R. Socher, C. Manning, Glove: Global vectors for word representation, in: Conference

on Empirical Methods in Natural Language Processing, Association for Computational Linguistics,

Doha, Qatar, 2014, pp. 1532–1543.

[15] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word representations in vector space,

in: International Conference on Learning Representations, 2013. arXiv:1301.3781.

[16] Z. Zhang, L. Luo, Hate speech detection: A solved problem? the challenging case of long tail on twitter,

Semantic Web 10 (5) (2019) 925–945.

[17] P. Burnap, M. L. Williams, Cyber hate speech on twitter: An application of machine classification and

statistical modeling for policy and decision making, Policy Internet 7 (2) (2015) 223–242.

[18] J. P. Montani, P. Schuller, Tuwienkbs at germeval 2018: German abusive tweet detection, in: Conference

on Natural Language Processing, 2018, pp. 45–50.

[19] M. Ramakrishnan, W. Zadrozny, N. Tabari, UVA wahoos at SemEval-2019 task 6: Hate speech iden-

tification using ensemble machine learning, in: International Workshop on Semantic Evaluation, 2019,

pp. 806–811.

[20] J. H. Park, P. Fung, One-step and two-step classification for abusive language detection on Twitter, in:

Workshop on Abusive Language Online, Association for Computational Linguistics, Vancouver, BC,

Canada, 2017, pp. 41–45.

[21] S. Zimmerman, U. Kruschwitz, C. Fox, Improving hate speech detection with deep learning ensembles,

in: International Conference on Language Resources and Evaluation, 2018, pp. 2546–2553.

[22] G. K. Pitsilis, H. Ramampiaro, H. Langseth, Effective hate-speech detection in twitter data using

recurrent neural networks, Applied Intelligence 48 (2018) 4730–4742.

[23] D. Paschalides, D. Stephanidis, A. Andreou, K. Orphanou, G. Pallis, M. D. Dikaiakos, E. Markatos,

Mandola: A big-data processing and visualization platform for monitoring and detecting online hate

33

http://arxiv.org/abs/1301.3781


speech, ACM Trans. Internet Technol. 20 (2).

[24] Y. Zhou, Y. Yang, H. Liu, X. Liu, N. Savage, Deep learning based fusion approach for hate speech

detection, IEEE Access 8 (2020) 128923–128929.

[25] P. Alonso, R. Saini, G. Kovács, Hate speech detection using transformer ensembles on the hasoc dataset,

in: A. Karpov, R. Potapova (Eds.), Speech and Computer, Springer International Publishing, Cham,

2020, pp. 13–21.

[26] S. Alsafari, S. Sadaoui, M. Mouhoub, Deep learning ensembles for hate speech detection, in: Interna-

tional Conference on Tools with Artificial Intelligence, 2020, pp. 526–531.

[27] S. Banerjee, B. Raja Chakravarthi, J. P. McCrae, Comparison of pretrained embeddings to identify

hate speech in indian code-mixed text, in: Conference on Advances in Computing, Communication

Control and Networking, 2020, pp. 21–25. doi:10.1109/ICACCCN51052.2020.9362731.

[28] F. M. P. del Arco, M. D. Molina-González, L. A. Ureña-López, M. T. Martín-Valdivia, Comparing

pre-trained language models for spanish hate speech detection, Expert Systems with Applications 166

(2021) 114120.

[29] M. Jain, P. Goel, P. Singla, R. Tehlan, Comparison of various word embeddings for hate-speech detec-

tion, in: Khanna A., Gupta D., Pólkowski Z., Bhattacharyya S., Castillo O. (eds) Data Analytics and

Management. Lecture Notes on Data Engineering and Communications Technologies, vol 54, Springer,

2021, pp. 251–265.

[30] Z. Waseem, D. Hovy, Hateful symbols or hateful people? predictive features for hate speech detection

on twitter, in: Proceedings of the NAACL Student Research Workshop, Association for Computational

Linguistics, 2016, pp. 88–93.

[31] Z. Waseem, Are you a racist or am i seeing things? annotator influence on hate speech detection

on twitter, in: Workshop on NLP and Computational Social Science, Association for Computational

Linguistics, 2016, pp. 138—-142.

[32] H. Liu, P. Burnap, W. Alorainy, M. L. Williams, Fuzzy multi-task learning for hate speech type

identification, in: The World Wide Web Conference, 2019, p. 3006–3012.

[33] M. Zampieri, S. Malmasi, P. Nakov, S. Rosenthal, N. Farra, R. Kumar, SemEval-2019 task 6: Identi-

fying and categorizing offensive language in social media (OffensEval), in: International Workshop on

Semantic Evaluation, 2019, pp. 75–86.

[34] Z. Al-Makhadmeh, A. Tolba, Automatic hate speech detection using killer natural language processing

optimizing ensemble deep learning approach, Computing 102 (2020) 501–522.

[35] V. Basile, C. Bosco, E. Fersini, D. Nozza, V. Patti, F. M. Rangel Pardo, P. Rosso, M. Sanguinetti,

SemEval-2019 task 5: Multilingual detection of hate speech against immigrants and women in Twitter,

in: International Workshop on Semantic Evaluation, 2019, pp. 54–63.

34

http://dx.doi.org/10.1109/ICACCCN51052.2020.9362731


[36] M. Woźniak, M. Graña, E. Corchado, A survey of multiple classifier systems as hybrid systems, Infor-

mation Fusion 16 (2014) 3–17.

[37] R. M. Cruz, R. Sabourin, G. D. Cavalcanti, Dynamic classifier selection: Recent advances and perspec-

tives, Information Fusion 41 (2018) 195–216.

[38] D. H. Wolpert, Stacked generalization, Neural Networks 5 (2) (1992) 241–259.

[39] E. Pękalska, R. P. W. Duin, M. Skurichina, A discussion on the classifier projection space for classifier

combining, in: F. Roli, J. Kittler (Eds.), Multiple Classifier Systems, Springer Berlin Heidelberg, Berlin,

Heidelberg, 2002, pp. 137–148.

[40] R. M. Cruz, G. D. Cavalcanti, I. R. Tsang, R. Sabourin, Feature representation selection based on

classifier projection space and oracle analysis, Expert Systems with Applications 40 (9) (2013) 3813 –

3827.

[41] J. Pennington, R. Socher, C. D. Manning, Glove: Global vectors for word representation, in: Empirical

Methods in Natural Language Processing, 2014, pp. 1532—-1543.

[42] A. Joulin, E. Grave, P. Bojanowski, T. Mikolov, Bag of tricks for efficient text classification, in: Proceed-

ings of the 15th Conference of the European Chapter of the Association for Computational Linguistics:

Volume 2, Short Papers, Association for Computational Linguistics, Valencia, Spain, 2017, pp. 427–431.

[43] J. Zhao, X. Xie, X. Xu, S. Sun, Multi-view learning overview: Recent progress and new challenges,

Information Fusion 38 (2017) 43–54.

[44] L. I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms, 2nd Edition, Wiley Publish-

ing, 2014.

[45] C. A. Shipp, L. I. Kuncheva, Relationships between combination methods and measures of diversity in

combining classifiers, Information Fusion 3 (2) (2002) 135 – 148.

[46] M. Aksela, J. Laaksonen, Using diversity of errors for selecting members of a committee classifier,

Pattern Recognition 39 (4) (2006) 608–623.

[47] G. Giacinto, F. Roli, Design of effective neural network ensembles for image classification purposes,

Image and Vision Computing 19 (9-10) (2001) 699–707.

[48] R. M. O. Cruz, L. G. Hafemann, R. Sabourin, G. D. C. Cavalcanti, Deslib: A dynamic ensemble

selection library in python, Journal of Machine Learning Research 21 (8) (2020) 1–5.

[49] L. McInnes, J. Healy, J. Melville, Umap: Uniform manifold approximation and projection for dimension

reduction, arXiv preprint arXiv:1802.03426.

[50] P. Petersen, S. Axler, K. Ribet, Riemannian geometry, Vol. 171, Springer, 2006.

[51] J. Jost, J. Jost, Riemannian geometry and geometric analysis, Vol. 42005, Springer, 2008.

[52] P. K. Chan, S. J. Stolfo, Experiments on multistrategy learning by meta-learning, in: Proceedings of

the second international conference on information and knowledge management, 1993, pp. 314–323.

35



[53] R. M. Cruz, R. Sabourin, G. D. Cavalcanti, T. I. Ren, META-DES: A dynamic ensemble selection

framework using meta-learning, Pattern recognition 48 (5) (2015) 1925–1935.

[54] W. Y. Wang, " liar, liar pants on fire": A new benchmark dataset for fake news detection, arXiv

preprint arXiv:1705.00648.

[55] A. Yadav, D. K. Vishwakarma, Sentiment analysis using deep learning architectures: a review, Artificial

Intelligence Review 53 (6) (2020) 4335–4385.

[56] V. Basile, C. Bosco, E. Fersini, N. Debora, V. Patti, F. M. R. Pardo, P. Rosso, M. Sanguinetti, et al.,

Semeval-2019 task 5: Multilingual detection of hate speech against immigrants and women in twitter,

in: 13th International Workshop on Semantic Evaluation, Association for Computational Linguistics,

2019, pp. 54–63.

[57] M. Sanguinetti, F. Poletto, C. Bosco, V. Patti, M. Stranisci, An italian twitter corpus of hate speech

against immigrants, in: International Conference on Language Resources and Evaluation, 2018, pp.

2798–2805.

[58] I. Aljarah, M. Habib, N. Hijazi, H. Faris, R. Qaddoura, B. Hammo, M. Abushariah, M. Alfawareh,

Intelligent detection of hate speech in arabic social network: A machine learning approach, Journal of

Information Science (2020) 0165551520917651.

[59] N. Japkowicz, M. Shah, Evaluating learning algorithms: a classification perspective, Cambridge Uni-

versity Press, 2011.

[60] S. Raschka, Model evaluation, model selection, and algorithm selection in machine learning, arXiv

preprint arXiv:1811.12808.

[61] C. Ferri, J. Hernández-Orallo, R. Modroiu, An experimental comparison of performance measures for

classification, Pattern Recognition Letters 30 (1) (2009) 27–38.

[62] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,

R. Weiss, V. Dubourg, et al., Scikit-learn: Machine learning in python, the Journal of machine Learning

research 12 (2011) 2825–2830.

[63] O. de Gibert, N. Perez, A. García-Pablos, M. Cuadros, Hate speech dataset from a white supremacy

forum, in: Proceedings of the 2nd Workshop on Abusive Language Online (ALW2), Association for

Computational Linguistics, Brussels, Belgium, 2018, pp. 11–20.

[64] H. Watanabe, M. Bouazizi, T. Ohtsuki, Hate speech on twitter: A pragmatic approach to collect hateful

and offensive expressions and perform hate speech detection, IEEE Access 6 (2018) 13825–13835.

[65] D. Van Thin, L. S. Le, N. L.-T. Nguyen, Nlp@ uit: Exploring feature engineer and ensemble model for

hate speech detection at vlsp 2019, TRAINING 5 (1991) 3–51.

[66] D. Ducharme, L. Costa, L. DiPippo, L. Hamel, Svm constraint discovery using knn applied to the identi-

fication of cyberbullying, in: Proceedings of the International Conference on Data Mining (DMIN), The

36



Steering Committee of The World Congress in Computer Science, Computer . . . , 2017, pp. 111–117.

[67] B. Mathew, P. Saha, H. Tharad, S. Rajgaria, P. Singhania, S. K. Maity, P. Goyal, A. Mukherje, Thou

shalt not hate: Countering online hate speech, in: International AAAI Conference on Web and Social

Media, 2019, pp. 369–380.

[68] T. Gröndahl, L. Pajola, M. Juuti, M. Conti, N. Asokan, All you need is “love”: Evading hate speech

detection, in: Proceedings of the 11th ACM Workshop on Artificial Intelligence and Security, AISec

’18, Association for Computing Machinery, New York, NY, USA, 2018, p. 2–12.

[69] V. Indurthi, B. Syed, M. Shrivastava, N. Chakravartula, M. Gupta, V. Varma, FERMI at SemEval-2019

task 5: Using sentence embeddings to identify hate speech against immigrants and women in Twitter,

in: International Workshop on Semantic Evaluation, Association for Computational Linguistics, Min-

neapolis, Minnesota, USA, 2019, pp. 70—-74.

[70] P. Geurts, D. Ernst, L. Wehenkel, Extremely randomized trees, Machine learning 63 (1) (2006) 3–42.

[71] G. H. Paetzold, M. Zampieri, S. Malmasi, UTFPR at SemEval-2019 task 5: Hate speech identification

with recurrent neural networks, in: International Workshop on Semantic Evaluation, Association for

Computational Linguistics, Minneapolis, Minnesota, USA, 2019, pp. 519–523.

[72] H. Mulki, C. Bechikh Ali, H. Haddad, I. Babaoğlu, Tw-StAR at SemEval-2019 task 5: N-gram em-

beddings for hate speech detection in multilingual tweets, in: International Workshop on Semantic

Evaluation, Association for Computational Linguistics, Minneapolis, Minnesota, USA, 2019, pp. 503–

507.

[73] I. Ameer, M. H. F. Siddiqui, G. Sidorov, A. Gelbukh, CIC at SemEval-2019 task 5: Simple yet very

efficient approach to hate speech detection, aggressive behavior detection, and target classification in

Twitter, in: Proceedings of the 13th International Workshop on Semantic Evaluation, Association for

Computational Linguistics, Minneapolis, Minnesota, USA, 2019, pp. 382–386.

[74] D. Cer, Y. Yang, S. yi Kong, N. Hua, N. Limtiaco, R. S. John, N. Constant, M. Guajardo-Cespedes,

S. Yuan, C. Tar, Y.-H. Sung, B. Strope, R. Kurzweil, Universal sentence encoder (2018). arXiv:

1803.11175.

37

http://arxiv.org/abs/1803.11175
http://arxiv.org/abs/1803.11175

	1 Introduction
	2 Related work
	2.1 Ensemble for hate speech detection
	2.2 Literature gap

	3 Proposed Method
	3.1 Feature extraction
	3.2 Training
	3.3 Dissimilarity Matrix
	3.4 Dimensionality Reduction
	3.5 Sensitivity Analysis
	3.6 Classifiers combination

	4 Experimental Methodology
	4.1 Datasets
	4.2 Performance Metrics
	4.3 Pre-processing and features extraction
	4.4 Monolithic Classifier

	5 Sensitivity Analysis
	5.1 Feature representation and classifier selection

	6 Results
	6.1 Multiple Classifier System
	6.2 Discussion

	7 Conclusion

