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Abstract 

The overset grid methodology has significantly reduced time-to-solution of high- 
fidelity computational fluid dynamics (CFD) simulations about complex aerospace 
configurations. The solution process resolves the geometrical complexity of the prob- 
lem domain by using separately generated but overlapping structured discretization 
grids that periodically exchange information through interpolation. However, high 
performance computations of such large-scale realistic applications must be han- 
dled efficiently on state-of-the-art parallel supercomputers. This paper analyzes the 
effects of various performance enhancement strategies on the parallel efficiency of 
an overset grid Navier-Stokes CFD application running on an SGI Origin2000 ma- 
chinc. Specifically, the role of asynchronous communication, grid splitting, and grid 
grouping strategies are presented and discussed. Details of a sophisticated graph 
partitioning technique for grid grouping are also provided. Results indicate that 
performance depends critically on the level of latency hiding and the quality of load 
balancing across the processors. 
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1 Introduction 

The overset grid methodology [a] for high-fidelity computational fluid dy- 
namics (CFD) simulations about complex aerospace configurations falls into 
the general class of Schwartz decomposition methods [15]. The solution pro- 
cess resolves the geometrical complexity of the problem domain by generating 
and using overlapping multi-block structured discretization grids. This overset 
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approach typically employs a Chimera interpolation technique [18] to period- 
ically update and exchange inter-grid boundary information. 

However, to reduce time-to-solution, high performance computations of 
such large-scale realistic applications must be handled efficiently on state-of- 
the-art parallel supercomputers. Several pertinent papers describing numerical 
results and parallel implementations have been presented over the years at 
many conferences [1,7,14,17]. Those that are relevant to performance analysis 
are relatively outdated; their experiments were conducted on machines with 
low compute power using small-scale test problems [6,12,13,21]. This paper 
is the first attempt to report a detailed parallel performance evaluation of 
a high-fidelity multi-block overset CFD production code running large-scale 
complex-geometry applications on large numbers of processors. A preliminary 
version can be found in [3]. 

Various parallel programming paradigms have been developed for both dis- 
tributed and shared memory systems. Currently, the most popular paradigms 
are message passing, shared memory programming, and their hybrid combina- 
tion. Widely used scientific programs suitable for most modern architectures 
are implemented using a message passing paradigm, such as MPI, mainly for 
portability reasons. Fortunately, the overset grid method can readily employ 
MPI to exploit its coarse-grained parallelism as well as communicate informa- 
tion between distributed overlapping grids. 

The parallel efficiency of the overset approach depends primarily upon the 
proper distribution of the computational workload and the minimization of 
the communication overhead among the processors. For most practical com- 
putational problems, optimal load balancing to minimize processor idle time 
is a challenging task. Overset applications with tens of millions of grid points 
may consist of many overlapping grids. Smart clustering of individual grids 
(also known as blocks or zones) into groups should therefore not only consider 
the total number of “weighted” grid points (described in Section 3.3), but 
also the size and connectivity of the inter-grid data. Major challenges during 
the grouping process may arise due to the wide variation in block sizes and 
the disparity in the number of inter-grid boundary points. Note also that for 
large processor sets, the overhead associated with boundary data exchange 
may adversely affect parallel performance. 

This paper analyzes the effects of various performance enhancement tech- 
niques on the parallel efficiency of an overset grid Navier-Stokes CFD appli- 
cation called OVERFLOW. Specifically, the role of asynchronous communica- 
tion, grid splitting, and grid grouping strategies are presented and discussed. 
First, we study the effect of synchronous and asynchronous communication 
via MPI. The asynchronous exchange is an attempt to relax the communi- 
cation schedule in order to hide latency. Second, the splitting of large blocks 
as a means of controlling the computational load is analyzed. This is particu- 
larly important for scalability, where the same grid system must be retained 
for executing on different numbers of processors. Finally, two grid clustering 
techniques are examined: one based on a naive bin-packing approach and the 
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other using a more sophisticated graph partitioning method. All our experi- 
ments are conducted on an SGI Origin2000 machine using three test cases that 
simulate complex rotorcraft vortex dynamics and consist of between 63 million 
and 78 million grid points. Results indicate that performance depends criti- 
cally on the level of latency hiding and the quality of load balancing across 
the processors. 

The remainder of this paper is organized as follows. Section 2 provides 
a brief description of the OVERFLOW application. The performance en- 
hancement techniques of grid splitting, asynchronous communication, and grid 
grouping are described in Section 3. Parallel performance results are presented 
and critically analyzed in Section 4. Finally, Section 5 concludes the paper with 
a summary and some key observations. 

2 Numerical Methodology 

In this section, we provide a brief overview of the overset grid CFD appli- 
cation called OVERFLOW, including the basics of its solution process, grid 
connectivity, and message-passing parallelization model. 

2.1 Solution Process 

The high-fidelity overset grid application, called OVERFLOW [2], owes its 
popularity within the aerodynamics community due to its ability to handle 
complex designs consisting of multiple geometric components, where individ- 
ual body-fitted grids can be constructed easily about each component. The 
grids are either attached to the aerodynamics configuration (near-body), or are 
detached (off-body). The union of near- and off-body grids covers the entire 
computational domain (see Fig. 1(a) for a simple schematic). 

OVERFLOW uses a Reynolds-averaged Navier-Stokes solver, augmented 
with a number of turbulence models. In this work, a special version of the code, 
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Fig. 1. (a) Overset grid schematic; (b) hole and outer inter-grid boundary points. 
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named OVERFLOW-D [9,10], is used. Unlike the original version which is pri- 
marily meant for fixed-body (static) grid systems, OVERFLOW-D is explicitly 
designed to simplify the modeling of components in relative motion (dynamic 
grid systems). For example, in typical rotary-wing problems, the near-field is 
modeled with one or more grids around the moving rotor blades. The code 
then automatically generates Cartesian “background” or “wake” grids, called 
bricks, that encompass these curvilinear near-body grids. At each time step, 
the flowfield equations are solved independently on each zone in a sequential 
manner. Overlapping boundary points or inter-grid data are updated from 
previous solutions prior to the start of the current time step using a Chimera 
interpolation procedure [lS]. The code uses finite differences in space, with a 
variety of implicit/explicit time stepping. 

2.2 Grid Connectivity 

The Chimera interpolation procedure [ 181 determines the proper connec- 
tivity of the individual grids. To update inter-grid boundary data, the scheme 
has to process two types of boundary points: “hole” and “outer” boundary 
points (see Fig. l (b)) .  Holes are cut in grids which intersect solid surfaces, 
such as when a portion of an overset grid lies inside a physical body. The hole 
boundary points are on the surfaces of these cuts. All other inter-grid bound- 
ary points are classified as outer. Adjacent grids are expected to have at least 
a one-cell, or a single fringe, overlap to ensure the continuity of the solutions; 
for higher-order accuracy and to retain certain physical features in the solu- 
tion, a double fringe overlap is sometimes used [19]. A program named Domain 
Connectivity Function (DCF) [ll] computes the inter-grid donor points that 
have to be supplied to other grids. The DCF procedure is incorporated into 
the OVERFLOW-D code and fully coupled with the flow solver. For dynamic 
grid systems, DCF has to be invoked at every time step to create new holes 
and inter-grid boundary data. 

2.3 MPI Parallelization Model 

The parallel version of the OVERFLOW-D application has been devel- 
oped around the multi-block feature of the sequential code, which offers a 
natural coarse-grained parallelism [Zl]. The main computational logic at the 
top level of the sequential code consists of a “time-loop”, a “grid-loop”, and 
a “subiteration-loop”. The last two loops are nested within the time-loop. 
Within the grid-loop, solutions are obtained on the individual grids with im- 
posed boundary conditions, where the Chimera interpolation procedure suc- 
cessively updates inter-grid boundaries after computing the numerical solu- 
tion on each grid. Convergence of the soIution process is accelerated by the 
subiteration-loop. Upon completion of the grid-loop, the solution is automat- 
ically advanced to the next time step by the time-loop. The overall procedure 

3 3 3 3 3 33 3 &% Q5 +3431@&@ & $ 4 W - M  4%M5 % 1 3 3 333 3 3 33 3 33 3333 333 3 33 -lm+ + + + + 

4 



Four overset grids 

Inter-group exchanges] 0 Donor 
Receiver 

I 

Group 2 1 
I 

I Intra-group exchanges ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Fig. 2. Overset grid intra-group and inter-group communication. 

A message passing programming model based on the MPI library was 
implemented using the single program multiple data (SPMD) paradigm. To 
facilitate parallel execution, a grouping strategy is required to assign each 
grid to an MPI process. The total number of groups, G, is equal to the total 
number of MPI processes, P. Since a grid can only belong in one group, the 
total number of grids, 2, must be at least equal to P. If 2 is larger than P, a 
group will consist of more than one grid. Two techniques for clustering grids 
into groups are discussed later in Section 3.3. 

The logic in the MPI programming model differs slightly from that of the 
sequential case (where G = P = 1). Here the grid-loop is subdivided into 
two procedures, a loop over groups (“group-loop”) and a loop over the grids 
within each group. Since each MPI process is assigned to only one group, 
the group-loop is performed in parallel, with each group performing its own 
sequential grid-loop. The inter-grid boundary updates among the grids within 
each group (these are also called intra-group updates) are performed as in the 
serial case. Chimera updates are also necessary for overlapping grids that are 
in different groups, and are known as inter-group exchanges (see Fig. 2). The 
inter-group donor points from grids in group Gi to grids in group Gj are stored 
in a send buffer and exchanged between the corresponding processes via MPI 
calls. These inter-group exchanges are transmitted at  the beginning of every 
time step based on the interpolatory updates from the previous time step. 

3 Performance Enhancement Techniques 

We have developed and utilized various performance enhancement tech- 
niques to improve the parallel efficiency of the OVERFLOW-D application. 
Specifically, the role of asynchronous communication, grid splitting, and grid 
grouping strategies are presented and discussed in this section. Superior par- 
allel performance of such large-scale realistic applications on state-of-the-art 
commercial supercomputers is critical to advance our scientific understanding 
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and problem solving capability. 

3.1 Asynchronous Communication 

Almost all of the communication that is required in the OVERFLOW-D 
application concerns the exchange of inter-grid boundary. data, and is con- 
tained in the subroutine, qbc-exchange. The message passing can be syn- 
chronous or asynchronous, but the choice significantly affects the MPI pro- 
gramming model. The synchronous communication is performed with block- 
ing MPI send/receive calls, while the asynchronous communication uses non- 
blocking calls. 

With synchronous communication, the total number of send/receive calls 
is P x ( P  - l), counting even the messages of zero length. A send call is 
blocked until the receiving processor is ready to accept the message, i.e., until 
the matching receive call is posted. The increase in execution time caused by 
this communication pattern is analogous to the introduction of an implicit 
serialization into the code. The initial parallel version of OVERFLOW-D was 
implemented with synchronous message passing and tested with a relatively 
small dataset on 16 processors [21]. As a result, the communication time was 
quite insignificant and therefore accept able. However, performance analysis 
using larger datasets and more processors (presented in Section 4) indicate a 
serious communication bottleneck for the exchange of boundary data via the 

/* Send data from group N D  to group N R  */ 
d o N D = I ,  G 

if (myrank .eq. N D )  then 
do N R  = 1, G 

MLEN-SEND = I S N D  ( N R )  
if (myrank .ne. N R )  then 

else 

/* Set length of send array */ 

call MPI-SEND (QBCSND, MLEN-SEND, .) 

do I = I ,  MLEN-SEND 
QBCRCV ( I )  = QBCSND ( I )  /* Memory copy */ 

end do 
end if 

end do 
else 

/* Receive data from group N D  */ 
MLEN-RECV = IRCV ( N D )  
call M PI-RECV (QBCRCV, MLEN-RECV, . . e )  

/* Set length of receive array */ 

end if 
end do 

Fig. 3. Outline of the synchronous communication model in the original OVER- 
FLOW-D code. 
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synchronous approach. 
In order to be better able to compare the original synchronous and our 

new asynchronous communication strategies, we present in Fig. 3 an outline 
of the synchronous model. The group boundary data arrays are specified by 
QBCSND and QBCRCV with total lengths of MLEN-SEND and MLEN-RECV, respec- 
tively. The values of MLEN-SEND and MLENRECV are determined by arrays ISND 
and IRCV, respectively, for each group. As mentioned in Section 2, all bound- 
ary related arrays (QBCSND, QBCRCV, ISND, and IRCV) are determined by the 
DCF procedure prior to the start of a new time step and updated by Chimera 
interpolations. 

Our first performance enhancement technique is to use asynchronous corn- 
munication for inter-grid boundary data exchange within the qbc-exchange 
subroutine. The asynchronous strategy is an attempt to relax the communica- 
tion schedule in order to hide latency. Asynchronous communication consists of 
non-blocking MPI send/receive calls. Unlike the corresponding blocking calls 
of the synchronous method, these invocations place no constraints on each 
other in terms of completion. Non-blocking receives complete immediately, 

/* Post receives in group NR from group ND */ 
d o N D = 1 ,  G 

MLEN-RECV = IRCV (ND) 
if (MLENRECV .ne. 0 )  then 

* Set length of receive array */ 

if (myrank .ne. ND) then 

end if 
call M PIA RECV (QBCRCV, MLEN-RECV, . e )  

end if 
end do 
/* Send data from group ND to group NR */ 
do NR= 1, G 

MLEN-SEND = ISND (NR) 
if (myrank .ne. NR) then 

* Set length of send array */ 

if (MLEN-SEND .ne. 0) then 

end if 

do I = 1, MLEN-SEND 

end do 

call MPI-ISEND (QBCSND, MLEN-SEND, a) 

else 

QBCRCV ( I )  = QBCSND ( I )  /* Memory copy */ 

end if 
end do 
/* Check that all receives have completed */ 
call MPI-WAITALL 

Fig. 4. Outline of our asynchronous communication model in OVERFLOW-D. 
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even if no messages are available, and hence allow maximal concurrency; they 
are posted by receiving processors prior to the pertinent sends from the send- 
ing processors. Furthermore, messages of zero length are not sent to decrease 
the communication overhead. We have implemented this asynchronous mes- 
sage passing model in the current version of OVERFLOW-D. 

In general, however, control flow and debugging can become a serious prob- 
lem if, for instance, the order of messages needs to  be preserved. Fortunately, in 
the overset grid application, the Chimera boundary updates take place at the 
completion of each time step, and the computations are independent of the or- 
der in which messages are sent or received. Being able to exploit this fact allows 
us to easily use asynchronous communication within OVERFLOW-D. Figure 4 
gives an outline of the asynchronous approach that we have implemented. The 
same naming convention discussed with respect to  the synchronous case is also 
adopted here. Comparisons with Fig. 3 shows that the outer loop containing 
the MPI-SEND/MPI-RECV pair in the synchronous case is now broken into two 
separate loops. The first posts non-blocking MPI-IRECV calls while the second 
posts non-blocking MPI-ISEND. Note that for the asynchronous strategy, the 
MPI barrier function (M PI-WAITALL) must be invoked to ensure completion 
of the operations and to release the message buffers. 

3.2 Grid Splitting 

Load balancing is critically important for efficient parallel computing. The 
objective is to  distribute equal computational workloads among the proces- 
sors while minimizing the inter-processor communication cost. On a given 
platform, the primary procedure that affects the load balancing of an overset 
grid application is the grid grouping strategy. To facilitate parallel execution, 
each grid must be assigned to an MPI process. Since the total number of grids, 
2, is at least equal to the number of processes, P,  a proper clustering of the 
grids into G groups is required (G = P) .  

Unfortunately, the sizes of the 2 blocks in an overset grid system may vary 
substantially, thereby complicating the grouping procedure and significantly 
affecting the overall load balance. For instance, each near-body block is a 
three-dimensional curvilinear structured grid generated about the geometric 
components of an aerodynamics configuration. The dimensions of each block 
are primarily selected to  introduce proper refinement into the grid spacing in 
an effort to maintain certain features of the physical solution, but have no 
bearing on the type of computations used, serial or parallel. Consequently, 
there may be orders of magnitude differences in near-body block sizes for the 
initial grid system. Recall that these near-body grids overlap the Cartesian 
wake (off-body) grid system to cover the entire computational domain. The 
indices of each grid zi, i = 1,2 ,  . . . 2, varies from (l,l,l) to a maximum of 
(Ii, Ji, Ki), for a total of Ii x Ji x Ki grid points. 

A smart mechanism is therefore needed to limit the size of the individual 
blocks. One option is to add some control during the grid, generation pro- 
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cess, but this would further complicate an already complex task. The strategy 
would also require information about the number of groups (G) which may 
vary from one simulation run to the next depending on the chosen number of 
processors (P), since G must be equal to P. The second approach, which we 
have implemented as part of this work, is to split the largest blocks into sub- 
blocks of desired sizes prior to grouping them. This performance enhancement 
technique is independent of the grid generation procedure and is automatically 
implemented at runtime, prior to the start of the time-loop. 

The original version of OVERFLOW-D has the ability to perform some 
automatic grid splitting without any user input, but it was only to ensure 
that there were enough blocks 2 to form G groups with G = P. However, for 
large test cases such as those used in this paper, further control is required. In 
particular, we must maintain exactly the same blocks in the grid system when 
executing on different numbers of processors to examine code scalability. In 
our latest version of OVERFLOW-D, the user specifies two input parameters, 
maxnb and maxgrd, for splitting the largest blocks based on some knowledge of 
the initial grid system and the maximum target value of P. All near- and off- 
body grids larger in size than maxnb and maxgrd, respectively, are then split 
into overlapping sub-blocks of smaller but equal sizes. For near-body grids, 
the split is done in one dimension only, depending on the values of I ,  J ,  and 
K .  The type of imposed boundary condition (periodic, reflecting, etc.) also 
plays a role in determining the splitting direction. For the uniform Cartesian 
off-body grids, splitting can be performed in multiple dimensions if necessary. 

Conceptually, having smaller block sizes simplifies the load balancing pro- 
cedure and leads to a more computationally balanced workload; however, a 
limiting drawback is an increase in the ratio of surface-to-volume grid points. 
A large value of this ratio indicates that the amount of overlap boundary data 
to be transferred via point-to-point communication between pairs of proces- 
sors has increased disproportionately relative to the computational workload. 
Furthermore, since it is necessary to maintain at least a single (one-cell) and 
sometimes even a double (two-cell) fringe overlap between adjacent blocks, the 
total number of grid points increases during the splitting process, resulting in 
a larger computational and communication load per processor. 

3.3 Grid Grouping 

As mentioned in Section 3.2, the grid grouping strategy has a substan- 
tial effect on the quality of load balancing for an overset grid application like 
OVERFLOW-D. The grouping is a function of the following parameters: ex- 
ecution time per grid point, total number of grid points per block, number of 
blocks 2, volume of the total boundary data to be exchanged per processor, 
rate of communication, and total number of processors P. In principle, group- 
ing depends only on the characteristics of the grids and their connectivity; it 
does not take into account the topology of the physical processors. The as- 
signment of groups to processors is somewhat random, and is handled by the 

9 



system job scheduler usually based on a first-touch strategy at run time. 
Even though OVERFLOW-D can handle dynamic (both moving and adap- 

tive) grid systems, we do not conduct any adaptive grid refinement and dere- 
finement for the experiments in this paper. Therefore, the sizes of the grids 
remain fixed during the entire solution process. Furthermore, for our test ap- 
plication, the assignment of grids to processors is performed only once at the 
beginning of the computation; hence, load balancing in this work is static. 

Prior to the grouping procedure, each grid z, is “weighted” as its number of 
grid points times a weight factor, ( I ,  x J, x K,) x W,. The factor W, is to equalize 
the computational work per grid point because some grids require more work 
than others depending on the physics of the solution sought. For instance, 
grids in the viscous turbulence regions of the domain, such as near-body grids, 
require more floating-point operations per point than do the inviscid off-body 
grids. 

The original parallel version of OVERFLOW-D uses a grid grouping strat- 
egy based on a bin-packing algorithm [21]. It is a simple clustering technique 
that strives to maintain a uniform number of weighted grid points per group 
while retaining some degree of connectivity among the grids within each group. 
It first sorts the grids by size in descending order, and assigns a grid to every 
empty group. Therefore, at this point, the G largest grids are each in a group 
by themselves. The remaining grids are then handled one at a time. Each grid 
is assigned to the smallest group that satisfies the connectivity test with other 
grids in that group. The connectivity test only inspects for an overlap between 
a pair of grids regardless of the size of the boundary data or their connectivity 
to other neighboring grids. The process terminates when all grids are assigned 
to groups. 

Our third performance enhancement technique is to devise and implement 
a more sophisticated grid grouping algorithm that incorporates more of the 
parameters discussed at the beginning of this section. It is based on a graph 
representation of the overset grid system. The nodes of the graph correspond 

i 

I to the near- and off-body grids, while an edge exists between two nodes if the 
corresponding grids overlap. The nodes are weighted by the weighted number 
of grid points and the edges by the communication volume. Given such a graph 

I 

I 

with 2 nodes and E edges, the problem is to divide the nodes into G sets such 
that the sum of the nodal weights in each set are almost equal while the sum 
of the cut edges’ weights is minimized. This is the classical graph partitioning 
problem that is widely encountered in the parallel computing arena [16]. Such 
a grouping strategy is, in theory, more optimal than bin-packing in that the 
grids in each group enjoy higher intra-group dependencies with fewer inter- 
group exchanges. 

To address the grid grouping problem in OVERFLOW-D, we have imple- 
mented a graph partitioning algorithm based on EVAH [8]. It consists of a set 
of allocation heuristics that considers the constraints inherent in multi-block 
CFD problems. EVAH was initially developed to  predict the performance scal- 
ability of overset grid applications on large numbers of processors, particularly 
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I /* LTFMFTACC heuristic */ 
1: 
2: 

3: 
3.1: 

3.2: 

3.3: 

sort tasks zi, i = 1,2 ,  . . . 2 in descending order by size (LTF) 
for each processor p j ,  j = I, 2, . . . P 

set T ( p j )  = 0 
for each sorted task zi, i = 1 , 2 , .  . .Z 

assign zi to p j  with minimum T ( p j )  (MFT) 
compute T ( p j )  = T ( p j )  + Xi 
for each z, E R(zi) assigned to pk # p j  (ACC) 

set T ( p j )  = T ( p j )  -I- Ci, 
for each Zd E D(zi) assigned to pm # p j  (ACC) 

set T ( p m )  = T ( p m )  f cdi 
end for 

Fig. 5. Outline of the LTF-MFT-ACC task assignment heuristic from EVAH. 

within the context of distributed grid computing across multiple resources [4]. 
In this work, we have modified EVAH to cluster overset grids into groups while 
taking into account their relative overlaps. 

Among several heuristics that are available within EVAH, we have used 
the one called largest task first with minimum finish time and az;ailable com- 
munication costs (LTF-MFTACC). In the context of the current work, a task 
is synonymous with a block in the overset grid system. The size of a task is 
defined as the computation time for the corresponding block. An outline of 
the LTFIMFT-ACC procedure is presented in Fig. 5.  It is constructed from 
the basic largest task first (LTF) heuristic that sorts the tasks in descending 
order by size. LTF is then enhanced by the systematic integration of the sta- 
tus of the processors in terms of their minimum finish time (MFT). Because 
of the overhead involved due to data exchanges between neighboring zones 
and their impact on overall execution time, the assignment heuristic is further 
augmented by including available communication costs (ACC). A procedure 
has been developed to interface the DCF subroutine of OVERFLOW-D with 
EVAH heuristics. 

It is easiest to explain the LTF-MFTACC grouping strategy by using a 
simple example and then stepping through the procedure in Fig. 5.  Figure 6(a) 
shows a graph representation of the overset grid system in Fig. 2 that is being 
partitioned across two processors, po and p l .  The computational time for block 
zi is denoted as Xi and shown for all four blocks in Fig. 6(a). Similarly, the 
communication overhead from zd (donor) to z, (receiver) is denoted as c d ,  

and shown for all inter-grid data exchanges along the graph edges. In step 1, 
the four blocks are sorted in descending order by computational time; hence 
the order is: 2 3 ,  z2, 20, 21. In step 2, the total execution times of the two 
processors are initialized: T(p0)  = T ( p 1 )  = 0. Step 3 has to be executed four 
times since we have four grids that must be grouped. Block 2 3  is assigned to 
po and T ( p o )  = 75 in step 3.1. Since no other blocks have yet been assigned, 
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xo= 50 X3= 75 

1 E 4 

z2 
XI = 40 3 X,= 60 - 

1: 
2: 
3.1: 53 --+PO 

sorted 5 3 ,  z2, 20. -71 

T(po)  = T(p1)  = 0 

T ( p o )  = 0 + 75 = 75 
3.1: 22 -+PI  

T ( p 1 )  = 0 + 60 = 60 
3.2: T ( p 1 )  60 + 4 = 64 
3.3: T ( p 0 )  = 75 + 4 = 79 

3.1: zo + p i  
T(p1)  = 64 + 50 = 114 
T ( p 1 )  = 114 + 3 = 117 
T ( p 0 )  = 79 + 2 = 81 

T ( p 0 )  = 81 + 40 = 121 

?'(PO) = 122 + 1 = 123 
T(p1)  = 117 + 3 = 120 

3.2: 
3.3: 
3.1: 51 + P O  

3.2: 
3.2: 
3.3: 
3.3: 

T ( p o )  = 121 + 1 = 122 

T ( p 1 )  = 120 + 2 = 122 

Fig. 6. (a) Graph representation of overset grid system in Fig. 2; (b) stepping 
through the LTF-MFTACC procedure in Fig. 5. 

steps 3.2 and 3.3 are not executed. 
Sow z2 must be mapped to a processor that has the smallest total execution 

time; thus, z2 goes to pl and T ( p l )  = 60 in step 3.1. In step 3.2, we need to 
look at all grids assigned to processors other than pl that are also receivers 
of inter-grid data from z2.  This set of grids is denoted as R(z2)  in Fig. 5. 
The graph in Fig. 6(a) shows that z1 and 2 3  are in R(z2); however, z1 is still 
unassigned. Since 23 belongs to po, the communication overhead C23 is added 
to T ( p 1 ) ;  hence, T ( p , )  = 64. Similarly, in step 3.3, the set D(z2) consists of 
grids that are donors of inter-grid data to z2. Because zl is unassigned and z3 
is mapped to po ,  T ( p o )  is updated with C32; thus, T ( p o )  = 79. The remainder 
of the grouping procedure is shown in Fig. 6(b). 

4 Parallel Performance Results 

The CFD problem used for the experiments in this paper is a Navier-Stokes 
simulation of vortex dynamics in the complex wake flow region for hovering 
rotors. Figure 7 shows sectional views of the test application grid system. 
The Cartesian off-body wake grids surround the curvilinear near-body grids 
with uniform resolution, but become gradually coarser upon approaching the 
outer boundary of the computational domain. Specifically, the spacing of the 
off-body grid nearest the rotor blade is As, that for the next surrounding 
level is 2As, and so on for every successive level. Figure 8 shows a cut plane 
through the computed vortex wake system including vortex sheets as well as 
a number of individual tip vortices. A complete description of the underlying 
physics and an extensive analysis of the numerical simulations pertinent to 
this test problem can be found in [20]. We have used the following three cases 
to evaluate our performance enhancement techniques discussed in Section 3: 
0 Case 1: 2 = 454, -63M grid points, maxnb = 250K, maqrd = 300K. 
0 Case 2: 2 = 857, -69M grid points. mumb = look', mugrd = 100K. 
0 Case 3: 2 = 1679, - 78M grid points, muxnb = 60K, rnaxgrd = 7OK. 
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Fig. 7. Sectional views of the test application grid system: (a) off-body Cartesian 
wake grids, (b) near-body curvilinear grids, and (c) cut plane through the off-body 
wake grids surrounding the hub and rotors. 

Fig. 8. Computed vorticity magnitude contours on a cutting plane located 45' be- 
hind the rotor blade. 

All experiments were run on the 512-processor SGI Origin2000 shared- 
memory system at NASA Ames Research Center. Each Origin2000 node is 
a symmetric multiprocessor (SMP) containing two 400 MHz MIPS R12000 
processors and 512 MB of local memory. Due to the memory requirements of 
the test cases, runs could not be conducted on less than 32 processors. Our 
timing results are averaged over 100 iterations and reported in seconds. 
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4.1 Asynchronous Communication Results 

Table 1 shows a comparison of various timings for Case 1 using synchronous 
(blocking send/receive) and asynchronous (non-blocking) communication. The 
grouping algorithm is the basic bin-packing strategy that is available with the 
original version of OVERFLOW-D. The execution time T,,,, is the average 
time required to solve every time step of the application, and includes the 
computation, communication, Chimera interpolation, and processor idle times. 
The average computation (T::;,) and communication (TEAm) times over P 
processors are also shown. Finally, the maximum computation ( T g ! )  and 
communication (Tgzm) times are reported and used to measure the quality 
of load balancing for each run. 

The computation load balance factor (LBcomp) is the ratio of Tzz, to  
TZAp, while the communication load balance factor (LBcomm) is the ratio of 
Tmax comm to T,",zm. For a given P ,  TE;, is close to TEg  when the per-processor 
computation times are comparable; this in turn implies that LB,,,, is almost 
unity. The degree to which the LB,,,, is larger than unity is a measure of the 
computational load imbalance that adversely impacts the overall performance. 
The same argument applies to the communication times; therefore, the closer 
LBcomp and LBcomm are to unity, the higher is the quality of load balancing. 

Notice that TEz, is essentially the same since the computational work- 
load for both runs is identical (same grid system and grid-to-processor assign- 
ment). However. T,,,, for as-ynchronous communication is consistently lower, 
and shows bigger improvements as the number of processors increases. In 
fact, for P > 256, the non-blocking communication strategy reduces Tezec by 
more than a factor of two. The reason for this reduction can be found in 
the communication times. A comparison shows that TFZm and TF;Zrn for the 
synchronous runs are an order of magnitude larger than the corresponding 
times for the asynchronous communication. This is reflected in T,,,, where 
communication usually accounts for less that 6% for the asynchronous case, 
but is more than 50% for many of the synchronous runs. The communication 
problem is exacerbated with increasing P since the number of messages ex- 
changed is 0 ( P2)  (although the individual message sizes decrease). Similar 
comparisons for Cases 2 and 3 would show even larger benefits when using 
the asynchronous strategy. 

Scalability for the asynchronous case, with P 5 256, is significantly better 
than its synchronous counterpart. For P 2 320, scalability suffers for both 
cases, not only due to the relatively larger communication overhead, but also 
because of workload imbalance. The latter can be observed from the increasing 
value of LB,,,,. However, LB,,,, shows that communication is well-balanced 
across all processors for most runs, particularly for blocking communication 
(which is due to the very nature of synchronous communication). Overall 
results indicate the general superiority of the non-blocking asynchronous ap- 
proach over synchronous communication for t his application. 
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Table 1 
Runtimes (in seconds) and load imbalance factors with synchronoi1s and asyn- 
chronoiis communication, and bin-packing grouping strategy for Case 1 

Synchronous 
T a W  T m a x  Tavg P Texec  Tz&; comp comm comm L B c o m p  L B c o m m  

32 37.7 31.9 24.1 4.4 4.3 1.32 1.02 

64 22.1 17.0 12.5 4.3 4.2 1.36 1.02 

128 14.0 8.8 6.3 4.3 4.3 1.40 1 .oo 
256 13.0 6.0 3.2 6.4 6.4 1.87 1 .oo 
320 14.8 5.3 2.7 9.2 8.0 1.96 1.15 

384 16.6 5.2 2.0 9.9 9.9 2.60 1 .oo 
448 18.3 6.5 1.8 11.5 11.4 5.50 1.01 

Asynchronous 
~~ 

avg 
T c o m m  L B c o m p  L B c o m m  

T m a x  T a v g  T m a x  
T e x e c  comp comp comm P 

32 34.6 32.7 24.5 0.70 0.61 1.33 1.15 

64 18.0 16.8 12.4 0.41 0.35 1.35 1.17 

128 9.8 8.8 6.3 0.36 0.31 1.40 1.16 

256 7.0 5.9 3.2 0.37 0.30 1.84 1.23 

320 6.9 5.1 2.6 0.98 0.68 1.96 1.44 

384 6.8 6.0 2.0 0.48 0.36 3.00 1.33 

448 7.0 6.3 1.8 0.49 0.43 3.50 1.14 

4.2 Grid Splitting Results 

The impact of grid splitting on load balancing quality is investigated for 
all the three cases. Case 1 models the situation where the number of splits 
per block is low: or equivalently, the sizes of the newly-created sub-blocks are 
quite large. In Case 2, the sizes of the sub-blocks are somewhat smaller, while 
in Case 3, they are even more so. All runs use asynchronous communication 
and the bin-packing strategy to  cluster grids into groups. Timings for Case 1 
are shown in Table 1, while those for the other two cases are presented in 
Table 2. 

The overall quality of computational workload balancing for the three cases 
can be observed by comparing LBcomp from Tables 1 and 2. Obviously, the 
factor increases with the number of processors as load balancing becomes more 
challenging with a k e d  problem size. As expected, Case 3 exhibits the best 
quality for any given value of P because it has the largest number of grids 
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Table 2 
Runtimes (in seconds) and load imbalance factors with asynchronous communica- 
tion and bin-packing grouping strategy for Cases 2 and 3 

Case 2 
uvg T c o m m  L B c o m p  L B c o m m  aW T m a x  P Texec comp Tcomp comm 

T m a x  

32 32.0 29.3 23.0 1.30 0.90 1.27 1.44 

64 13.5 11.9 10.8 0.67 0.55 1.10 1.22 

128 7.6 6.2 5.4 0.60 0.52 1.15 1.15 

256 5.5 3.7 2.8 0.88 0.50 1.32 1.76 

320 4.7 2.9 2.2 0.57 0.46 1.32 1.24 

384 4.7 2.9 1.9 0.99 0.56 1.53 1.77 

448 4.5 3.0 1.7 0.85 0.46 1.76 1.85 

Case 3 

32 39.9 34.5 27.8 3.10 2.20 1.24 1.41 

64 13.8 11.4 10.4 0.95 0.75 1.10 1.27 

128 7.9 6.4 5.2 0.85 0.70 1.23 1.21 

256 4.5 3.1 2.6 0.95 0.68 1.19 1.40 

320 4.3 2.8 2.1 0.90 0.61 1.33 1.48 

384 4.0 2.4 1.8 0.65 0.57 1.33 1.14 

448 3.8 2.3 1.6 0.71 0.60 1.44 1.18 

which are all generally smaller, i.e., it has the finest granularity. In fact, the sig- 
nificant improvement in load balancing for P 2 256 causes T,,,, to be reduced 
by almost 40% over that for Case 1. It should be noted here that though we are 
evaluating the level of workload imbalance from the runtimes, the grid split- 
ting and grouping strategies are based on the number of weighted grid points. 
Computed from that perspective, the load balance quality is somewhat better 
but follows the same trend. 

Let us now look at the communication times. Notice that both TZZm and 
T;ZZm generally increase with increasing number of blocks (Case 1 through 
Case 3). (The communication time also depends on the topology and con- 
nectivity of the grid system.) This is because even though grid splitting has 
a positive impact on the computational load balance, it adversely affects the 
communication time. Basically, the surface area increases with the number 
of blocks, thereby increasing the volume of the boundary exchange data. For 
example, the ratio of surface-to-volume grid points for the three cases are 
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11%, 14%, and IS%, respectively. Communication therefore also accounts for 
a larger percentage of the total execution time. The ratio of ‘TZg, to T‘Ze, is 
2-10% for Case 1, 3-12% for Case 2, and 5-16% for Case 3. 

Conceptually, the splitting of grids into smaller blocks should also improve 
the communication load balance LB,,,,. Clearly, Case 3 does not have the 
best overall communication load balance, and Case 2 has poorer quality than 
Case 1. These results indicate that the optimal choice of the splitting parame- 
ters maxnb and maqrd depends on the number of processors used. However, in 
our experiments, we wanted a fked grid system independent of the processor 
count. Kote that because of the complexity of OVERFLOW-D, grid splitting 
has been implemented in only one coordinate direction at this time for the 
near-body grids. Even if it were available in multiple directions, most grids 
would not benefit due to boundary condition and viscous direction splitting 
restrictions. 

Finally, parallel scalability also improves with more blocks. This can be 
observed by comparing the T,,,, times in Tables 1 and 2. In fact, we obtain 
superlinear speedup between 32 and 64 processors for Cases 2 and 3. This 
occurs partly because as P increases, a larger fraction of the problem fits in 
cache. Also, T,,,,, decreases consistently for Case 3 all the way to the maximum 
number of processors used. Overall, our grid splitting investigations show that 
a larger number of smaller blocks improves computational load balance and 
parallel scalability; however, there is a tradeoff since a large number of splits 
adversely affects efficiency due to an increase in the surface-to-volume ratio of 
grid points. 

4.3 Grid Grouping Results 

We compare our EV-4H-based heuristic grid grouping strategy with naive 
bin-packing only for Case 2, and investigate their role on load balance quality. 
All timing results are presented in Table 3 (the performance daha for bin- 
packing is reproduced from Table 2 for easier comparison). 

The results in Section 4.2 showed that the quality of communication load 
balancing LB,,, is a big drawback of the bin-packing strategy. Table 3 
demonstrates that the EVAH heuristic technique improves this factor con- 
siderably. In fact, except for P = 354, LB,,,, using EVAH is at  most 1.17. 
However, TZ;, is always larger for EVAH, and is 5-15% of Te,,, (compared to 
3-12% for bin-packing). This is expected since the overall goal of the heuristic 
grouping strategy is to reduce T,,,, by balancing inter-processor communica- 
tion, while bin-packing tries to merely minimize total communication. 

Results in Table 3 also show that except when P = 384, EVAH returns 
the better values for LB,,,,. However, it should be noted here that though we 
are evaluating LB,,,, from the computational run times, both grid grouping 
strategies are based on the number of weighted grid points. The three left plots 
in Fig. 9 show the distribution of weighted grid points across 64, 128, and 256 
processors for bin-packing and EVAH. The “predicted” values of L Bcomp are 



Table 3 
Runtimes (in seconds) and load imbalance factors with bin-packing and EVAH 
heuristic grouping strategies, and asynchronous communication for Case 2 

Bin-packing 
T a v g  T m a x  T a v g  comm L B c o m p  L B c o m m  T m a x  P Texec comv comp comm 

32 32.0 29.3 23.0 1.30 0.90 1.27 1.44 

64 13.5 11.9 10.8 0.67 0.55 1.10 1.22 

128 7.6 6.2 5.4 0.60 0.52 1.15 1.15 

256 5.5 3.7 2.8 0.88 0.50 1.32 1.76 

320 4.7 2.9 2.2 0.57 0.46 1.32 1.24 

384 4.7 2.9 1.9 0.99 0.56 1.53 1.77 

448 4.5 3.0 1.7 0.85 0.46 1.76 1.85 

EVAH heuristic 
T m a x  Tau!? T m a z  T a v g  P Texec comv comp comm comm L B c o m p  L B c o m m  

32 26.2 23.3 21.8 1.50 1.28 1.07 1.17 

64 13.0 11.3 10.8 0.76 0.66 1.05 1.15 

128 7.3 5.8 5.4 0.99 0.89 1.07 1.11 

256 4.8 3.2 2.7 0.77 0.67 1.19 1.15 

320 4.4 3.0 2.3 0.76 0.65 1.30 1.17 

384 4.7 3.1 1.9 0.97 0.55 1.63 1.76 

448 4.3 3.0 1.7 0.73 0.64 1.76 1.14 

also reported and are typically somewhat better than those computed from 
actual run times (see Table 3), but demonstrate the same overall trend. 

The three plots on the right in Fig. 9 present a more detailed report of the 
execution, computation, and communication times per processor for P = 64, 
128, and 256. Due to the synchronization of MPI processes, TeZec is indepen- 
dent of the processor ID and shown at the top of the plot area for each case. 
For the sake of clarity, Tcomm is shown at a different scale indicated by the 
right vertical axis. Observe that the EVAH Tcomp and Tcomm curves are con- 
sistently much smoother than those for bin-packing, indicating a much more 
uniform distribution across processors. 

Performance scalability for both strategies when using more than 256 pro- 
cessors is low due to our fixed problem size. For example, when P = 448, each 
group contains, on average, only two grids (since 2 = 857). With such a low 
number of blocks per group, the effectiveness of any strategy is diminished; 
moreover, the communication overhead relative to computation may increase 
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Fig. 9. Distribution of weighted grid points (left) and execution, computation, and 
communication times (right) per processor for P = 64, 128, and 256 (top to bottom). 
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substantially. For instance. with low processor counts, the conimunication-to- 
computation ratio is less than 6%, but grows to  more than 37% with higher 
counts. 

5 Summary and Conclusions 

The overset grid method is a powerful technique fcr high-fidelity CFD sim- 
ulations about complex aerospace configurations. In this paper, we presented 
and analyzed three parallel performance enhancement techniques for efficient 
computations of such large-scale realistic applications on state-of-the-art su- 
percomputers. Specifically, the role of asynchronous communication, grid split- 
ting, and grid grouping strategies were discussed. The asynchronous exchange 
relaxed the communication schedule in order to hide latency. Grid splitting 
was used to improve computational load balance while retaining the same grid 
system on different numbers of processors. Finally, a heuristic grid clustering 
technique balanced inter-processor communication with the goal of reducing 
the overall execution time. 

All experiments were performed with the OVERFLOW-D Navier-Stokes 
code on a 512-processor Origin2000 system at NASA Ames Research Center. 
The CFD problem was the simulation of vortex dynamics in the complex flow 
region for hovering rotors. The grid systems for our three test cases consisted 
between 454 and 1679 overset grids, and varied in size from 63 million to 78 
niillion grid poirits. The asyrichronous communication strategy reduced execu- 
tion time by more than a factor of two by significantly reducing the communi- 
cation overhead. Grid splitting improved the workload balance by increasing 
the number of grids; however, the relative communication cost was adversely 
affected due to a larger surface-to-volume ratio of grid points. The heuristic 
grid grouping strategy compared extremely favorably with the original bin- 
packing technique. It improved the communication balance considerably while 
reducing the execution time. Overall results indicated that all three perfor- 
mance enhancement techniques are very effective in improving the quality of 
load balance and reducing execution time for overset grid applications. 

Further improvements in the scalability of the overset grid methodology 
could be sought by using a more sophisticated parallel programming paradigm 
especially when the number of blocks 2 is comparable to the number of pro- 
cessors P,  or even when P > 2. One potential strategy that can be exploited 
on SMP clusters is to use a hybrid MPI+OpenhfP multilevel programming 
style [5]. This approach is currently under investigation. 
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