
Performance Enhancement Strategies for
Multi-Block Overset Grid CFD Applications

M. Jahed Djomehri a, Rupak Biswas '>*
"CSC, NASA Ames Research Center, Moffett Field, CA 94035, USA

bNAS Division, NASA Ames Research Center, Moffett Field, CA 94035, USA

Abstract

The overset grid methodology has significantly reduced time-to-solution of high-
fidelity computational fluid dynamics (CFD) simulations about complex aerospace
configurations. The solution process resolves the geometrical complexity of the prob-
lem domain by using separately generated but overlapping structured discretization
grids that periodically exchange information through interpolation. However, high
performance computations of such large-scale realistic applications must be han-
dled efficiently on state-of-the-art parallel supercomputers. This paper analyzes the
effects of various performance enhancement strategies on the parallel efficiency of
an overset grid Navier-Stokes CFD application running on an SGI Origin2000 ma-
chinc. Specifically, the role of asynchronous communication, grid splitting, and grid
grouping strategies are presented and discussed. Details of a sophisticated graph
partitioning technique for grid grouping are also provided. Results indicate that
performance depends critically on the level of latency hiding and the quality of load
balancing across the processors.

'

K e y words: parallel performance, load balancing, multi-block applications,
computational fluid dynamics

1 Introduction

The overset grid methodology [a] for high-fidelity computational fluid dy-
namics (CFD) simulations about complex aerospace configurations falls into
the general class of Schwartz decomposition methods [15]. The solution pro-
cess resolves the geometrical complexity of the problem domain by generating
and using overlapping multi-block structured discretization grids. This overset

* Corresponding author. Tel.: f1-650-604-4411; Fax: f1-650-604-3957.
Email addresses: d j omehri@nas . nasa. gov (M. Jahed Djomehri),

Rupak. Biswasanasa. gov (Rupak Biswas).

Preprint submitted to Elsevier Science 1.5 May 2003

approach typically employs a Chimera interpolation technique [18] to period-
ically update and exchange inter-grid boundary information.

However, to reduce time-to-solution, high performance computations of
such large-scale realistic applications must be handled efficiently on state-of-
the-art parallel supercomputers. Several pertinent papers describing numerical
results and parallel implementations have been presented over the years at
many conferences [1,7,14,17]. Those that are relevant to performance analysis
are relatively outdated; their experiments were conducted on machines with
low compute power using small-scale test problems [6,12,13,21]. This paper
is the first attempt to report a detailed parallel performance evaluation of
a high-fidelity multi-block overset CFD production code running large-scale
complex-geometry applications on large numbers of processors. A preliminary
version can be found in [3].

Various parallel programming paradigms have been developed for both dis-
tributed and shared memory systems. Currently, the most popular paradigms
are message passing, shared memory programming, and their hybrid combina-
tion. Widely used scientific programs suitable for most modern architectures
are implemented using a message passing paradigm, such as MPI, mainly for
portability reasons. Fortunately, the overset grid method can readily employ
MPI to exploit its coarse-grained parallelism as well as communicate informa-
tion between distributed overlapping grids.

The parallel efficiency of the overset approach depends primarily upon the
proper distribution of the computational workload and the minimization of
the communication overhead among the processors. For most practical com-
putational problems, optimal load balancing to minimize processor idle time
is a challenging task. Overset applications with tens of millions of grid points
may consist of many overlapping grids. Smart clustering of individual grids
(also known as blocks or zones) into groups should therefore not only consider
the total number of “weighted” grid points (described in Section 3.3), but
also the size and connectivity of the inter-grid data. Major challenges during
the grouping process may arise due to the wide variation in block sizes and
the disparity in the number of inter-grid boundary points. Note also that for
large processor sets, the overhead associated with boundary data exchange
may adversely affect parallel performance.

This paper analyzes the effects of various performance enhancement tech-
niques on the parallel efficiency of an overset grid Navier-Stokes CFD appli-
cation called OVERFLOW. Specifically, the role of asynchronous communica-
tion, grid splitting, and grid grouping strategies are presented and discussed.
First, we study the effect of synchronous and asynchronous communication
via MPI. The asynchronous exchange is an attempt to relax the communi-
cation schedule in order to hide latency. Second, the splitting of large blocks
as a means of controlling the computational load is analyzed. This is particu-
larly important for scalability, where the same grid system must be retained
for executing on different numbers of processors. Finally, two grid clustering
techniques are examined: one based on a naive bin-packing approach and the

2

other using a more sophisticated graph partitioning method. All our experi-
ments are conducted on an SGI Origin2000 machine using three test cases that
simulate complex rotorcraft vortex dynamics and consist of between 63 million
and 78 million grid points. Results indicate that performance depends criti-
cally on the level of latency hiding and the quality of load balancing across
the processors.

The remainder of this paper is organized as follows. Section 2 provides
a brief description of the OVERFLOW application. The performance en-
hancement techniques of grid splitting, asynchronous communication, and grid
grouping are described in Section 3. Parallel performance results are presented
and critically analyzed in Section 4. Finally, Section 5 concludes the paper with
a summary and some key observations.

2 Numerical Methodology

In this section, we provide a brief overview of the overset grid CFD appli-
cation called OVERFLOW, including the basics of its solution process, grid
connectivity, and message-passing parallelization model.

2.1 Solution Process

The high-fidelity overset grid application, called OVERFLOW [2], owes its
popularity within the aerodynamics community due to its ability to handle
complex designs consisting of multiple geometric components, where individ-
ual body-fitted grids can be constructed easily about each component. The
grids are either attached to the aerodynamics configuration (near-body), or are
detached (off-body). The union of near- and off-body grids covers the entire
computational domain (see Fig. 1(a) for a simple schematic).

OVERFLOW uses a Reynolds-averaged Navier-Stokes solver, augmented
with a number of turbulence models. In this work, a special version of the code,

=%@ Hole cut region
0 Hole boundary point

Outer boundary point

fa) 0)

Fig. 1. (a) Overset grid schematic; (b) hole and outer inter-grid boundary points.

3

named OVERFLOW-D [9,10], is used. Unlike the original version which is pri-
marily meant for fixed-body (static) grid systems, OVERFLOW-D is explicitly
designed to simplify the modeling of components in relative motion (dynamic
grid systems). For example, in typical rotary-wing problems, the near-field is
modeled with one or more grids around the moving rotor blades. The code
then automatically generates Cartesian “background” or “wake” grids, called
bricks, that encompass these curvilinear near-body grids. At each time step,
the flowfield equations are solved independently on each zone in a sequential
manner. Overlapping boundary points or inter-grid data are updated from
previous solutions prior to the start of the current time step using a Chimera
interpolation procedure [lS]. The code uses finite differences in space, with a
variety of implicit/explicit time stepping.

2.2 Grid Connectivity

The Chimera interpolation procedure [181 determines the proper connec-
tivity of the individual grids. To update inter-grid boundary data, the scheme
has to process two types of boundary points: “hole” and “outer” boundary
points (see Fig. l (b)) . Holes are cut in grids which intersect solid surfaces,
such as when a portion of an overset grid lies inside a physical body. The hole
boundary points are on the surfaces of these cuts. All other inter-grid bound-
ary points are classified as outer. Adjacent grids are expected to have at least
a one-cell, or a single fringe, overlap to ensure the continuity of the solutions;
for higher-order accuracy and to retain certain physical features in the solu-
tion, a double fringe overlap is sometimes used [19]. A program named Domain
Connectivity Function (DCF) [ll] computes the inter-grid donor points that
have to be supplied to other grids. The DCF procedure is incorporated into
the OVERFLOW-D code and fully coupled with the flow solver. For dynamic
grid systems, DCF has to be invoked at every time step to create new holes
and inter-grid boundary data.

2.3 MPI Parallelization Model

The parallel version of the OVERFLOW-D application has been devel-
oped around the multi-block feature of the sequential code, which offers a
natural coarse-grained parallelism [Zl]. The main computational logic at the
top level of the sequential code consists of a “time-loop”, a “grid-loop”, and
a “subiteration-loop”. The last two loops are nested within the time-loop.
Within the grid-loop, solutions are obtained on the individual grids with im-
posed boundary conditions, where the Chimera interpolation procedure suc-
cessively updates inter-grid boundaries after computing the numerical solu-
tion on each grid. Convergence of the soIution process is accelerated by the
subiteration-loop. Upon completion of the grid-loop, the solution is automat-
ically advanced to the next time step by the time-loop. The overall procedure

3 3 3 3 3 33 3 &% Q5 +3431@&@ & $ 4 W - M 4%M5 % 1 3 3 333 3 3 33 3 33 3333 333 3 33 -lm+ + + + +

4

Four overset grids

Inter-group exchanges] 0 Donor
Receiver

I

Group 2 1
I

I Intra-group exchanges ; .
Fig. 2. Overset grid intra-group and inter-group communication.

A message passing programming model based on the MPI library was
implemented using the single program multiple data (SPMD) paradigm. To
facilitate parallel execution, a grouping strategy is required to assign each
grid to an MPI process. The total number of groups, G, is equal to the total
number of MPI processes, P. Since a grid can only belong in one group, the
total number of grids, 2, must be at least equal to P. If 2 is larger than P, a
group will consist of more than one grid. Two techniques for clustering grids
into groups are discussed later in Section 3.3.

The logic in the MPI programming model differs slightly from that of the
sequential case (where G = P = 1). Here the grid-loop is subdivided into
two procedures, a loop over groups (“group-loop”) and a loop over the grids
within each group. Since each MPI process is assigned to only one group,
the group-loop is performed in parallel, with each group performing its own
sequential grid-loop. The inter-grid boundary updates among the grids within
each group (these are also called intra-group updates) are performed as in the
serial case. Chimera updates are also necessary for overlapping grids that are
in different groups, and are known as inter-group exchanges (see Fig. 2). The
inter-group donor points from grids in group Gi to grids in group Gj are stored
in a send buffer and exchanged between the corresponding processes via MPI
calls. These inter-group exchanges are transmitted at the beginning of every
time step based on the interpolatory updates from the previous time step.

3 Performance Enhancement Techniques

We have developed and utilized various performance enhancement tech-
niques to improve the parallel efficiency of the OVERFLOW-D application.
Specifically, the role of asynchronous communication, grid splitting, and grid
grouping strategies are presented and discussed in this section. Superior par-
allel performance of such large-scale realistic applications on state-of-the-art
commercial supercomputers is critical to advance our scientific understanding

5

and problem solving capability.

3.1 Asynchronous Communication

Almost all of the communication that is required in the OVERFLOW-D
application concerns the exchange of inter-grid boundary. data, and is con-
tained in the subroutine, qbc-exchange. The message passing can be syn-
chronous or asynchronous, but the choice significantly affects the MPI pro-
gramming model. The synchronous communication is performed with block-
ing MPI send/receive calls, while the asynchronous communication uses non-
blocking calls.

With synchronous communication, the total number of send/receive calls
is P x (P - l), counting even the messages of zero length. A send call is
blocked until the receiving processor is ready to accept the message, i.e., until
the matching receive call is posted. The increase in execution time caused by
this communication pattern is analogous to the introduction of an implicit
serialization into the code. The initial parallel version of OVERFLOW-D was
implemented with synchronous message passing and tested with a relatively
small dataset on 16 processors [21]. As a result, the communication time was
quite insignificant and therefore accept able. However, performance analysis
using larger datasets and more processors (presented in Section 4) indicate a
serious communication bottleneck for the exchange of boundary data via the

/* Send data from group N D to group N R */
d o N D = I , G

if (myrank .eq. N D) then
do N R = 1, G

MLEN-SEND = I S N D (N R)
if (myrank .ne. N R) then

else

/* Set length of send array */

call MPI-SEND (QBCSND, MLEN-SEND, .)

do I = I , MLEN-SEND
QBCRCV (I) = QBCSND (I) /* Memory copy */

end do
end if

end do
else

/* Receive data from group N D */
MLEN-RECV = IRCV (N D)
call M PI-RECV (QBCRCV, MLEN-RECV, . . e)

/* Set length of receive array */

end if
end do

Fig. 3. Outline of the synchronous communication model in the original OVER-
FLOW-D code.

6

synchronous approach.
In order to be better able to compare the original synchronous and our

new asynchronous communication strategies, we present in Fig. 3 an outline
of the synchronous model. The group boundary data arrays are specified by
QBCSND and QBCRCV with total lengths of MLEN-SEND and MLEN-RECV, respec-
tively. The values of MLEN-SEND and MLENRECV are determined by arrays ISND
and IRCV, respectively, for each group. As mentioned in Section 2, all bound-
ary related arrays (QBCSND, QBCRCV, ISND, and IRCV) are determined by the
DCF procedure prior to the start of a new time step and updated by Chimera
interpolations.

Our first performance enhancement technique is to use asynchronous corn-
munication for inter-grid boundary data exchange within the qbc-exchange
subroutine. The asynchronous strategy is an attempt to relax the communica-
tion schedule in order to hide latency. Asynchronous communication consists of
non-blocking MPI send/receive calls. Unlike the corresponding blocking calls
of the synchronous method, these invocations place no constraints on each
other in terms of completion. Non-blocking receives complete immediately,

/* Post receives in group NR from group ND */
d o N D = 1 , G

MLEN-RECV = IRCV (ND)
if (MLENRECV .ne. 0) then

* Set length of receive array */

if (myrank .ne. ND) then

end if
call M PIA RECV (QBCRCV, MLEN-RECV, . e)

end if
end do
/* Send data from group ND to group NR */
do NR= 1, G

MLEN-SEND = ISND (NR)
if (myrank .ne. NR) then

* Set length of send array */

if (MLEN-SEND .ne. 0) then

end if

do I = 1, MLEN-SEND

end do

call MPI-ISEND (QBCSND, MLEN-SEND, a)

else

QBCRCV (I) = QBCSND (I) /* Memory copy */

end if
end do
/* Check that all receives have completed */
call MPI-WAITALL

Fig. 4. Outline of our asynchronous communication model in OVERFLOW-D.

7

even if no messages are available, and hence allow maximal concurrency; they
are posted by receiving processors prior to the pertinent sends from the send-
ing processors. Furthermore, messages of zero length are not sent to decrease
the communication overhead. We have implemented this asynchronous mes-
sage passing model in the current version of OVERFLOW-D.

In general, however, control flow and debugging can become a serious prob-
lem if, for instance, the order of messages needs to be preserved. Fortunately, in
the overset grid application, the Chimera boundary updates take place at the
completion of each time step, and the computations are independent of the or-
der in which messages are sent or received. Being able to exploit this fact allows
us to easily use asynchronous communication within OVERFLOW-D. Figure 4
gives an outline of the asynchronous approach that we have implemented. The
same naming convention discussed with respect to the synchronous case is also
adopted here. Comparisons with Fig. 3 shows that the outer loop containing
the MPI-SEND/MPI-RECV pair in the synchronous case is now broken into two
separate loops. The first posts non-blocking MPI-IRECV calls while the second
posts non-blocking MPI-ISEND. Note that for the asynchronous strategy, the
MPI barrier function (M PI-WAITALL) must be invoked to ensure completion
of the operations and to release the message buffers.

3.2 Grid Splitting

Load balancing is critically important for efficient parallel computing. The
objective is to distribute equal computational workloads among the proces-
sors while minimizing the inter-processor communication cost. On a given
platform, the primary procedure that affects the load balancing of an overset
grid application is the grid grouping strategy. To facilitate parallel execution,
each grid must be assigned to an MPI process. Since the total number of grids,
2, is at least equal to the number of processes, P, a proper clustering of the
grids into G groups is required (G = P) .

Unfortunately, the sizes of the 2 blocks in an overset grid system may vary
substantially, thereby complicating the grouping procedure and significantly
affecting the overall load balance. For instance, each near-body block is a
three-dimensional curvilinear structured grid generated about the geometric
components of an aerodynamics configuration. The dimensions of each block
are primarily selected to introduce proper refinement into the grid spacing in
an effort to maintain certain features of the physical solution, but have no
bearing on the type of computations used, serial or parallel. Consequently,
there may be orders of magnitude differences in near-body block sizes for the
initial grid system. Recall that these near-body grids overlap the Cartesian
wake (off-body) grid system to cover the entire computational domain. The
indices of each grid zi, i = 1,2 , . . . 2, varies from (l,l,l) to a maximum of
(Ii, Ji, Ki), for a total of Ii x Ji x Ki grid points.

A smart mechanism is therefore needed to limit the size of the individual
blocks. One option is to add some control during the grid, generation pro-

8

cess, but this would further complicate an already complex task. The strategy
would also require information about the number of groups (G) which may
vary from one simulation run to the next depending on the chosen number of
processors (P), since G must be equal to P. The second approach, which we
have implemented as part of this work, is to split the largest blocks into sub-
blocks of desired sizes prior to grouping them. This performance enhancement
technique is independent of the grid generation procedure and is automatically
implemented at runtime, prior to the start of the time-loop.

The original version of OVERFLOW-D has the ability to perform some
automatic grid splitting without any user input, but it was only to ensure
that there were enough blocks 2 to form G groups with G = P. However, for
large test cases such as those used in this paper, further control is required. In
particular, we must maintain exactly the same blocks in the grid system when
executing on different numbers of processors to examine code scalability. In
our latest version of OVERFLOW-D, the user specifies two input parameters,
maxnb and maxgrd, for splitting the largest blocks based on some knowledge of
the initial grid system and the maximum target value of P. All near- and off-
body grids larger in size than maxnb and maxgrd, respectively, are then split
into overlapping sub-blocks of smaller but equal sizes. For near-body grids,
the split is done in one dimension only, depending on the values of I , J , and
K . The type of imposed boundary condition (periodic, reflecting, etc.) also
plays a role in determining the splitting direction. For the uniform Cartesian
off-body grids, splitting can be performed in multiple dimensions if necessary.

Conceptually, having smaller block sizes simplifies the load balancing pro-
cedure and leads to a more computationally balanced workload; however, a
limiting drawback is an increase in the ratio of surface-to-volume grid points.
A large value of this ratio indicates that the amount of overlap boundary data
to be transferred via point-to-point communication between pairs of proces-
sors has increased disproportionately relative to the computational workload.
Furthermore, since it is necessary to maintain at least a single (one-cell) and
sometimes even a double (two-cell) fringe overlap between adjacent blocks, the
total number of grid points increases during the splitting process, resulting in
a larger computational and communication load per processor.

3.3 Grid Grouping

As mentioned in Section 3.2, the grid grouping strategy has a substan-
tial effect on the quality of load balancing for an overset grid application like
OVERFLOW-D. The grouping is a function of the following parameters: ex-
ecution time per grid point, total number of grid points per block, number of
blocks 2, volume of the total boundary data to be exchanged per processor,
rate of communication, and total number of processors P. In principle, group-
ing depends only on the characteristics of the grids and their connectivity; it
does not take into account the topology of the physical processors. The as-
signment of groups to processors is somewhat random, and is handled by the

9

system job scheduler usually based on a first-touch strategy at run time.
Even though OVERFLOW-D can handle dynamic (both moving and adap-

tive) grid systems, we do not conduct any adaptive grid refinement and dere-
finement for the experiments in this paper. Therefore, the sizes of the grids
remain fixed during the entire solution process. Furthermore, for our test ap-
plication, the assignment of grids to processors is performed only once at the
beginning of the computation; hence, load balancing in this work is static.

Prior to the grouping procedure, each grid z, is “weighted” as its number of
grid points times a weight factor, (I , x J, x K,) x W,. The factor W, is to equalize
the computational work per grid point because some grids require more work
than others depending on the physics of the solution sought. For instance,
grids in the viscous turbulence regions of the domain, such as near-body grids,
require more floating-point operations per point than do the inviscid off-body
grids.

The original parallel version of OVERFLOW-D uses a grid grouping strat-
egy based on a bin-packing algorithm [21]. It is a simple clustering technique
that strives to maintain a uniform number of weighted grid points per group
while retaining some degree of connectivity among the grids within each group.
It first sorts the grids by size in descending order, and assigns a grid to every
empty group. Therefore, at this point, the G largest grids are each in a group
by themselves. The remaining grids are then handled one at a time. Each grid
is assigned to the smallest group that satisfies the connectivity test with other
grids in that group. The connectivity test only inspects for an overlap between
a pair of grids regardless of the size of the boundary data or their connectivity
to other neighboring grids. The process terminates when all grids are assigned
to groups.

Our third performance enhancement technique is to devise and implement
a more sophisticated grid grouping algorithm that incorporates more of the
parameters discussed at the beginning of this section. It is based on a graph
representation of the overset grid system. The nodes of the graph correspond

i

I to the near- and off-body grids, while an edge exists between two nodes if the
corresponding grids overlap. The nodes are weighted by the weighted number
of grid points and the edges by the communication volume. Given such a graph

I

I

with 2 nodes and E edges, the problem is to divide the nodes into G sets such
that the sum of the nodal weights in each set are almost equal while the sum
of the cut edges’ weights is minimized. This is the classical graph partitioning
problem that is widely encountered in the parallel computing arena [16]. Such
a grouping strategy is, in theory, more optimal than bin-packing in that the
grids in each group enjoy higher intra-group dependencies with fewer inter-
group exchanges.

To address the grid grouping problem in OVERFLOW-D, we have imple-
mented a graph partitioning algorithm based on EVAH [8]. It consists of a set
of allocation heuristics that considers the constraints inherent in multi-block
CFD problems. EVAH was initially developed to predict the performance scal-
ability of overset grid applications on large numbers of processors, particularly

I

I

~

I

I /* LTFMFTACC heuristic */
1:
2:

3:
3.1:

3.2:

3.3:

sort tasks zi, i = 1,2 , . . . 2 in descending order by size (LTF)
for each processor p j , j = I, 2, . . . P

set T (p j) = 0
for each sorted task zi, i = 1 , 2 , . . .Z

assign zi to p j with minimum T (p j) (MFT)
compute T (p j) = T (p j) + Xi
for each z, E R(zi) assigned to pk # p j (ACC)

set T (p j) = T (p j) -I- Ci,
for each Zd E D(zi) assigned to pm # p j (ACC)

set T (p m) = T (p m) f cdi
end for

Fig. 5. Outline of the LTF-MFT-ACC task assignment heuristic from EVAH.

within the context of distributed grid computing across multiple resources [4].
In this work, we have modified EVAH to cluster overset grids into groups while
taking into account their relative overlaps.

Among several heuristics that are available within EVAH, we have used
the one called largest task first with minimum finish time and az;ailable com-
munication costs (LTF-MFTACC). In the context of the current work, a task
is synonymous with a block in the overset grid system. The size of a task is
defined as the computation time for the corresponding block. An outline of
the LTFIMFT-ACC procedure is presented in Fig. 5. It is constructed from
the basic largest task first (LTF) heuristic that sorts the tasks in descending
order by size. LTF is then enhanced by the systematic integration of the sta-
tus of the processors in terms of their minimum finish time (MFT). Because
of the overhead involved due to data exchanges between neighboring zones
and their impact on overall execution time, the assignment heuristic is further
augmented by including available communication costs (ACC). A procedure
has been developed to interface the DCF subroutine of OVERFLOW-D with
EVAH heuristics.

It is easiest to explain the LTF-MFTACC grouping strategy by using a
simple example and then stepping through the procedure in Fig. 5. Figure 6(a)
shows a graph representation of the overset grid system in Fig. 2 that is being
partitioned across two processors, po and p l . The computational time for block
zi is denoted as Xi and shown for all four blocks in Fig. 6(a). Similarly, the
communication overhead from zd (donor) to z, (receiver) is denoted as c d ,

and shown for all inter-grid data exchanges along the graph edges. In step 1,
the four blocks are sorted in descending order by computational time; hence
the order is: 2 3 , z2, 20, 21. In step 2, the total execution times of the two
processors are initialized: T(p0) = T (p 1) = 0. Step 3 has to be executed four
times since we have four grids that must be grouped. Block 2 3 is assigned to
po and T (p o) = 75 in step 3.1. Since no other blocks have yet been assigned,

11

xo= 50 X3= 75

1 E 4

z2
XI = 40 3 X,= 60 -

1:
2:
3.1: 53 --+PO

sorted 5 3 , z2, 20. -71

T(po) = T(p1) = 0

T (p o) = 0 + 75 = 75
3.1: 22 -+PI

T (p 1) = 0 + 60 = 60
3.2: T (p 1) 60 + 4 = 64
3.3: T (p 0) = 75 + 4 = 79

3.1: zo + p i
T(p1) = 64 + 50 = 114
T (p 1) = 114 + 3 = 117
T (p 0) = 79 + 2 = 81

T (p 0) = 81 + 40 = 121

?'(PO) = 122 + 1 = 123
T(p1) = 117 + 3 = 120

3.2:
3.3:
3.1: 51 + P O

3.2:
3.2:
3.3:
3.3:

T (p o) = 121 + 1 = 122

T (p 1) = 120 + 2 = 122

Fig. 6. (a) Graph representation of overset grid system in Fig. 2; (b) stepping
through the LTF-MFTACC procedure in Fig. 5.

steps 3.2 and 3.3 are not executed.
Sow z2 must be mapped to a processor that has the smallest total execution

time; thus, z2 goes to pl and T (p l) = 60 in step 3.1. In step 3.2, we need to
look at all grids assigned to processors other than pl that are also receivers
of inter-grid data from z2. This set of grids is denoted as R(z2) in Fig. 5.
The graph in Fig. 6(a) shows that z1 and 2 3 are in R(z2); however, z1 is still
unassigned. Since 23 belongs to po, the communication overhead C23 is added
to T (p 1) ; hence, T (p ,) = 64. Similarly, in step 3.3, the set D(z2) consists of
grids that are donors of inter-grid data to z2. Because zl is unassigned and z3
is mapped to po , T (p o) is updated with C32; thus, T (p o) = 79. The remainder
of the grouping procedure is shown in Fig. 6(b).

4 Parallel Performance Results

The CFD problem used for the experiments in this paper is a Navier-Stokes
simulation of vortex dynamics in the complex wake flow region for hovering
rotors. Figure 7 shows sectional views of the test application grid system.
The Cartesian off-body wake grids surround the curvilinear near-body grids
with uniform resolution, but become gradually coarser upon approaching the
outer boundary of the computational domain. Specifically, the spacing of the
off-body grid nearest the rotor blade is As, that for the next surrounding
level is 2As, and so on for every successive level. Figure 8 shows a cut plane
through the computed vortex wake system including vortex sheets as well as
a number of individual tip vortices. A complete description of the underlying
physics and an extensive analysis of the numerical simulations pertinent to
this test problem can be found in [20]. We have used the following three cases
to evaluate our performance enhancement techniques discussed in Section 3:
0 Case 1: 2 = 454, -63M grid points, maxnb = 250K, maqrd = 300K.
0 Case 2: 2 = 857, -69M grid points. mumb = look', mugrd = 100K.
0 Case 3: 2 = 1679, - 78M grid points, muxnb = 60K, rnaxgrd = 7OK.

12

Fig. 7. Sectional views of the test application grid system: (a) off-body Cartesian
wake grids, (b) near-body curvilinear grids, and (c) cut plane through the off-body
wake grids surrounding the hub and rotors.

Fig. 8. Computed vorticity magnitude contours on a cutting plane located 45' be-
hind the rotor blade.

All experiments were run on the 512-processor SGI Origin2000 shared-
memory system at NASA Ames Research Center. Each Origin2000 node is
a symmetric multiprocessor (SMP) containing two 400 MHz MIPS R12000
processors and 512 MB of local memory. Due to the memory requirements of
the test cases, runs could not be conducted on less than 32 processors. Our
timing results are averaged over 100 iterations and reported in seconds.

13

4.1 Asynchronous Communication Results

Table 1 shows a comparison of various timings for Case 1 using synchronous
(blocking send/receive) and asynchronous (non-blocking) communication. The
grouping algorithm is the basic bin-packing strategy that is available with the
original version of OVERFLOW-D. The execution time T,,,, is the average
time required to solve every time step of the application, and includes the
computation, communication, Chimera interpolation, and processor idle times.
The average computation (T::;,) and communication (TEAm) times over P
processors are also shown. Finally, the maximum computation (T g !) and
communication (Tgzm) times are reported and used to measure the quality
of load balancing for each run.

The computation load balance factor (LBcomp) is the ratio of Tzz, to
TZAp, while the communication load balance factor (LBcomm) is the ratio of
Tmax comm to T,",zm. For a given P , TE;, is close to TEg when the per-processor
computation times are comparable; this in turn implies that LB,,,, is almost
unity. The degree to which the LB,,,, is larger than unity is a measure of the
computational load imbalance that adversely impacts the overall performance.
The same argument applies to the communication times; therefore, the closer
LBcomp and LBcomm are to unity, the higher is the quality of load balancing.

Notice that TEz, is essentially the same since the computational work-
load for both runs is identical (same grid system and grid-to-processor assign-
ment). However. T,,,, for as-ynchronous communication is consistently lower,
and shows bigger improvements as the number of processors increases. In
fact, for P > 256, the non-blocking communication strategy reduces Tezec by
more than a factor of two. The reason for this reduction can be found in
the communication times. A comparison shows that TFZm and TF;Zrn for the
synchronous runs are an order of magnitude larger than the corresponding
times for the asynchronous communication. This is reflected in T,,,, where
communication usually accounts for less that 6% for the asynchronous case,
but is more than 50% for many of the synchronous runs. The communication
problem is exacerbated with increasing P since the number of messages ex-
changed is 0 (P2) (although the individual message sizes decrease). Similar
comparisons for Cases 2 and 3 would show even larger benefits when using
the asynchronous strategy.

Scalability for the asynchronous case, with P 5 256, is significantly better
than its synchronous counterpart. For P 2 320, scalability suffers for both
cases, not only due to the relatively larger communication overhead, but also
because of workload imbalance. The latter can be observed from the increasing
value of LB,,,,. However, LB,,,, shows that communication is well-balanced
across all processors for most runs, particularly for blocking communication
(which is due to the very nature of synchronous communication). Overall
results indicate the general superiority of the non-blocking asynchronous ap-
proach over synchronous communication for t his application.

14

Table 1
Runtimes (in seconds) and load imbalance factors with synchronoi1s and asyn-
chronoiis communication, and bin-packing grouping strategy for Case 1

Synchronous
T a W T m a x Tavg P Texec Tz&; comp comm comm L B c o m p L B c o m m

32 37.7 31.9 24.1 4.4 4.3 1.32 1.02

64 22.1 17.0 12.5 4.3 4.2 1.36 1.02

128 14.0 8.8 6.3 4.3 4.3 1.40 1 .oo
256 13.0 6.0 3.2 6.4 6.4 1.87 1 .oo
320 14.8 5.3 2.7 9.2 8.0 1.96 1.15

384 16.6 5.2 2.0 9.9 9.9 2.60 1 .oo
448 18.3 6.5 1.8 11.5 11.4 5.50 1.01

Asynchronous
~~

avg
T c o m m L B c o m p L B c o m m

T m a x T a v g T m a x
T e x e c comp comp comm P

32 34.6 32.7 24.5 0.70 0.61 1.33 1.15

64 18.0 16.8 12.4 0.41 0.35 1.35 1.17

128 9.8 8.8 6.3 0.36 0.31 1.40 1.16

256 7.0 5.9 3.2 0.37 0.30 1.84 1.23

320 6.9 5.1 2.6 0.98 0.68 1.96 1.44

384 6.8 6.0 2.0 0.48 0.36 3.00 1.33

448 7.0 6.3 1.8 0.49 0.43 3.50 1.14

4.2 Grid Splitting Results

The impact of grid splitting on load balancing quality is investigated for
all the three cases. Case 1 models the situation where the number of splits
per block is low: or equivalently, the sizes of the newly-created sub-blocks are
quite large. In Case 2, the sizes of the sub-blocks are somewhat smaller, while
in Case 3, they are even more so. All runs use asynchronous communication
and the bin-packing strategy to cluster grids into groups. Timings for Case 1
are shown in Table 1, while those for the other two cases are presented in
Table 2.

The overall quality of computational workload balancing for the three cases
can be observed by comparing LBcomp from Tables 1 and 2. Obviously, the
factor increases with the number of processors as load balancing becomes more
challenging with a k e d problem size. As expected, Case 3 exhibits the best
quality for any given value of P because it has the largest number of grids

15

Table 2
Runtimes (in seconds) and load imbalance factors with asynchronous communica-
tion and bin-packing grouping strategy for Cases 2 and 3

Case 2
uvg T c o m m L B c o m p L B c o m m aW T m a x P Texec comp Tcomp comm

T m a x

32 32.0 29.3 23.0 1.30 0.90 1.27 1.44

64 13.5 11.9 10.8 0.67 0.55 1.10 1.22

128 7.6 6.2 5.4 0.60 0.52 1.15 1.15

256 5.5 3.7 2.8 0.88 0.50 1.32 1.76

320 4.7 2.9 2.2 0.57 0.46 1.32 1.24

384 4.7 2.9 1.9 0.99 0.56 1.53 1.77

448 4.5 3.0 1.7 0.85 0.46 1.76 1.85

Case 3

32 39.9 34.5 27.8 3.10 2.20 1.24 1.41

64 13.8 11.4 10.4 0.95 0.75 1.10 1.27

128 7.9 6.4 5.2 0.85 0.70 1.23 1.21

256 4.5 3.1 2.6 0.95 0.68 1.19 1.40

320 4.3 2.8 2.1 0.90 0.61 1.33 1.48

384 4.0 2.4 1.8 0.65 0.57 1.33 1.14

448 3.8 2.3 1.6 0.71 0.60 1.44 1.18

which are all generally smaller, i.e., it has the finest granularity. In fact, the sig-
nificant improvement in load balancing for P 2 256 causes T,,,, to be reduced
by almost 40% over that for Case 1. It should be noted here that though we are
evaluating the level of workload imbalance from the runtimes, the grid split-
ting and grouping strategies are based on the number of weighted grid points.
Computed from that perspective, the load balance quality is somewhat better
but follows the same trend.

Let us now look at the communication times. Notice that both TZZm and
T;ZZm generally increase with increasing number of blocks (Case 1 through
Case 3). (The communication time also depends on the topology and con-
nectivity of the grid system.) This is because even though grid splitting has
a positive impact on the computational load balance, it adversely affects the
communication time. Basically, the surface area increases with the number
of blocks, thereby increasing the volume of the boundary exchange data. For
example, the ratio of surface-to-volume grid points for the three cases are

16

11%, 14%, and IS%, respectively. Communication therefore also accounts for
a larger percentage of the total execution time. The ratio of ‘TZg, to T‘Ze, is
2-10% for Case 1, 3-12% for Case 2, and 5-16% for Case 3.

Conceptually, the splitting of grids into smaller blocks should also improve
the communication load balance LB,,,,. Clearly, Case 3 does not have the
best overall communication load balance, and Case 2 has poorer quality than
Case 1. These results indicate that the optimal choice of the splitting parame-
ters maxnb and maqrd depends on the number of processors used. However, in
our experiments, we wanted a fked grid system independent of the processor
count. Kote that because of the complexity of OVERFLOW-D, grid splitting
has been implemented in only one coordinate direction at this time for the
near-body grids. Even if it were available in multiple directions, most grids
would not benefit due to boundary condition and viscous direction splitting
restrictions.

Finally, parallel scalability also improves with more blocks. This can be
observed by comparing the T,,,, times in Tables 1 and 2. In fact, we obtain
superlinear speedup between 32 and 64 processors for Cases 2 and 3. This
occurs partly because as P increases, a larger fraction of the problem fits in
cache. Also, T,,,,, decreases consistently for Case 3 all the way to the maximum
number of processors used. Overall, our grid splitting investigations show that
a larger number of smaller blocks improves computational load balance and
parallel scalability; however, there is a tradeoff since a large number of splits
adversely affects efficiency due to an increase in the surface-to-volume ratio of
grid points.

4.3 Grid Grouping Results

We compare our EV-4H-based heuristic grid grouping strategy with naive
bin-packing only for Case 2, and investigate their role on load balance quality.
All timing results are presented in Table 3 (the performance daha for bin-
packing is reproduced from Table 2 for easier comparison).

The results in Section 4.2 showed that the quality of communication load
balancing LB,,, is a big drawback of the bin-packing strategy. Table 3
demonstrates that the EVAH heuristic technique improves this factor con-
siderably. In fact, except for P = 354, LB,,,, using EVAH is at most 1.17.
However, TZ;, is always larger for EVAH, and is 5-15% of Te,,, (compared to
3-12% for bin-packing). This is expected since the overall goal of the heuristic
grouping strategy is to reduce T,,,, by balancing inter-processor communica-
tion, while bin-packing tries to merely minimize total communication.

Results in Table 3 also show that except when P = 384, EVAH returns
the better values for LB,,,,. However, it should be noted here that though we
are evaluating LB,,,, from the computational run times, both grid grouping
strategies are based on the number of weighted grid points. The three left plots
in Fig. 9 show the distribution of weighted grid points across 64, 128, and 256
processors for bin-packing and EVAH. The “predicted” values of L Bcomp are

Table 3
Runtimes (in seconds) and load imbalance factors with bin-packing and EVAH
heuristic grouping strategies, and asynchronous communication for Case 2

Bin-packing
T a v g T m a x T a v g comm L B c o m p L B c o m m T m a x P Texec comv comp comm

32 32.0 29.3 23.0 1.30 0.90 1.27 1.44

64 13.5 11.9 10.8 0.67 0.55 1.10 1.22

128 7.6 6.2 5.4 0.60 0.52 1.15 1.15

256 5.5 3.7 2.8 0.88 0.50 1.32 1.76

320 4.7 2.9 2.2 0.57 0.46 1.32 1.24

384 4.7 2.9 1.9 0.99 0.56 1.53 1.77

448 4.5 3.0 1.7 0.85 0.46 1.76 1.85

EVAH heuristic
T m a x Tau!? T m a z T a v g P Texec comv comp comm comm L B c o m p L B c o m m

32 26.2 23.3 21.8 1.50 1.28 1.07 1.17

64 13.0 11.3 10.8 0.76 0.66 1.05 1.15

128 7.3 5.8 5.4 0.99 0.89 1.07 1.11

256 4.8 3.2 2.7 0.77 0.67 1.19 1.15

320 4.4 3.0 2.3 0.76 0.65 1.30 1.17

384 4.7 3.1 1.9 0.97 0.55 1.63 1.76

448 4.3 3.0 1.7 0.73 0.64 1.76 1.14

also reported and are typically somewhat better than those computed from
actual run times (see Table 3), but demonstrate the same overall trend.

The three plots on the right in Fig. 9 present a more detailed report of the
execution, computation, and communication times per processor for P = 64,
128, and 256. Due to the synchronization of MPI processes, TeZec is indepen-
dent of the processor ID and shown at the top of the plot area for each case.
For the sake of clarity, Tcomm is shown at a different scale indicated by the
right vertical axis. Observe that the EVAH Tcomp and Tcomm curves are con-
sistently much smoother than those for bin-packing, indicating a much more
uniform distribution across processors.

Performance scalability for both strategies when using more than 256 pro-
cessors is low due to our fixed problem size. For example, when P = 448, each
group contains, on average, only two grids (since 2 = 857). With such a low
number of blocks per group, the effectiveness of any strategy is diminished;
moreover, the communication overhead relative to computation may increase

18

u) 0

Predicted LEcomp

++ EVAH

ln 0
+ I , , , I , , I
o 8 16 24 32 40 48 56 64
W Processor ID

W I , , , 1 1 , , 1 , , , 1 , , / 1 , , , ~

3

Predicted LEmn "F -+& II Bin-packing EVAH 1.15

In 0

I , , L , , , , I , I , , , , , , , w " ' " " I o 16 32 48 64 80 96 112 1
N Processor ID

lc 0

Predicted LEcomp

+ EVAH 1.15

W

.-

+ I , , , I , , , I , I
W 1 1 , , 1 , 1 / 1 , , , 1 , , , o 32 64 96 128 160 192 224 256

Processor ID

15
-I

13 1 4 3

, I " ' ' A ' ' 1 6 ' ' 'i4' ' 'i2' ' '4b'
i 8 ' ' '516' ' 'j4

Processor ID

-3- Bin-packing
h

+5- Bin-packing

O t r ' '3:' ' '614' ' ' & ' '1:; ' 'lk '
192 224 256

Processor ID

Fig. 9. Distribution of weighted grid points (left) and execution, computation, and
communication times (right) per processor for P = 64, 128, and 256 (top to bottom).

19

substantially. For instance. with low processor counts, the conimunication-to-
computation ratio is less than 6%, but grows to more than 37% with higher
counts.

5 Summary and Conclusions

The overset grid method is a powerful technique fcr high-fidelity CFD sim-
ulations about complex aerospace configurations. In this paper, we presented
and analyzed three parallel performance enhancement techniques for efficient
computations of such large-scale realistic applications on state-of-the-art su-
percomputers. Specifically, the role of asynchronous communication, grid split-
ting, and grid grouping strategies were discussed. The asynchronous exchange
relaxed the communication schedule in order to hide latency. Grid splitting
was used to improve computational load balance while retaining the same grid
system on different numbers of processors. Finally, a heuristic grid clustering
technique balanced inter-processor communication with the goal of reducing
the overall execution time.

All experiments were performed with the OVERFLOW-D Navier-Stokes
code on a 512-processor Origin2000 system at NASA Ames Research Center.
The CFD problem was the simulation of vortex dynamics in the complex flow
region for hovering rotors. The grid systems for our three test cases consisted
between 454 and 1679 overset grids, and varied in size from 63 million to 78
niillion grid poirits. The asyrichronous communication strategy reduced execu-
tion time by more than a factor of two by significantly reducing the communi-
cation overhead. Grid splitting improved the workload balance by increasing
the number of grids; however, the relative communication cost was adversely
affected due to a larger surface-to-volume ratio of grid points. The heuristic
grid grouping strategy compared extremely favorably with the original bin-
packing technique. It improved the communication balance considerably while
reducing the execution time. Overall results indicated that all three perfor-
mance enhancement techniques are very effective in improving the quality of
load balance and reducing execution time for overset grid applications.

Further improvements in the scalability of the overset grid methodology
could be sought by using a more sophisticated parallel programming paradigm
especially when the number of blocks 2 is comparable to the number of pro-
cessors P, or even when P > 2. One potential strategy that can be exploited
on SMP clusters is to use a hybrid MPI+OpenhfP multilevel programming
style [5]. This approach is currently under investigation.

Acknowledgements

The work of the first author was supported by NASA Ames Research Cen-
ter under Contract Kumber DTTS59-99-D-O0437/A61812D with AhlTI/CSC.
The authors would like to thank Prof. N. Lopez-Benitez at Texas Tech Uni-

20

versity for his help wit,h EVA4K, and Drs. M. Potsdam and R.. Strawn of
Army/NASA Rotorcraft Division for providing the test cases.

References

American Institute of Aeronautics and Astronautics conferences, Available from
URL: h t t p : //www . aiaa. org/.

P.G. Buning, D.C. Jespersen, T.H. Pulliam, W.M. Chan, J.P. Slotnick, S.E.
Krist, and K.J. Renze, Overflow User’s Manual, Version 1.8g, NASA Langley
Research Center, Hampton, VA, 1999.

M.J. Djomehri, R. Biswas, M. Potsdam, and R.C. Strawn, An analysis
of performance enhancement techniques for overset grid applications, in:
Proceedings 17th International Parallel and Distributed Processing Symposium
(Nice, France, 2003).

M.J. Djomehri, R. Biswas, R.F. Van der Wijngaart, and M. Yarrow, Parallel and
distributed computational fluid dynamics: Experimental results and challenges,
in: Proceedings 7th International Conference on High Performance Computing
(Bangalore, India! 2000) 183-193.

M.J. Djomehri and H. Jin, Hybrid MPItOpenMP programming of an overset
CFD solver and performance investigations, Technical Report NAS-02-002,
NASA Ames Research Center, Moffett Field, CA, 2002.

J. Hauser, M. Spel, J. Muylaert, and R. Williams, ParNSS: An efficient parallel
Navier-Stokes solver for complex geometries, in: Proceedings 25th AIAA Fluid
Dynamics Conference (Colorado Springs, CO, 1994) Paper 94-2263.

International Parallel and Distributed Processing Symposium series, Available
from URL: h t t p : //www . ipdps . org/.
N. Lopez-Benitez, M. J . Djomehri, and R. Biswas, Task assignment heuristics
for distributed CFD applications, in: Proceedings 30th In ternat ional Conference
on Parallel Processing Workshops (Valencia, Spain, 2001) 128-133.

R. Meakin, A new method for establishing inter-grid communication among
systems of overset grids, in: Proceedings 10th AIAA Computational Fluid
Dynamics Conference (Honolulu, HI, 1991) 662-676.

[lo] R. Meakin, On adaptive refinement and overset structured grids, in: Proceedings
13th AIAA Computational Fluid Dynamics Conference (Snowmass, CO, 1997)
Paper 97-1858.

[ll] R. Meakin and A.M. Wissink, Unsteady aerodynamic simulation of static
and moving bodies using scalable computers, in: Proceedings 14th AIAA
Computational Fluid Dynamics Conference (Norfolk, VA, 1999) Paper 99-3302.

[12] C. de Nicola, R. Tognaccini! and P. Visingardi, hlultiblock structured algorithms
in parallel CFD, in: Proceedings Parallel Computational Fluia Dynamics
Conference (Pasadena. CA, 1995) 1-8.

21

1131 R. Pankajakshan and W.R. Briley, Parallel solution of viscous incompressible
flow on multi-block structured grids using RIPI, in: Proceedzngs Parallel
Computatsonal Fluzd Dynamzcs Conference (Pasadena, CA. 1995) 601-608.

[14] Parallel Computational Fluid Dynamics Conference series. Available from URL:
http://www.parcfd.org/.

[15] Y. Saad, Iteratzwe &/lethods for Sparse Lznear Systems. PWS Publishing
Company, Boston, MA, 1996.

[I61 K. Schloegel, G. Karypis, and V. Kumar. Graph partitioning for high
performance scientific simulations, in: CRPC Parallel Computing Handbook
Morgan Kautmann, San Francisco. CA, 2000.

[17] SCxy Conference series, Available from URL: http: //www. sc-conf erence. org

[18] J.L. Steger, F.C. Dougherty. and J.A. Benek, A Chimera grid scheme, Advances
zn Gmd Generutzon, ASME FED-5 (1983).

[19] R.C. Strawn and J.U. Ahmad, Computational modeling of hovering rotors and
wakes, in: Proceedings 38th A IAA Aerospace Sciences Meeting (Reno, NV, 2000)
Paper 2000-01 10.

[20] R.C. Strawn and M.J. Djomehri, Computational modeling of hovering rrjtor
and wake aerodynamics, Journal of Aircraft 39 (2002) 786-793.

[21] A.M. Wissink and R. Meakin, Computational fluid dynamics with adaptive
overset grids on parallel and distributed computer platforms, in: Proceedings
International Conference on Parallel and Distributed Processing Techniques and
Applications (L a Vegas, NV, 1998) 1628-1634.

22

