
ETH Library

On a Parallel Multilevel
Preconditioned Maxwell
Eigensolver

Report

Author(s):
Arbenz, Peter; Bečka, Martin; Geus, Roman; Hetmaniuk, Ulrich; Mengotti, Tiziano

Publication date:
2004

Permanent link:
https://doi.org/10.3929/ethz-a-006775556

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Technical report 465

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-006775556
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


On a Parallel Multilevel Preconditioned

Maxwell Eigensolver

Peter Arbenz a,∗, Martin Bečka a,1, Roman Geus b,
Ulrich Hetmaniuk c,1, Tiziano Mengotti a,1

aInstitute of Computational Science, Swiss Federal Institute of Technology,
CH-8092 Zurich, Switzerland

bPaul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
cSandia National Laboratories, Albuquerque, NM 87185-1110, U.S.A. 2

Abstract

We report on a parallel implementation of the Jacobi–Davidson algorithm to com-
pute a few eigenvalues and corresponding eigenvectors of a large real symmetric
generalized matrix eigenvalue problem

Ax = λMx, CTx = 0.

The eigenvalue problem stems from the design of cavities of particle accelerators.
It is obtained by the finite element discretization of the time-harmonic Maxwell
equation in weak form by a combination of Nédélec (edge) and Lagrange (node)
elements.

We found the Jacobi–Davidson (JD) method to be a very effective solver provided
that a good preconditioner is available for the correction equations that have to
be solved in each step of the JD iteration. The preconditioner of our choice is a
combination of a hierarchical basis preconditioner and the ML smoothed aggregation
AMG preconditioner. It is close to optimal regarding iteration count.

The parallel code makes extensive use of the Trilinos software framework. In our
examples from accelerator physics we observe satisfactory speedups and efficiencies.

Key words: Maxwell equation, finite element method, generalized eigenvalue
problem, Jacobi–Davidson algorithm, smoothed aggregation AMG preconditioning

∗ Corresponding author.
Email address: arbenz@inf.ethz.ch (Peter Arbenz).

1 The work of these authors has been supported by the ETH research grant TH-
1/02-4 on “Large Scale Eigenvalue Problems in Opto-Electronic Semiconductor
Lasers and Accelerator Cavities”.
2 Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed

Preprint submitted to Parallel Computing 16 December 2004



1 Introduction

Many applications in electromagnetics require the computation of some of the
eigenpairs of the curl-curl operator,

curl µ−1
r curl e(x)− k2

0 εr e(x) = 0, div e(x) = 0, x ∈ Ω, (1.1)

in a bounded simply-connected, three-dimensional domain Ω with homoge-
neous boundary conditions e × n = 0 posed on the connected boundary ∂Ω.
εr and µr are the relative permittivity and permeability. Equations (1.1) are
obtained from the Maxwell equations after separation of the time and space
variables and after elimination of the magnetic field intensity. While εr and µr

are complex numbers in problems from waveguide or laser design [8], in sim-
ulations of accelerator cavities the materials can be assumed to be loss-free,
thus admitting real εr and µr, whence all eigenvalues are real. Here, we will
assume εr = µr = 1. Thus, the discretization of (1.1) by finite elements leads
to a real symmetric generalized matrix eigenvalue problem

Ax = λMx, CTx = 0, (1.2)

where A is positive semidefinite and M is positive definite. In order to avoid
spurious modes we approximate the electric field e by Nédélec (or edge) ele-
ments [20]. The Lagrange multiplier (a function) introduced to treat properly
the divergence free condition is approximated by Lagrange (or nodal) finite
elements [3].

In this paper we consider a parallel eigensolver for computing a few of the
smallest eigenvalues and corresponding eigenvectors of (1.2) as efficiently as
possible with regard to execution time and memory cost. In earlier studies [3]
we found the Jacobi–Davidson algorithm [21, 12] a very effective solver for this
task. We have parallelized this solver in the framework of the Trilinos parallel
solver environment [13].

In section 2 we review the symmetric Jacobi-Davidson eigensolver and the pre-
conditioner that is needed for its efficient application. In section 3 we discuss
data distribution and issues involving the use of Trilinos.

In section 4 we report on experiments that we conducted by means of prob-
lems originating in the design of the RF cavity of the 590 MeV ring cyclotron
installed at the Paul Scherrer Institute (PSI) in Villigen, Switzerland. These
experiments indicate that the implemented solution procedure is almost op-
timal in that the number of iteration steps until convergence only slightly
depends on the problem size.

Martin Company, for the United States Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

2



2 The eigensolver

In this paper we focus on the symmetric Jacobi–Davidson algorithm (JDSYM)
for solving (1.2). This algorithm is well-suited since it does not require the
factorization of the matrices A or M . In [2, 3, 4] we found JDSYM to be the
method of choice for this problem.

2.1 The symmetric Jacobi–Davidson algorithm

The Jacobi–Davidson algorithm has been introduced by Sleijpen and van der
Vorst [21]. There are variants for all types of eigenvalue problems [5]. Here we
use a variant adapted to the generalized symmetric eigenvalue problem (1.2)
as described in detail in [2, 12].

Here we just sketch the algorithm. Let us assume that we have already com-
puted q eigenvalues of (1.2) and have the corresponding eigenvectors available
in the n × q matrix Q. Of course, CT Q = 0. Let us further assume that we
have available a search space R(Vk) where Vk = [v1, . . . ,vk] with CT Vk = 0
and QT MVk = 0. JDSYM proceeds in three steps to expand the search space
by one dimension.

(1) Extraction. In the extraction phase, a Ritz pair of (1.2) restricted to
R(Vk) is computed. This amounts to computing the spectral decomposi-
tion of V T

k AVk and selecting a particular Ritz pair (ρ̃, q̃) in R(Vk) that
best approximates the searched eigenpair. Here ρ̃ = ρ(q̃) denotes the
Rayleigh quotient of q̃.

(2) Correction. In order to improve the actual best approximation (ρ̃, q̃) a
correction t is determined that satisfies the correction equation

(I −MQ̃Q̃T )(A− ρ̃M)(I − Q̃Q̃T M)t = −r,

Q̃T Mt = 0, CT t = 0, Q̃ = [Q, q̃]
(2.1)

where r = Aq̃− ρ̃ M q̃ is called the residual at q̃. t can be interpreted as
a Newton correction at q̃ for solving Ax − ρ(x)Mx = 0. For efficiency
reasons, the correction equation is solved only approximately by a Krylov
subspace method [23].

(3) Extension. The solution t of (2.1) is made M -orthogonal to Vk and
orthogonal to C,

t̂ = (I − VkV
T
k M)(I − Y H−1CT )t. (2.2)

After M -normalization, t̂ is appended to Vk to yield Vk+1. Note that
Y = M−1C is a (very sparse) basis of the null space of A and that

3



H = Y T C is the discretization of the Laplace operator in the nodal
element space [3].

In order to limit the memory costs the dimension of Vk is limited. If dim(Vk) =
jmax then the iteration is restarted meaning that the vectors v1, . . . ,vjmax are
replaced by the jmin best Ritz vectors in Vk.

2.2 Solving the correction equation

For the Krylov subspace method to be efficient, a preconditioner is a prereq-
uisite. Following Fokkema et al. [10] for solving (2.1) we use preconditioners
of the form

(I −MQ̃Q̃T )K(I − Q̃Q̃T M), (2.3)

where K is a symmetric preconditioner of A− ρ̃M . For efficiency reasons, we
compute K only once for a fixed shift σ such that K ≈ A− σM . We experi-
enced best results when σ is in the middle of the set of desired eigenvalues.
However, in the experiments of this paper, we choose σ somewhere among the
desired eigenvalues, usually a little above the smallest eigenvalue. This makes
it possible to use the same K for all equations we are solving.

In each preconditioning step, an equation of the form

(I −MQ̃Q̃T )Kc = b and Q̃T Mc = 0

has to be solved. The solution c is [12, p. 92]

c = (I −K−1MQ̃(Q̃T MK−1MQ̃)−1Q̃T M)K−1b.

Briefly, the Krylov subspace method is invoked with the following arguments:

system matrix: (I −MQ̃Q̃T )(A− ρ̃M)

preconditioner: (I −K−1MQ̃(Q̃T MK−T MQ̃)−1Q̃T M)K−1

right hand side: −(I −MQ̃Q̃T )r

initial vector: 0

(2.4)

Both the system matrix and the preconditioner are symmetric. However, be-
cause of the dynamic shift ρ̃, they can become indefinite. For this reason, the
QMRS iterative solver [11] is suited particularly well.

4



2.3 The preconditioner

Our preconditioner K, cf. (2.3), is a combination of a hierarchical basis pre-
conditioner and an algebraic multigrid (AMG) preconditioner.

Since our finite element spaces consist of Nédélec and Lagrange finite elements
of degree 2 and since we are using hierarchical bases, we employ the hierarchi-
cal basis preconditioner that we used successfully in [3]. Numbering the linear
before the quadratic degrees of freedom, the matrices A and M in (1.2) get a
2-by-2 block structure,

A =

A11 A12

A21 A22

 , M =

M11 M12

M21 M22

 . (2.5)

Here the (1, 1)-blocks, i.e. A11 and M11, correspond to the bilinear forms in-
volving linear basis functions. The hierarchical basis preconditioners as dis-
cussed by Bank [6] are stationary iteration methods for solvingK11 K12

K21 K22


x1

x2

 =

b1

b2

 , Kij = Aij − σMij.

that respect the 2-by-2 block structure of A and M . If the underlying station-
ary method is the symmetric block Gauss–Seidel iteration then

K =

K11

K21 K̃22


K11

K̃22


−1 K11 K12

K̃22

 .

The approximation K̃22 of K22 again represents a stationary iteration method
of which we execute a single iteration step. We implemented two iterations
that access local information only. First, the Jacobi iteration

K̃22 = diag(K22), (2.6)

and, second, an iteration that executes a symmetric Gauss-Seidel step on
the largest diagonal block owned by a processor. Both, approaches are quite
efficient in a parallel environment and easy to implement. The latter is more
powerful than the former. It deteriorates with increasing processor numbers,
though.

For very large problems, the direct solve with K11 becomes inefficient and in
particular consumes far too much memory due to fill-in. In order to reduce the
memory requirements of the two-level hierarchical basis preconditioner, and,
at the same time, not lose its optimality with respect to iteration count, we

5



replaced the direct solves by a single V-cycle of an AMG preconditioner. This
makes our preconditioner a true multilevel preconditioner.

We found ML [19] the AMG solver of choice as it can handle unstructured
systems that originate from the Maxwell equation discretized by linear Nédé-
lec finite elements. ML implements a smoothed aggregation AMG method [24]
that extends the straightforward aggregation approach of Reitzinger and Schö-
berl [17]. ML is part of Trilinos which is discussed in the next section.

3 Parallelization issues

For very large problems, the data must be distributed over a series of proces-
sors. To make the solution of these large problems feasible, an efficient parallel
implementation of the algorithm is necessary. Such a parallelization of the al-
gorithm requires proper data structures and data layout, some parallel direct
and iterative solvers, and some parallel preconditioners. For our project, we
found the Trilinos Project [22] to be an efficient environment to develop such
a complex parallel application.

3.1 Trilinos

The Trilinos Project is an ongoing effort to design, develop, and integrate par-
allel algorithms and libraries within an object-oriented software framework
for the solution of large-scale, complex multi-physics engineering and scien-
tific applications [22, 13, 18]. Trilinos is a collection of compatible software
packages. Their capabilities include parallel linear algebra computations, par-
allel algebraic preconditioners, the solution of linear and non-linear equations,
the solution of eigenvalue problems, and related capabilities. Trilinos is pri-
marily written in C++ and provides interfaces to essential Fortran and C
libraries.

For our project, we use the following packages

• Epetra, the fundamental Trilinos package for basic parallel algebraic oper-
ations. It provides a common infrastructure to the higher level packages,

• Amesos, the Trilinos wrapper for linear direct solvers (SuperLU, UMF-
PACK, KLU, etc.),

• AztecOO, an object-oriented descendant of the Aztec library of parallel
iterative solvers and preconditioners,

• ML, the multilevel preconditioner package, that implements a smoothed
aggregation AMG preconditioner capable of handling Maxwell equations [7,

6



19].

For a detailed overview of Trilinos and its packages, we refer the reader to [13].

3.2 Data structures

Real valued double precision distributed vectors, multivectors (collections of
one or more vectors) and (sparse) matrices are fundamental data structures,
which are implemented in Epetra. The distribution of the data is done by
specifying a communicator and a map, both Epetra objects.

The notion of a communicator is known from MPI [16]. A communicator de-
fines a context of communication, a group of processes and their topology,
and it provides the scope for all communication operations. Epetra imple-
ments communicators for serial and MPI use. Moreover, communicator classes
provide methods similar to other MPI functions.

Vectors, multivectors and matrices are distributed row wise. The distribution
is defined by means of a map. A map can be defined as the distribution of a set
of integers across the processes, it relates the global and local row indices. To
create a map object, a communicator, the global and local numbers of elements
(rows), and the global numbering of all local elements have to be provided. So,
a map completely describes the distribution of vector elements or matrix rows.
Note that rows can be stored on several processors redundantly. To create a
distributed vector object, in addition to a map, one must assign values to the
vector elements. The Epetra vector class offers standard functions for doing
this and other common vector manipulations.

Trilinos supports dense and sparse matrices. Sparse matrices are stored locally
in the compressed row storage (CRS) format [5]. Construction of a matrix is
row by row or element by element. Afterwards, a transformation of the matrix
is required in order to perform matrix-(multi)vector product Y = A × X
efficiently, specifying maps of the vectors X and Y .

Some algorithms require only the application of a linear operator, such that
the underlying matrix need not be available as an object. Epetra handles this
by means of a virtual operator class. Epetra also admits to work with block
sparse matrices. Unfortunately, there is no particular support for symmetric
matrices.

To redistribute data, one defines a new, so-called target map and creates an
empty data object according to this new map as well as an Epetra’s im-
port/export object from the original and the new map. The new data object
can be filled with the values of the original data object using the import/export

7



object, which describes the communication plan.

3.3 Data distribution

A suitable data distribution can reduce communication costs and balance the
computational load. The gain from such a redistribution can, in general, over-
come the cost of this preprocessing step.

Zoltan [25, 9] is a library that contains tools for load balancing and parallel
data management. It provides a common interface to graph partitioners like
METIS and ParMetis [15, 14]. Zoltan is not a Trilinos package. But the Trilinos
package EpetraExt provides an interface between Epetra and Zoltan.

In our experiments, we use ParMetis to distribute the data. This partitioner
tries to distribute a graph such that (1) the number of graph vertices per
processor is balanced and (2) the number of edge cuts is minimized. The former
balances the work load. The latter minimizes the communication overhead
by concentrating elements in diagonal blocks and minimizing the number of
non-zero off-diagonal blocks. In our experiments, we define a graph G, which
contains connectivity informations for each node, edge, and face of the finite
element mesh. G is constructed from portions of the sparse matrices M , H,
and C.

4 Numerical experiments

In this section, we discuss the numerical experiments used to assess the parallel
implementation. Preliminary results have been presented in [1].

4.1 General comments

The experiments have been executed on a 32 dual-node PC cluster in dedicated
mode. Each node has 2 AMD Athlon 1.4 GHz processors, 2 GB main memory,
and 160 GB local disk. The nodes are connected by a Myrinet providing a
communication bandwidth of 2000 Mbit/s. The system operates with Linux
2.4.20.

For these experiments, we use the developer version of Trilinos on top of
MPICH 1.2.5. We compare the execution times for computing the 5 smallest
positive eigenvalues and corresponding eigenvectors using JDSYM with the
multilevel preconditioner defined in section 2.3. We set jmin = 6 and jmax = 15.

8



An approximate eigenpair (ρ,q) is considered converged when the norm of the
residual r = Aq− ρ Mq satisfies

‖r‖2 ≤ ε ‖q‖M ,

where ε is set to 10−8.

The projector (2.2) is applied only once per outer iteration. For this projec-
tor, applying H−1 amounts to solving a Poisson equation [3]. In order to do
so, we use the preconditioned conjugate gradient method (PCG), combined
with a multilevel preconditioner. We require high accuracy from this iterative
solver (residual norm reduction by a factor 1010), so that the solution vector
x satisfies the constraints CTx = 0.

The accuracy of the results was satisfactory. The computed eigenvectors were
M -orthogonal and orthogonal to C to machine precision. The 2-norm of the
residuals of the computed eigenpairs were below 10−9.

4.2 Academic problem

The first example is a rectangular box denoted box170k. The matrix A is of
size 1,030,518. The shifted operator A− σM has 20,767,052 non-zero entries.
The eigenvalues to be computed are

λ1 ≈ 1.27, λ2 ≈ 2.37, λ3 ≈ 3.99, λ4 ≈ 4.19, λ5 ≈ 5.09.

We set the shift σ = 1.5. The discrete Laplacian H is of size 209,741 and has
5,447,883 non-zero entries.

Table 1
box170k: Comparison of the block Gauss-Seidel (left) and the Jacobi (right) pre-
conditioners for K22

p t [sec] E(p) tprec [%] tproj [%] nouter navg
inner

4 3131 2895 1.00 1.00 49 39 20 22 52 54 21.29 23.26

8 1793 1709 0.87 0.85 46 38 22 24 52 54 20.85 23.06

12 1298 1201 0.80 0.80 46 38 22 25 53 54 20.40 22.07

16 971 915 0.81 0.79 46 39 23 25 53 54 20.58 22.33

In table 1, we report the execution times t = t(p) for solving the eigenvalue
problem with various numbers p of processors. These times do not include
preparatory work, such as the assembly of matrices or the data redistribution.
E(p) describes the parallel efficiency with respect to the simulation run with
the smallest number of processors. tprec and tproj indicate the percentage of the

9



time the solver spent applying the preconditioner and the projector, respec-
tively. navg

inner is the average number of QMRS iterations per outer iteration.
The total number of applications for the preconditioner K is approximately
nouter · navg

inner.

In Table 1, we use AMG preconditioners for the block K11 and for the whole
H. However, we distinguish, in the table, the results obtained by applying,
to the block K22, one symmetric Gauss-Seidel (SGS) step with the diagonal
block owned by a processor (left columns) or one Jacobi step (right columns),
see (2.6). The block SGS reduces the number of QMRS iterations. However,
each iteration is more expensive than one iteration with Jacobi step. For this
test case, the overall computation time is faster with the Jacobi steps. In both
cases, navg

inner is almost constant, which indicates that the preconditioner K does
not deteriorate as p increases.

Note that the problem box170k was too large to be solved on 1 or 2 processors.

Table 2
box170k: Results using the the combined 2-level/ML preconditioner for K and H

p t [sec] E(p) nouter navg
inner

4 2653 1.00 54 23.26

8 1575 0.84 55 23.22

12 1105 0.80 54 22.07

16 845 0.78 54 22.33

In Table 2, we use the AMG preconditioner for the block K11, Jacobi steps for
K22, and a similar strategy for H (AMG preconditioner for H11 and Jacobi
steps for H22). Comparing with the corresponding columns in Table 1, we see
that navg

inner and nouter did not change. However, the execution times are reduced
significantly.

4.3 Engineering problem

The next two problem originate in the design of the RF cavity of the 590
MeV ring cyclotron installed at the Paul Scherrer Institute (PSI) in Villigen,
Switzerland. We deal with two problem sizes. They are labelled cop40k and
cop300k. Their characteristics are given in Table 3, where we list the order n

Table 3
Matrix characteristics

grid nA−σM nnzA−σM nH nnzH

cop40k 231,668 4,811,786 46,288 1,163,834
cop300k 1,822,854 39,298,588 373,990 10,098,456

10



and the number of non-zeros nnz for the shifted operator A−σM and for the
discrete Laplacian H. Here the eigenvalues to be computed are

λ1 ≈ 1.13, λ2 ≈ 4.05, λ3 ≈ 9.89, λ4 ≈ 11.3, λ5 ≈ 14.2.

We again set σ = 1.5.

Table 4
cop40k: Comparison of the block Gauss-Seidel (left) and the Jacobi (right) precon-
ditioners for K22

p t [sec] E(p) tprec [%] tproj [%] nouter navg
inner

1 1806 2092 1.00 1.00 45 37 18 18 48 53 12.62 19.02

2 1142 1219 0.79 0.86 47 38 16 17 51 54 15.47 18.96

4 634 642 0.71 0.81 46 37 16 17 51 54 16.29 19.43

8 327 321 0.69 0.81 46 38 17 18 51 53 16.24 19.23

12 216 227 0.70 0.77 47 40 19 19 51 53 15.51 19.47

16 175 174 0.65 0.75 50 43 19 20 51 53 16.35 18.96

Table 4 is similar to Table 1. In particular, we use an AMG preconditioner
for the block K11 and an AMG preconditioner for H. We distinguish also the
results obtained by applying, to the block K22, one symmetric Gauss-Seidel
(SGS) step with the diagonal block owned by a processor (left columns) or
one Jacobi step (right columns), see (2.6).

For this test case, the overall computation times are better with the Gauss-
Seidel steps. However, the quality of the preconditioner K deteriorates with
the number of processors as navg

innerincreases with p.

Table 5
cop40k: Comparison of results with (left) and without (right) redistribution

p t [sec] E(p) nouter navg
inner

1 1957 2005 1.00 1.00 53 53 19.02 19.02

2 1159 1297 0.84 0.77 54 53 19.06 19.66

4 622 845 0.79 0.59 54 55 19.43 19.18

8 318 549 0.77 0.45 53 54 19.23 19.67

12 231 451 0.71 0.37 53 54 20.47 19.78

16 184 366 0.66 0.34 53 54 19.00 19.04

In Table 5, we use the AMG preconditioner for the block K11, Jacobi steps
for K22, and a similar strategy for H (AMG preconditioner for H11 and Ja-
cobi steps for H22). We investigate the effect of redistributing the matrices.
Results in Table 5 show that the quality of data distribution is important.

11



For the largest number of processors (p = 16), the execution time with the
redistributed matrices is half the time obtained with the original matrices.
These were straightforward block distributions of the matrices given in (2.5)

Table 6
cop300k: Results with the best parameters

p t [sec] E(p) nouter navg
inner

8 4346 1.00 62 28.42

12 3160 0.91 62 28.23

16 2370 0.92 61 28.52

Finally, in Table 6, we report results for our largest problem size cop300k.
We use the 2-level preconditioner for K and H: an appropriate AMG pre-
conditioner for the blocks K11 and H11 and one step of Jacobi for the blocks
K22 and H22. Table 6 shows that, for these experiments, the iteration counts
behave nicely and that efficiencies stay high.

5 Conclusions

In conclusion, the parallel algorithm shows a very satisfactory behavior. The
efficiency of the parallelized code does not get below 65 percent for 16 proces-
sors. We usually have a big efficiency loss initially. Then efficiency decreases
slowly as the number of processors increases. This is natural due to the growing
communication-to-computation ratio.

The accuracy of the results are satisfactory. The computed eigenvectors were
M -orthogonal and orthogonal to C to machine precision. The 2-norm of the
residuals of the computed eigenpairs were below 10−9.

Our next goals in this project are the reduction of the memory costs and
the overhead of the redistribution of our matrices. The memory costs are still
so high that we are not capable to solve the very large problems that really
interest the engineers. The reason for this lies not primarily in the size of
these problems, but in a lack of memory scalability of the code. The cost
of the redistribution may be reduced by working with a smaller than our
artificial graph G. We may, e.g., just determine a good parallel distribution
for the vertices and then adjust the edges and faces.

12



References

[1] P. Arbenz, M. Bečka, R. Geus, and U. Hetmaniuk. Towards a parallel
multilevel preconditioned maxwell eigensolver. In J. Dongarra, K. Mad-
sen, and J. Wasniewski, editors, PARA’04 State-of-the-Art in Scientific
Computing, Berlin, 2004. Springer-Verlag. (Lecture Notes in Computer
Science).

[2] P. Arbenz and R. Geus. A comparison of solvers for large eigenvalue
problems originating from Maxwell’s equations. Numer. Linear Algebra
Appl., 6(1):3–16, 1999.

[3] P. Arbenz and R. Geus. Multilevel preconditioners for solving eigenvalue
problems occuring in the design of resonant cavities. Applied Numerical
Mathematics, 2004. Article in press. Corrected proof available from doi:

10.1016/j.apnum.2004.09.026.
[4] P. Arbenz, R. Geus, and S. Adam. Solving Maxwell eigenvalue problems

for accelerating cavities. Phys. Rev. ST Accel. Beams, 4:022001, 2001.
(Electronic journal available from http://prst-ab.aps.org/).

[5] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst. Templates
for the Solution of Algebraic Eigenvalue Problems: A Practical Guide.
SIAM, Philadelphia, PA, 2000.

[6] R. E. Bank. Hierarchical bases and the finite element method. Acta
Numerica, 5:1–43, 1996.

[7] P. B. Bochev, C. J. Garasi, J. J. Hu, A. C. Robinson, and R. S. Tuminaro.
An improved algebraic multigrid method for solving Maxwell’s equations.
SIAM J. Sci. Comput., 25(2):623–642, 2003.

[8] O. Chinellato, P. Arbenz, M. Streiff, and A. Witzig. Computation of opti-
cal modes inside axisymmetric open cavity resonators. Future Generation
Computer Systems, 2004. Article in press. Corrected proof available from
doi:10.1016/j.future.2004.09.002.

[9] K. Devine, E. Boman, R. Heaphy, B. Hendrickson, and C. Vaughan.
Zoltan data management services for parallel dynamic applications. Com-
puting in Science and Engineering, 4(2):90–97, 2002.

[10] D. R. Fokkema, G. L. G. Sleijpen, and H. A. van der Vorst. Jacobi–
Davidson style QR and QZ algorithms for the partial reduction of matrix
pencils. SIAM J. Sci. Comput., 20(1):94–125, 1998.

[11] R. Freund and N. M. Nachtigal. Software for simplified Lanczos and QMR
algorithms. Appl. Numer. Math., 19:319–341, 1995.

[12] R. Geus. The Jacobi–Davidson algorithm for solving large sparse sym-
metric eigenvalue problems. PhD Thesis No. 14734, ETH Zürich,
2002. (Available at URL http://e-collection.ethbib.ethz.ch/

show?type=diss&nr=14734).
[13] M. Heroux, R. Bartlett, V. Howle, R. Hoekstra, J. Hu, T. Kolda,

R. Lehoucq, K. Long, R. Pawlowski, E. Phipps, A. Salinger, H. Thorn-
quist, R. Tuminaro, J. Willenbring, and A. Williams. An overview of the
Trilinos Project. ACM Trans. Math. Softw., 5:1–23, 2003.

13



[14] G. Karypis and V. Kumar. Parallel multilevel k-way partitioning scheme
for irregular graphs. SIAM Rev., 41(2):278–300, 1999.

[15] METIS: A family of programs for partitioning unstructured graphs and
hypergraphs and computing fill-reducing orderings of sparse matrices. See
URL http://www-users.cs.umn.edu/~karypis/metis/.

[16] P. S. Pacheco. Parallel programming with MPI. Morgan Kaufmann, San
Francisco CA, 1997.

[17] S. Reitzinger and J. Schöberl. An algebraic multigrid method for finite
element discretizations with edge elements. Numer. Linear Algebra Appl.,
9(3):223–238, 2002.

[18] M. Sala, M. A. Heroux, and D. D. Day. Trilinos 4.0 Tutorial. Technical
Report SAND2004-2189, Sandia National Laboratories, May 2004.

[19] M. Sala, J. Hu, and R. S. Tuminaro. ML 3.1 Smoothed Aggregation
User’s Guide. Tech. Report SAND2004-4819, Sandia National Laborato-
ries, September 2004.

[20] P. P. Silvester and R. L. Ferrari. Finite Elements for Electrical Engineers.
Cambridge University Press, Cambridge, 3rd edition, 1996.

[21] G. L. G. Sleijpen and H. A. van der Vorst. A Jacobi–Davidson iteration
method for linear eigenvalue problems. SIAM J. Matrix Anal. Appl.,
17(2):401–425, 1996.

[22] The Trilinos Project Home Page. http://software.sandia.gov/

trilinos/.
[23] H. A. van der Vorst. Iterative Krylov methods for large linear systems.

Cambridge University Press, Cambridge, 2003.
[24] P. Vaněk, J. Mandel, and M. Brezina. Algebraic multigrid based on

smoothed aggregation for second and fourth order problems. Computing,
56(3):179–196, 1996.

[25] Zoltan Home Page. http://www.cs.sandia.gov/Zoltan/.

14


