
Parallel Graph Component Labelling with GPUs and CUDA

K.A. HawickI, A. Leist and D.P. Playne

Institute of Information and Mathematical Sciences
Massey University – Albany, North Shore 102-904, Auckland, New Zealand

Email: { k.a.hawick, a.leist, d.p.playne }@massey.ac.nz
Tel: +64 9 414 0800 Fax: +64 9 441 8181

Abstract

Graph component labelling, which is a subset of the general graph colouring problem, is a computationally
expensive operation that is of importance in many applications and simulations. A number of data-parallel
algorithmic variations to the component labelling problem are possible and we explore their use with general
purpose graphical processing units (GPGPUs) and with the CUDA GPU programming language. We discuss
implementation issues and performance results on GPUs using CUDA. We present results for regular mesh
graphs as well as arbitrary structured and topical graphs such as small-world and scale-free structures. We
show how different algorithmic variations can be used to best effect depending upon the cluster structure of
the graph being labelled and consider how features of the GPU architectures and host CPUs can be combined
to best effect into a cluster component labelling algorithm for use in high performance simulations.

Key words: graph, component label, mesh, GPU, CUDA, data-parallel

1. Introduction

Graph component labelling is an important algorithmic problem that occurs in many applications areas.
Generally, the problem involves identifying which nodes in a graph belong to the same connected cluster or
component. In many applications the graph of interest has undirected arcs and all nodes in a connected
cluster are fully and mutually reachable. Some applications problems will give rise to structural graphs that
are generated as a number of separate clusters, or break up into separate clusters or coagulate into larger
super-clusters as a result of some dynamical process. In some cases the graph is simply a structural one and
connectivity is determined entirely by the presence or absence of arcs between nodes.

Many simulations problems are formulated in terms of a set of variables on a mesh and the value of
the variables on the nodes can be used to differentiate between nodes that are connected or not. Figure 1
shows two examples of graph colouring and labelling applications problems. On the left a set of variables
on a regular mesh graph have been coloured according to their similarity properties, whereas on the right
a structural graph has been coloured according to its cluster components. Examples of the former case
are the Ising model, Potts model, other lattice physics models and field models where the structural arcs
are fixed - in a nearest neighbour pattern for example - but where some property of each node that can
change dynamically, indicates whether two adjacent nodes are part of the same cluster or not. Examples of
the latter case include analysis of computer networks; sociological networks; and other relationship network
graphs.

Figure 2 illustrates how component labelling can be used to analyse the results of a simulation. The
figure shows a Kawasaki spin-exchange Ising model simulation[1] where a random mixture of spins (coloured
dark blue and white) has been quenched to a low temperature and clusters or components have formed in
the model system. Models such as these exhibit phase transitions and the component size distribution can
be used to examine and identify the location and properties of the resulting phase transitions.

IAuthor for correspondence

Preprint submitted to Parallel Computing April 23, 2010

� � � �

� � � � ��

�� �	 �� �
 ��

�� �� �� �� ��

�� �
 �� �� ��

��

��

�	

��

	� 	� 	� 		 	�

	

	

�	

��

��

��

��

�

�

��

��

��

��

��

��

���� �	

��

�

�

�

�

�

�

�

�

��

��

	

Figure 1: Component labelling on a regular mesh (left) - where each site has a known number of neighbours but different
properties - and on an arbitrary graph (right). Different colours (shades) denote different components. Mesh problems arise
from simulations where each node has different model specific properties, eg spin, or velocity direction or some other
model value that dictates whether two physically adjacent nodes are deemed to be part of the same “model component”. The
regular mesh has in this case 26 separate clusters, the largest with 3 nodes, the arbitrary graph has 3 separate components,
the largest with 8 nodes.

Figure 2: The cubic system on the right is a body-centred cubic configuration of spins (blue and grey) of a Kawasaki spin-
exchange Ising model that has been equilibrated below the critical temperature. The image on the right is the largest component
of the blue minority (0.2 volume fraction) phase.

2

Until recently, use of component analysis was computationally expensive compared to the simulation
update computational costs. It was therefore impractical as a metric of simulations except when used in-
frequently during model evolution – such as to analyse static model configuration dumps. Fast component
labelling algorithms such as we describe here for use on a cheap accelerator platform such as a GPU, enable
use of component labelling more frequently in simulations.

Figure 3 shows how the largest component measurements can be used to identify special properties of
a model system such as the location in parameter space of a phase transition. The figure shows how the
normalised fraction of the model system that is occupied by the giant largest component of the minority
(dark spin) phase of the model shown in figure 2 varies with temperature and minority volume fraction. The
crease in the surface locates the phase transition.

Graph colouring is of course not a new idea, although as mentioned it has previously been impractically
expensive to compute regularly during a simulation. There are a number of well-known algorithms for graph
colouring [2] including parallel algorithms for speeding up graph calculations [3] as well as those specifically
on graph colouring such as [4, 5]. In addition, a number of parallel component labelling applications have
been described in the applications literature, particularly for use in lattice physics simulation models [6, 7],
studies of percolation [8], and studies of other phase transitions [9].

Figure 3: Largest component analysis of model system such as shown in figure 2. The normalised fraction occupied by the
largest component cluster of the minority (blue) phase is plotted as a surface as it varies with the model temperature T and
the minority volume fraction Vf (percentage of blue spins). The phase transition is revealed elegantly from the component
labelling analysis and identification of the size of the largest cluster component. Measurements shown are averaged over 100
independent model runs on a 32× 32× 32 body centred cubic system.

Parallel graph colouring is a problem that tends to work well on data-parallel systems and during the
last golden age of data parallelism, computers such as the Distributed Array Processor (DAP) [10] and the
Connection Machine examples[11] had software libraries with built-in routines for component labelling on
regular rectilinear data structures such as images.

Graphical Processing Units (GPUs) such as NVIDIA’s GeForce series have revitalised interest in data-
parallel computing since they offer dedicated data-parallel hardware on the graphics chip but are also readily
integrated into a compute server and make the parallel capability accessible to the applications programmer
through use of NVIDIA’s Compute Unified Device Architecture (CUDA). While CUDA is presently specific

3

to NVIDIA hardware, the Open Compute Language (OpenCL) has similar capabilities and programming
interface.

In this article we describe how some of the well-known data-parallel graph component labelling algo-
rithms can be adapted to make specific and optimal use of GPU hardware and how this can be expressed
in a relatively high-level manner using programming languages like CUDA. We describe the component
labelling problem in Section 2 and the CUDA GPU architecture in Section 3. Our experience has been
that applications that require component labelling fall into major classes - firstly those that employ ar-
bitrarily structured graphs such as random graphs or scale-free and Watts-Strogatz “small-world” graphs
and secondly those that use regular rectilinear data such as images or hypercubic lattice data. There are
quite different optimisations that can be made in the two cases. We describe parallel algorithms both for
arbitrarily structured graphs (Section 4) and more symmetric mesh and lattice graphs (Section 5) and show
how they can be implemented on GPUs with a data parallel language like CUDA. We present some perfor-
mance results using NVIDIA GeForce 260 GPUs in Section 6 and in Section 7 we discuss the implications
for component labelling applications and offer some conclusions and areas for future optimisation work.

GPUs are typically programmed using a conventional host calling program written in (for example) “C”
that runs on the hosting CPU with specific fast ‘kernel” programs that are called and which run on the
GPU. A large part of our article describes these parallel kernel algorithms in detail. For clarity we refer
to Kernels 1,2,3 that address the arbitrary graph component labelling problem and Kernels A,B,C,D which
address hypercubic regular data component labelling.

2. Graph Component Labelling Algorithms

In the context of general graphs and graph theory [12] graph labelling is a well known problem with
relatively easy to understand (serial) algorithms [13]. Generally graph component labelling is a subset
problem of the wider colouring problems [14] with a number of known algorithmic variations [15].

One perspective on the problem is in terms of equivalence classes and the popular formulation in Nu-
merical Recipes books [16] shows how a predicate function that specifies equivalence or “connected-ness”
can be used to iteratively sweep across all pairs of graph nodes to identify clusters or equivalence classes. In
the case of simulations or applications involving fixed graphs or meshes, we often know the adjacency lists
in advance and it is not necessary to conduct sweeps over all-pairs of nodes. In our work, we assume this is
the case, and that some data structure exists that specifies the subset of nodes that are considered adjacent
to a particular node.

� � � � � � � � 	
 �� ��

�� �� �� �� �� �� �	 �
 �� �� �� ��

�� �� �� �� �	 �
 �� �� �� �� �� ��

�� �� �	 �
 �� �� �� �� �� �� �� ��

�	 �
 �� �� �� �� �� �� �� �� �	 �

�� �� �� �� �� �� �� �� �	 �
 �� ��

�

�

�

�

�

�

�

� �

� � ��

	

� � � � �	 �� �� ��

�
 �� �� �� �� �� ��

� �� �� �	 ��

��

�

�� �� �	 �
 �	 �� ��

�� ��

� � � � � � � � 	
 �� ��

�

�

�

�

�

�

Figure 4: A 12× 6 periodic (opposite edges are connected) nearest-neighbour mesh where the cluster “sameness” also depends
on the variables decorating the graph nodes. Graph node k = 0 has exactly 4 nearest neighbouring nodes that it is adjacent
to (1, 11, 12, 60), but it has correctly been identified as the sole member of cluster j = 5 where nodes “need to be green” and
be “nearest-neighbour connected” to be part of the same cluster. There are thus 8 clusters in total found and we want them
labelled accordingly.

Figure 2 illustrates the component labelling problem for a d-dimensional rectilinear image. It is required
that each vertex be coloured or labelled with each component having a unique integer label. Arbitrary graph

4

vertices can be indexed explicitly by some integer k but even in the case of a hyper-cubic mesh, image or
lattice, these indices can encode the spatial dimensions (x1, x2, ..., xd) in some order of significance [17].

The initial labelling of individual vertices is often the slowest algorithmic component as it may involve
sweeping through the adjacency information iteratively. To make use of the correctly labelled component
information however, an application may need to carry out some “book-keeping” operations to tidy up
the label information into a structure such as that shown on the right of Figure 2 - whereby subsequent
iterations over each component cluster can be made - for example to compute cluster moments or average
properties. It is also often desirable that the cluster structure be compactified, particularly where the number
of components is relatively small compared to the total number of vertices.

In summary, starting from a graph, specified either as a mesh or as a set of adjacency information, we
often want to: colour the vertices uniquely according to component; determine how many unique colours
(components) we have used; gather pointers for each cluster to allow efficient subsequent iteration by cluster.
In addition, depending upon the application we may also want to: compactify the colours to a contiguous
and continuous integer list; sort the colours by cluster sizes; histogram the size distribution; apply some
algorithm to one or more clusters, or remove them from the set.

Sequential algorithms for component labelling will typically be implemented as a sweep through all the
graph nodes, adjusting their component “colours” according to adjacency information until each component
has a single and unique colour - usually in the form of an integer label. The sweep is usually organised
as a breadth first tree search, with various accelerating heuristics, depending upon properties of the data.
Some formats lend themselves particularly well to various heuristics and also to parallel algorithms. The
data-parallel GPU is well-suited to carrying out the data-parallel operations of component labelling and
its host CPU can be employed fairly easily to carry out the book-keeping support operations serially, and
usually with more ordinary or global memory available than the dedicated memory available on the GPU
card itself.

3. GPU Architecture

In this section we give a brief summary of GPU-specific terms used in the rest of this article. Graphics
Processing Units or GPUs provide a high computational throughput due to their large number of processor
cores. GPUs contain multiprocessors (MPs) which each contain eight Scalar Processors (SPs) and additional
memory. These architectures use the SIMT (Single Instruction Multiple Thread) parallel programming
paradigm. The SPs within a single MP must execute the same instruction synchronously while the MPs in
the GPU can execute instructions independently of each other.

A large number of threads is required to make full use of a GPUs computing capability. The GPU
can manage, schedule and execute many threads in hardware to avoid high thread management overheads.
These threads are organised as a large grid of blocks. Each block is a 3D structure that can contain up to
512 threads with maximum sizes of {512, 512, 64} and the grid is a 2D structure with maximum sizes of
{65535, 65535}. The threads are executed by assigning thread blocks to MPs. The multiprocessors will
split the thread blocks into sets of 32 threads known as warps. When executing instructions, the MP will
select a warp that is ready to execute and issue it an instruction

Each thread has a unique id that it can work out from it’s threadIdx and blockIdx. The blockIdx identifies
which block the thread belongs to and the threadIdx defines the thread’s position within the block.

There is no automatic memory caching on the GPU, instead a number of optimised memory types are
made available to be explicitly used by the programmer. These memory types are:

Global Memory is the main device memory on the GPU. Any input/output to and from the GPU
must be placed in global memory. This memory also has the slowest access time. The number of necessary
global memory transactions can be reduced by a technique known as coalescing. When 16 sequential threads
access 16 sequential and aligned values in memory, the GPU will automatically combine them into a single
transaction.

Shared Memory is stored within the MPs and allows threads in the same block to share information.
The main use of the memory is to act as an explicit access cache to allow the number of global memory
transactions to be reduced by sharing common data between threads.

5

�

�

�

�

�

�

� �

� �

�

� �

� �

�

�

� �

��	

��� �

�

�

�

� �

� �

� �

� �

� �

 �

��	

�

�

�

�

�

� � � � � � � �

� � � � �

� � � � � ���

��	

�

�

�

�

�

�

�

��

�

� � � � � � �

� � � � ��

� �

��

� �

��	

Figure 5: The data structures used to represent the graph by the CPU and GPU implementations. All three examples represent
the same undirected graph shown by (a). (b) shows the adjacency-list representation used by the CPU algorithm. Every vertex
vi ∈ V stores a list of its neighbours at index i of the vertex array. The first element of each adjacency-list is its length |Ai|, also
called its out-degree ki out or simply degree ki. The following elements are the indices of the adjacent vertices, that is the arc
set Ai ⊆ A. To represent an undirected edge, each one of its end points needs to store the respective neighbour. (c) illustrates
the edge set E used by Kernel 1. Every edge e{i,j} ∈ E is represented by a 2-tuple, which stores the IDs of the respective end
points. (d) shows the vertex set V (bottom) and the arc set A (top) used by Kernels 2 and 3. Every vertex vi ∈ V stores the
start index of its adjacency-list Ai at index i of the vertex array. The adjacency-list length |Ai| can be calculated by looking
at the adjacency-list start index of vi+1 (V [i + 1]−V [i]). The vertex array contains |V |+ 1 elements so that this works for the
last vertex too.

Texture Memory is a cached method of accessing a designated piece of global memory. The texture
cache is located on the MPs. Textures can be created in 1-, 2- and 3-dimensions and will automatically
cache values in the same spatial locality. This will improve performance when threads access values in some
regular spatial neighbourhood.

Constant Memory is another cached method of accessing a small section of global memory. This cache
is designed to allow multiple threads to access the same value out of the cache at once. This is very useful
when all the threads in a block must access the same value from memory.

4. Arbitrarily Structured Graphs

This section describes our (serial) CPU and (parallel) GPU algorithms used to label the components
of arbitrary graphs. Such graphs are arbitrary in the sense that their structure is not known beforehand.
Examples are random graphs [18] and complex networks, such as metabolic networks [19, 20, 21], human
collaboration networks [22, 23] and many other types of social networks [24, 25, 26], as well as computer
networks like the World-Wide Web [27] to name but a few. These graphs require a data structure that
has no built-in assumptions about graph structure and in particular, that supports arbitrarily long (and
potentially widely differing) adjacency list lengths for each vertex node.

4.1. Data Structures
An arbitrary graph can be represented in different ways in memory. The data structure can have a critical

impact on the performance of the labelling algorithm. Different hardware architectures with diverse memory
hierarchies and processing models often require different data structures to achieve high performance. We
restrict ourselves to undirected graphs for this article, but the data structures and algorithms described
in this section can easily be adapted to work with directed graphs as well. Figure 5 illustrates the data
structures used to represent an arbitrary graph in the main memory of the host system or the device memory
of the graphics card.

The graph representations in device memory are designed so that the CUDA kernels can maximise the
utilisation of the available memory bandwidth. One important way to do this is to reduce the number of
non-coalesced memory transfers. Coalescing is a feature of CUDA devices that enables them to combine the
global memory reads or writes of 16 sequential threads into a single memory transaction. The threads have
to access addresses that lie in the same memory segment of size 32-, 64- or 128-bytes for coalescing to work

6

(CUDA compute capability 1.2 or higher). This memory block also needs to be aligned to the segment size.
A more detailed description and analysis of coalescing and its performance implications can be found in the
CUDA Programming Guide [28]. Trying to reduce the number of non-coalesced memory transactions and
in general to optimise the device memory accesses is a challenge for arbitrary graphs on CUDA devices, as
the structure of the graph is not known beforehand.

4.2. The CPU Reference Implementation
This section describes the single-threaded CPU implementation used as a comparison to the CUDA

kernels. We realise, of course, that a multi-threaded implementation on a multi-core or multi-CPU system
could achieve better performance than the serial one, but we do not intend to compare parallel-processing
techniques on different architectures in this paper. We are merely interested in investigating the performance
of graph labelling algorithms on CUDA devices and provide the CPU performance for comparison.

The algorithm (see Algorithm 1) initialises the colours of all vertices to distinct values. It then iterates
over the vertex set V and starts the labelling procedure for all vertices vi ∈ V that have not been labelled yet
as indicated by the frontier array F . The labelling procedure iterates over the arc set Ai ⊆ A of vertex vi,
comparing its colour value ci with that of its neighbours. If it finds that the colour value cj of a neighbour
vj is greater than ci, then it sets cj to the value of ci and recursively calls the labelling procedure for vj .
If, on the other hand, it finds a neighbour vj with a lower colour value, it sets the colour ci to the value cj

and starts iterating over the adjacency-list from the beginning again. This means that once the labelling
procedure reaches the end of the adjacency-list of vertex vi, all vertices that are reachable from vi are labelled
with the same colour value.

Algorithm 1 The single-threaded CPU reference implementation of the component labelling algorithm for
arbitrary graphs. Although the data structure used by this algorithm uses lists of directed arcs to represent
the links between vertices, it assumes that if there is an arc (i, j) in the adjacency-list Ai ⊆ A of vertex
vi ∈ V , then there is also an arc (j, i) in the adjacency-list Aj ⊆ A of vertex vj ∈ V . Thus, the algorithm
essentially works on edges.
function LABEL COMPONENTS CPU(G)

Input parameters: The graph G := (V,A) is an array of adjacency-lists, one for every vertex v ∈ V . The
arc set Ai ⊆ A of a vertex vi is stored in position V [i]. |V | is the number of vertices in G and |Ai| is the
number of neighbours of vi (i.e. its degree).
declare integer C[|V |] //C[i] stores the colour of vertex vi

declare boolean F [|V |] //F [i] indicates if vertex vi still needs to be processed
for all vi ∈ V do

C[i]← i //initialise every vertex to a unique colour value
F [i]← true

end for
for all vi ∈ V do

if F [i] = true then
call PROCESS CPU(G, C, F, vi)

end if
end for
return C //C now contains the component ID for every vertex v ∈ V .

4.3. The CUDA Implementations
The three CUDA kernels solve the task of labelling the components of an input graph in very different

ways. As described in Figure 5, Kernel 1 uses a different data structure from Kernels 2 and 3. While
Kernel 1 works on the edge set, executing one thread for every edge for a total of |E| threads, Kernels 2 and
3 operate on the vertex set, executing one thread for every vertex for a total of |V | threads. The kernels are
described in the following paragraphs. As a convention for the pseudo-code, variables located in graphics
device memory are identified with a subscript d (e.g. Vd).

7

function PROCESS CPU(G, C, F, vi)
F [i]← false
for all (i, j) ∈ Ai do

if C[i] > C[j] then
C[i]← C[j]
re-run the for-loop from the beginning of the adjacency-list

else if C[i] < C[j] then
C[j]← C[i]
call PROCESS CPU(G, C, F, vj)

end if
end for

4.3.1. Edge-Based Kernel 1
In this approach, the colours array is initialised to a unique integer value for every vertex v ∈ V . Every

thread loads one edge e := {i, j} ∈ E from the edge set and compares the colours ci and cj of the two
vertices vi and vj . If one of the colour values is smaller than the other, then the colour of the vertex with
the higher colour value is updated. An atomicMin operation is used for this to ensure that simultaneous
updates by different threads do not interfere with each other and do not rely on a particular ordering. In
addition to updating the colour, the thread also sets a flag that indicates that there are still changes being
made to the vertex colours. This last operation can also cause simultaneous writes to the same address by
multiple threads. However, CUDA guarantees that at least one of them will succeed, which is all that is
needed here. The kernel is called until no more changes are being made. The pseudo-code of this kernel is
given in Algorithm 2.

Performance: The performance of the algorithm depends strongly on the graph diameter d—that is, the
longest of the shortest paths connecting any two vertices within the same component of the graph—since
the colour needs d steps to propagate between all vertices. However, this does not mean that the kernel has
to be called d times, as the |E| threads are not actually all executing at the same time. This means that
the changes to the colour of a vertex vi made while processing an edge {i, j} can already be visible when
processing an edge {i, k} at a later time during the same kernel call. The diameter is thus the upper bound
for the number of kernel calls. If the graph consists of more than one disjoint component, then the diameter
of the component with the largest value for d is relevant.

CUDA specific optimisations: The kernel uses a boolean flag in shared memory to indicate if any changes
have been made by one or more threads in this block. If this flag is set to true once all threads in the block
have completed their work, then the first thread in the block sets the respective flag in global memory to
true. This optimisation reduces the number of global memory writes and replaces them with much faster
writes to shared memory.

4.3.2. Vertex-Based Kernel 2
Kernel 2, just like Kernel 1, initialises the colours array to a unique integer value for every vertex v ∈ V .

Every thread ti then loads the adjacency-list start index of vertex vi into shared memory. This allows all but
the last thread in the block to calculate the adjacency-list length |Ai| of their vertex without another read
from global memory. Every thread then checks if its vertex is flagged as active in the frontier array, which
means that this is either the first kernel iteration (all vertices are flagged) or that its colour has changed
in the previous kernel call and therefore needs to be compared to the colour values of its neighbours. The
next step for all threads that are flagged is to load the current colour ci of their vertex. Now they can
iterate through their adjacency-lists, comparing ci with the colour cj of every one of their neighbours vj and
updating either one of the colours if its value is higher than that of the other vertex. The kernel is called
until no more changes are being made. The pseudo-code of this kernel is given in Algorithm 3.

Performance: Just like with Kernel 1, the performance of this algorithm depends strongly on the graph
diameter d, as the colour needs d steps to propagate between all vertices. Again, this does not mean that d
iterations are needed for the colour to spread through the connected components.

8

Algorithm 2 Kernel 1: The first approach to labelling the components of an arbitrary graph in parallel on
a CUDA-enabled device. This kernel operates on the edge set E, running one thread for every edge for a
total of |E| threads per kernel call.
function LABEL COMPONENTS KERNEL1 HOST(E,N)

Input parameters: E is the list of all edges in a graph G := (V,E). N = |V | is the number of vertices.
declare {integer,integer} Ed[|E|] in device memory //allocate memory for the edge list on the device
declare integer Cd[N] in device memory //Cd[i] stores the colour of vertex vi

copy Ed ← E //copy the edge list to the device
do in parallel on the device using N threads: initialise Cd[1 . . . N] such that Cd[i]← i
declare boolean m //m indicates if the labels are still changing
declare boolean md in device memory
repeat

copy md ← false
do in parallel on the device using |E| threads: call LABEL COMPONENTS KERNEL1(Ed, Cd,md)
copy m← md

until m = false //repeat until the colours are not changing any more
declare integer C[N]
copy C ← Cd //copy the colours to the host
return C //C now contains the component ID for every vertex v ∈ V .

function LABEL COMPONENTS KERNEL1(Ed, Cd,md)
declare integer t← thread ID queried from the CUDA runtime
declare {integer,integer} et ← Ed[t] //read the edge et := {i, j} ∈ Ed from device memory
declare integer ci ← Cd[i] //read the colour ci of vertex vi from device memory
declare integer cj ← Cd[j] //read the colour cj of vertex vj from device memory
if ci < cj then

call atomicMin(Cd[j], ci)
md ← true

else if cj < ci then
call atomicMin(Cd[i], cj)
md ← true

end if

CUDA specific optimisations: In addition to the shared memory flag already used in Kernel 1, this
kernel uses an array in shared memory to store the adjacency-list start indices of the threads within the
same thread block as described before. Furthermore, it uses a one-dimensional texture reference to iterate
over the arc set A. Texture fetches are cached and can potentially exhibit higher bandwidth as compared to
non-coalesced global memory reads if there is locality in the texture fetches. And since a thread ti iterates
over |Ai| consecutive values and thread ti+1 iterates over the directly following |Ai+1| consecutive values
and so on, this locality is given. The CUDA code for these optimisations is shown in Algorithm 4.

The implementation of Kernel 2 described in this article uses one texture reference for the arc set. As
the maximum width for a texture reference bound to linear memory is 227 for all currently available CUDA
devices (compute capabilities 1.0−1.3), it can only process graphs with up to 227 arcs or half as many edges
(each edge is represented by two arcs). The maximum size of the arc set is thus 512MB (4 bytes per arc).
As some graphics cards provide more device memory than 512MB, they could be used to process larger
graphs if it was not for this limitation. In that case, two or more texture references could be used to access
the arc set when necessary. It is important to ensure that the size of the arc set does not exceed this limit,
as the CUDA libraries do not give any warning or failure message when trying to bind more elements than
supported to the texture reference. The kernel executes as if everything was normal and only the incorrect
results, if spotted, show that something went wrong. This is a commonly encountered problem when using

9

CUDA and requires particular care from the programmer.
Each thread in Kernel 2 iterates over the adjacency-lists of one vertex, which causes warp divergence

if the degrees of the vertices that are being processed by the threads of the same warp are not the same.
Due to the SIMD data model (or SIMT in CUDA terminology), all threads in a warp have to do kmax

iterations, where kmax is the highest degree processed by this warp. This problem can be reduced by
sorting the vertices by their degree. However, the time to sort the vertices on the CPU and the overhead
in the CUDA kernel, which comes from the fact that the vertex ID is no longer equal to the thread ID and
therefore has to be looked up from device memory, are considerable. Our experiments have showed that
this technique can slightly improve the kernel execution time when processing scale-free graphs with their
“fat tail” degree distributions, but the overall execution time, which includes the time required to sort the
vertices by the CPU, increases considerably. These findings are in line with previous results reported in [29].
Consequently, the implementation of Kernel 2 reported here does not sort the vertices. Nevertheless, other
graph algorithms may benefit from this technique, for example when they execute the same kernel multiple
times without changes to the graph structure.

Algorithm 3 Kernel 2: The second approach to labelling the components of an arbitrary graph in parallel
on a CUDA-enabled device. This kernel operates on the vertex set V , running one thread for every vertex for
a total of |V | threads per kernel call. Like in the CPU reference implementation described in Algorithm 1,
the kernel operates on a set of arcs but assumes that for every arc (i, j) an arc (j, i) exists as well.
function LABEL COMPONENTS KERNEL2 HOST(V,A)

Input parameters: The vertex set V and the arc set A describe the structure of a graph G := (V,A).
Every vertex vi ∈ V stores the index into the arc set at which its adjacency-list Ai begins in V [i]. The
adjacency-list length |Ai| is calculated from the adjacency-list start index of vertex vi+1 (V [i + 1]− V [i]).
To make this work or the last vertex vN ∈ V , the vertex array contains one additional element V [N + 1].
This additional element is not included in the number of vertices |V |. |A| is the number of arcs in G.
declare integer Vd[|V |+ 1] in device memory //allocate memory for the vertex list V
declare integer Ad[|A|] in device memory //allocate memory for the arc list A
declare integer Cd[|V |] in device memory //Cd[i] stores the colour of vertex vi

declare boolean F1d[|V |], F2d[|V |] in device memory //F1d[i] indicates if a vertex vi is to be processed
in the current iteration and F2d[i] indicates if it is to be processed in the next iteration
copy Vd ← V //copy the vertex set to the device
copy Ad ← A //copy the arc set to the device
do in parallel on the device using |V | threads: init. Cd[1 . . . |V |], F1d[1 . . . |V |], F2d[1 . . . |V |] such that:

Cd[i]← i, F1d[i]← true and F2d[i]← false
declare boolean m //m indicates if the labels are still changing
declare boolean md in device memory
repeat

copy md ← false
do in parallel on the device using |V | threads:

call LABEL COMPONENTS KERNEL2(Vd, Ad, Cd, F1d, F2d,md)
F1d ↔ F2d //swap the frontier arrays for the next iteration
copy m← md

until m = false //repeat until the colours are not changing any more
declare integer C[N]
copy C ← Cd //copy the colours to the host
return C //C now contains the component ID for every vertex v ∈ V .

4.3.3. Breadth-First-Search Kernel 3
This approach is based on the CUDA algorithm for a breadth-first search proposed by Harish and

Narayanan [3]. Instead of calculating the cost to reach all vertices in the same component as a given source
10

function LABEL COMPONENTS KERNEL2(Vd, Ad, Cd, F1d, F2d,md)
declare integer i← thread ID queried from the CUDA runtime //equal to the vertex ID of vi

if F1d[i] = true then
F1d[i]← false
declare integer idxi ← Vd[i] //the start index of Ai ⊆ A in Ad

declare integer idxi+1 ← Vd[i + 1] //the start index of Ai+1 ⊆ A in Ad (the upper bound for vi)
declare integer ci, cj //the colours of vertex vi and vj

ci ← Cd[i] //read ci from device memory
declare boolean ci(mod) ← false //indicates if ci has been changed
for all j ∈ Ai do

cj ← Cd[j] //read the colour of the adjacent vertex j from device memory
if ci < cj then

call atomicMin(Cd[j], ci)
F2d[j]← true //vj will be processed in the next iteration
md ← true

else if ci > cj then
ci ← cj

ci(mod) ← true
end if

end for
if ci(mod) = true then

call atomicMin(Cd[i], ci) //ci was changed and needs to be written to device memory
F2d[i]← true //vi will be processed again in the next iteration
md ← true

end if
end if

vertex, however, our implementation assigns the same colour label to all vertices in the same connected
component for all components in the graph. Kernel 3 described here also avoids a race condition that can
occur in Algorithm 2 of [3], where one thread can evaluate line 5 and therefore assume that the neighbour
has not been processed yet before that vertex sets the evaluated flag to true in line 3. Our implementation
uses two frontier arrays to solve this problem, one for the current iteration and one for the next iteration,
which are swapped between kernel calls.

Kernel 3 initialises the colours array to 0, which indicates that the respective vertex has not been coloured
yet. The breadth-first search starts from a source vertex vsrc ∈ V with a new colour value csrc and spreads
this colour further through the component Ci ⊆ V , where vsrc ∈ Ci, until all reachable vertices have been
labelled. During iteration s = {1, 2, 3, . . . } all vertices that are connected to vsrc through a shortest path
of s− 1 edges are coloured with the same colour csrc and the vertices at distance s are flagged as active in
the frontier array. Only vertices that are flagged as active are processed during an iteration of the kernel.
A new breadth-first search is started for every vertex that has not been coloured during one of the previous
searches and is thus in a different, disjoint component.

Performance: It takes exactly d + 1 iterations to label all vertices of a connected component, where d is
the diameter of the component. Furthermore, it takes |C| breadth-first searches to label the whole graph,
where |C| is the number of disjoint components. Because this kernel is based on a breadth-first search, it
performs better when the number of components is low and the degree is uniformly high, as this means that
the number of active vertices processed during an iteration increases more quickly than for a lower degree,
utilising more of the processing units available in the CUDA device. However, it turns out that this kernel
performs much worse than the other CUDA implementations for almost every type of graph as the results
section shows. We will therefore not cover it in as much detail as the other kernels in this article.

The use of different data structures and optimisation techniques means that the resource usage differs

11

Algorithm 4 The CUDA specific optimisation techniques used for Kernel 2. It shows the use of the shared
memory and texture caches.

// the one−dimensiona l t e x t u r e r e f e r ence
texture<int , 1 , cudaReadModeElementType> arcsTexRef ;
cudaBindTexture (0 , arcsTexRef , d arcs , nArcs ∗ s izeof (int)) ;
. . .

s h a r e d bool l oca lChanges ;
i f (threadIdx . x == 0) { // the f i r s t thread in the b l o c k

l oca lChanges = fa l se ;
}

// load the s t a r t index o f the adjacency− l i s t i n t o shared memory
s h a r e d int a r cL i s t I n d i c e s [6 4] ; // the b l o c k s i z e i s 64

i f (t i d <= nVer t i c e s) { // t i d i s the unique thread ID
a r cL i s t I n d i c e s [threadIdx . x] = v e r t i c e s [t i d] ;

}
sync th r ead s () ;

. . .
int arcListEndIdx ;
i f (threadIdx . x < blockDim . x − 1) { // a l l but the l a s t thread in the b l o c k

arcListEndIdx = a r cL i s t I n d i c e s [threadIdx . x + 1] ; // read from shared memory
} else {

arcListEndIdx = v e r t i c e s [t i d + 1] ; // read from g l o b a l memory
}
. . .
for (int arcIdx = a r cL i s t I n d i c e s [threadIdx . x] ;

arcIdx < arcListEndIdx ; ++arcIdx) { // i t e r a t e over the adjacency− l i s t
// do a t e x t u r e f e t c h to g e t the ID of the neighbour
int nbrId = tex1Dfetch (arcsTexRef , arcIdx) ;
// compare the co l ou r s o f t h i s v e r t e x and i t s ne ighbour
. . .

}

sync th r ead s () ;
i f (loca lChanges && threadIdx . x == 0) { // s e t the g l o b a l f l a g i f necessary
∗ globalChanges = true ;

}

among the kernels. Table 1 lists these differences.

5. Hypercubic Mesh Graphs

A d-dimensional hypercubic mesh can be thought of as a graph with a very simple and regular structure
where each vertex is connected to 2d neighbours. The data structure for storing such hypercubic meshes
is usually a simple array and the connected neighbour addresses can be explicitly calculated rather than
stored. Labelling these hypercubic meshes no longer takes the form of finding groups of vertices that are
connected together (as all vertices in the mesh are ultimately connected) but instead finding connected
groups of vertices that share some common property or fulfill some requirement. This subset of general
graph labelling is applicable to any connected-component labelling (CCL) problem where the data conforms
to a hypercubic mesh structure such as domain counting in field equation simulations and in the d = 2 case
can be used for image partitioning and computer vision.

As hypercubic meshes have a very regular and strict structure, labelling algorithms can be optimised to

12

Table 1: The resource usage of Kernels 1, 2 and 3 for arbitrary graphs (CUDA 2.1). None of the kernels uses any local memory
or constant program variables. A link is either an undirected edge (Kernel 1) or a directed arc (Kernels 2 and 3), depending
on the way the kernel represents the connections between vertices. The performance with different block sizes was measured
for all multiples of 32 up to 512 and the best one was selected. This may be different on other hardware than our NVIDIA
GTX260.

Kernel 1 Kernel 2 Kernel 3
Global device mem. per vertex (Bytes) 4 10 10
Global device mem. per link (Bytes) 8 4 4
Other global device mem. (Bytes) 1 5 5
Shared mem. per thread block (Bytes) 33 304 53
Register usage per thread 4 9 5
Compiler generated constant mem. (Bytes) 8 12 12
Thread block size 32 64 192

take advantage of this structure. This is especially useful for GPU programs as their performance depends
heavily on minimal branches and regular memory access. As the exact number of neighbours along with
their position in memory is known, more efficient memory access patterns can be created allowing the speed
of the labelling process to be greatly increased. We present, discuss and compare several hypercubic mesh
labelling implementations on GPUs using NVIDIA’s CUDA.

5.1. Connected-Component Labelling Hypercubic Meshes
Connected-component labelling algorithms in the 2-dimensional case have been widely studied for their

use in image partitioning. Image partitioning is extremely useful in pattern recognition, computer vision
and scientific simulation analysis. The real-time requirements of such applications continues to push the
requirements for image partitioning algorithms to execute in the minimum time possible. Much of the
research into two-dimensional CCL algorithms has been focused on optimising CPU CCL algorithms. Wu
et al [30] present a detailed description of CPU CCL algorithms and their optimisations that allow for very
fast labelling of images. These algorithms can easily be extended to find connected components in higher-
dimension meshes. In general, CCL algorithms can be classified as: Multi-pass, Two-pass or One-pass [30].

Multi-Pass algorithms operate by labelling connected components over multiple iterations. These
algorithms usually perform some local neighbour operations during scans through the mesh. The operations
take the form of setting the label of the cell to the lowest label of the neighbours or record an equivalence
between two labels. The performance of the multi-pass algorithms is highly dependent on the number of
iterations through the data. However, some methods require very few iterations. The multi-pass method
described in [31] has been shown to label 512x512 images in no more than four scans.

Two-Pass methods work by detecting equivalences, resolving equivalence chains and then assigning
a final label to each cell. The Scanning phase performs a single iteration through the image examining
the neighbouring cells and recording equivalences between labels. The Analysis phase resolves equivalence
chains (sequences of equivalent labels) to find the correct final label for each label. The Labelling phase
scans through the image looking up the current label in the equivalence table and assigning it the correct
final label. These methods generally have very high performance as they must scan through the data only
twice. However, the performance is very dependent on how quickly the Analysis phase can resolve the label
equivalences. Storing an entire equivalence structure is also very memory consuming.

One-Pass is the last method of labelling. It works by scanning through the image until it finds a cell
that does not yet have a label assigned to it. When one is discovered, it is assigned a new label and will
then assign the same label to all the cells that are connected to it. This method has the advantage of only
requiring one pass through the data, however, it does require irregular data access patterns to assign labels
to connected cells (this is often performed recursively). This process of assigning label significantly reduces
the performance of the algorithm and in general causes one-pass algorithms to be slower than the other two
methods.

13

These classifications of CCL algorithms applies to both CPU and GPU implementations. We expect
to find a difference in the optimal method for GPUs as compared to CPUs because the cost of parallel
GPU iteration through the mesh should be less than a serial CPU iteration. Some implementations of CCL
methods are also not possible on GPU due to the extra memory restrictions and parallel nature of GPU
architectures. We have implemented and tested several GPU CCL algorithms to determine the optimal
approach for GPU CCL.

5.2. CUDA Implementations
As many scientific applications are being moved onto the GPU, we wish to perform CCL on the GPU

without having to copy it back to the CPU. Thus we wish to find the fastest CCL algorithm for GPUs. We
expect that a multi-pass method such as the one described by Suzuki Et Al in [31] may execute faster on
a GPU than a two-pass method because of the parallel nature of GPUs. Because an iteration through the
data can be performed faster on a GPU than on a CPU, performing several iterations is no longer as much
of an issue. The larger memory requirements and more irregular memory access of a two-pass labelling
method will have a larger impact on the performance of a GPU algorithm than on a CPU because GPUs
are highly optimised for regular memory transactions. We implement several multi-pass methods as well as
a two-pass method and compare their results.

As hypercubic meshes have clearly defined structures and neighbours, there is no need to store neighbour
lists separately. Instead the position of a cell’s neighbours can be calculated explicitly. We can also make
use of specialised memory types available on the GPU to improve memory access. In our previous work [29]
it was shown that the optimal memory type to use for simulating field equations is the texture memory
type. The texture memory type uses an on-chip memory cache that caches values from global memory in
the spatial locality. This allows threads that access the values from memory in the same spatial locality
to read from the texture cache rather than the slow global memory. The memory access patterns for CCL
algorithms are very similar to the patterns for a field equation simulation and texture memory was found to
perform the fastest for all CCL algorithms. Only the texture memory implementations of the Kernels are
discussed.

5.2.1. Kernel A - Neighbour Propagation

! " # $

! %

&

'$

(

&

&

'$

'$

%!! " # $ ' %

&

!) !!

!$

#"

!% !(!&

!" !# !$

"' "* "% #)

#$ #' #(#&

$!

$$

$&

') ') '$

'& *)

(

!*!'

#!

$)

'*

!)&

&

"%

"(#%

'& '$

'$

''

''

%

$ ' *

')

$$ $'

$$

#!"! "" "#

!

&

&

&

%

"

$ '

!$

!% !(!& "% "(

$ ' *

#!"" "#

!&!) !!

!)

#""' "* "% #)

##

$!

$$

')

'&

#!

'& ''')

$$$$ $$

#(

"#!# !$!'

*

$!

'$

'$

'$

! %

&

'$

&

&

'$

'$

%!

&

&

&

%

!

'$

'$

'$

& &

& %

"

$ '

!$

!% !(!&

"'

#)

'&

"%

' *

')

$$

#!"" "#

!&!) !!

$$ #(

"#!$!'

*

$

!!!)

$$

#(

!'

'

" #!

'$'$

! %

&

'$

&

&

'$

'$

%!

&

&

&

%

!

'$

'$

'$

&

&

& %

!

'$'$

!

!

'$

&

"

$ '

!$

!%

"'

#)

*

""

!&

!) !!

$$

"#!$!'

*

$

!!!)

$$

!'

'

"

$$

#(#)

!$

" # $

!)& &

Figure 6: Four iterations of the Neighbour Propagation algorithm. The colour shows the field state of the cell, the number
shows the current label assigned to each cell. The lines through the cell shows that the cell does not yet have the correct final
label.

Kernel A implementations a very simple multi-pass labelling method. It parallelises the task of labelling
by creating one thread for each cell which loads the field and label data from its cell and the neighbouring
cells. The threads will then find the cell with the lowest label and the same state as its allocated cell. If the
label is less than the current label, the cell will be updated with the new lower label. Figure 6 shows several
iterations of this algorithm.

For each iteration, each cell will get the lowest label of the neighbouring cells with the same property.
The kernel must be called multiple times until no label changes occur, then it is known that every cell has
been assigned its correct final label. To determine if any label has changed during a kernel call, a global

14

Algorithm 5 The algorithm for the host and the kernel for the Neighbour Propagation CCL method. The
host will call the kernel until md is not set to true at which point the mesh will have the correct labels.
function Mesh Kernel A Host(Dd, N)

declare integer Ld[N]
do in parallel on the device using N threads: initialise Ld[0 . . . N − 1] such that Ld[i]← i
declare boolean md in device memory
repeat

do in parallel on the device using N threads: call Mesh Kernel A(Dd, Ld,md)
until md = false
return

function Mesh Kernel A(Dd, Ld,md)
declare integer id, idn, label in local memory
declare integer nid[dim× 2] in local memory
id← threadID & blockID from CUDA runtime
nid ← hypercubic neighbours of id where the cells have the same state
label← L[id]
for all idn ∈ nid do

if L[idn] < label then
label← L[idn]
md ← true

end if
end for
L[id] ← label
return

boolean is used. If a kernel changes a label it will set this boolean to true. The host program can then
examine this boolean value to determine if another iteration of the algorithm is required. The host and
device algorithms for this method can be seen in Algorithm 5.

Kernel A requires many iterations to label a mesh because a label can only propagate itself by a maximum
of one cell per iteration. When there are large clusters in the mesh, the algorithm will require many iterations
to label the entire mesh.

5.2.2. Kernel B - Local Neighbour Propagation

! " # $

! %

&

'$

%

%

%

& &

& & &

& & & &

'$ '$

'$'$'$'$

! ! !

!

!

#(#)

$$

'&"'

$$$$$$

$$ '&

"'

"' "' "'

"'"'"'"' #) #)

#)#)#)#)

#)

$$$$

$$$

$$$

$$! %

&

'$

%

%

%

& &

& & &

& & & &

'$ '$

'$'$'$'$

! ! !

!

!

'$'$

& & & &

& & &

&

&

!

!

!

!

!

!

!

!

!! ! !

! %

&

'$

%

%

%

& &

& & &

& & & &

'$ '$

'$'$'$'$

! ! !

!

!

'$'$

$

#)

#)#)#)

#)

$$

$$$$

$

"'& & & &

& & &

&

&

!

!

!

!

!

!

!

!

!! ! !

& !! !

!! !!

!

! %

&

'$

%

%

%

& &

& & &

& & & &

'$ '$

'$'$'$'$

! ! !

!

!

'$'$

& & & &

& & &

&

&

!

!

!

!

!

!

!

!

!! ! !

&

$

$$$

$

!! !

!! !!

!

!

!!!

!

Figure 7: Four iterations of the Local Neighbour Labelling algorithm. In this case the field is split into four blocks indicated
by the heavy lines. Cells that are crossed out are yet to receive their final label.

Kernel B is an improved version of Kernel A that allows labels to propagate themselves faster through
a cluster by making use of Shared-Memory. Initially the threads fetch their cell’s label and the labels of all
four neighbours from global memory and choose the lowest of these (the same process as Kernel A). Instead
of returning here, the threads then write these values into shared memory. The kernels then loop through

15

Algorithm 6 The algorithm for Kernel B performing the Local Neighbour Propagation CCL method.
function Mesh Kernel B(Dd, Ld,md)

declare integer id, idL, label in local memory
declare integer nid[dim] in local memory
id← threadID & blockID from CUDA runtime
nid ← hypercubic neighbours of id where the cells have the same state
label← Ld[id]
for all idn ∈ nid do

if Ld[idn] < label then
label← Ld[idn]
md ← true

end if
end for
declare integer LL[blockDim] in shared memory
declare boolean mL in shared memory
idL ← threadID from CUDA runtime
mL ← true
nid ← neighbours of idL where the cells have the same state
repeat

LL[idL]← label
synchronise block
mL ← false
for all idn ∈ nid do

if LL[idn] < label then
label← LL[idn]
mL ← true

end if
end for
synchronise block

until mL = false
Ld[id]← label
return

updating the labels within shared memory until they stop changing. For each iteration of this loop the
kernels will load the neighbours’ labels from shared memory and choose the lowest appropriate label (see
Algorithm 6). This effectively performs the entire labelling algorithm on each block at a time. The labels
for four iterations of the kernel can be seen in Figure 7. Note that the host code for Kernel B is effectively
the same as for Kernel A.

As the labels on the borders of the block will change, multiple calls will be required for the entire mesh
to be correctly labelled. However, Kernel B will require less iterations than Kernel A (although each kernel
call will take longer). However, Kernel B is still limited in that a label can only propagate by the size of a
block each iteration (Our block size is 16x16). For a large mesh where the use of GPUs is necessary (eg.
4096x4096), this can still require many kernel calls.

5.2.3. Kernel C - Directional Propagation Labelling
Kernel C is designed to overcome the problem that a label can only propagate itself by one cell per

iteration (Kernel A) or one block per iteration (Kernel B). Kernel C achieves this by breaking away from the
method of allocating one thread to each cell. Instead, each thread is allocated a row (that is a row of cells
in any of the dimensions of the hypercubic mesh). Each thread will iterate through this row propagating
the lowest label along the row. By iteratively calling 2d such kernels (one going each direction for each
dimension) the program can propagate the lowest labels through the mesh. See Figure 8.

16

!

" #

$

! %

&

'#

&

&

&

&

&

& '#

! %

&

'#

&

&

&

&

&

& '#

! ! ! ! !" $ # ' (

!) !! !'

$""*

$%

#'

') '! ''

'& () (!

*

'(

"*

!!

!!

!!

!!

!)

!)

!)

!)

') '' '(

' (

!'# ' (

!'' (

$"!'(

$"!'(

#'

*

*

%

##

')

'&')

#

'

(

(

##

#

#

#

'

#

#

(

(

'

#

*

*

(

(

'

##

##')

'& '&

'#

'#

'#

'#

&

&

&

&

&

&

&

&

&

&

&

& &

! %

&

'#

&

&

&

&

&

& '#

! ! ! ! ! %

'#

'#

'#

'#

&

&

&

&

&

&

&

&

&

&

&

& &

')

#

'

(

(

##

#

#

#

'

#

#

(

(

'

#

*

*

(

(

'

##

((

##

'# '# '#

! %

&

'#

&

&

&

&

&

& '#

! ! ! ! ! %

##

')

'&')

#

'

(

(

##

#

#

#

'

#

#

(

(

'

#

*

*

(

(

'

##

##')

'& '&

'#

'#

'#

'#

&

&

&

&

&

&

&

&

&

&

&

& &

Figure 8: One iteration of the Directional Propagation Labelling algorithm, one pass for each direction in each dimension.
Crossed out cells currently have an incorrect label.

Each thread will calculate its unique position (with the dimension of iteration set to either 0 or N-1
depending on direction) and then iterate through the row. For each cell it will check to see if the last cell
had the same state and if its label was lower, if this condition occurs the current cell will be assigned the
last cell’s label. This algorithm is described in detail in Algorithm 7.

Algorithm 7 The Kernel to iterate through the Ith dimension of a hypercubic mesh. This function must
be called once for each direction in each dimension. Once all functions no longer set md to true, the mesh
will be correctly labelled.
function Mesh Kernel C(I,Dd, Ld,md)

declare integer id, label in local memory
id← threadID & blockID from CUDA runtime
label← Ld[id, 0] //[id, 0] indexes the array at id with the Ith dimension component set to 0.
for n← 1 to N − 1 do

if (Dd[id, n] = Dd[id, n− 1]) && (label < Ld[id, n]) then
Ld[id, n]← label
md ← true

else
label← Ld[id, n]

end if
end for
return

5.2.4. Kernel D - Label Equivalence
Kernel D is a multi-pass algorithm that records and resolves equivalences. However, unlike a two-pass

algorithm this method does not record an entire equivalence table. Instead the kernel will record the lowest
(and the most likely) label that each label is equivalent to. This reduces the memory complexity of the
method while still allowing the equivalences to be resolved with a small number of iterations (4096x4096
systems were labelled in 9 or less iterations). This method is similar to the CPU algorithm described by
Suzuki Et Al in [31].

As with Kernel A and B, one thread is created for each cell. Each thread will examine the neighbouring
labels and if it finds that it is next to a lower label, it will put that lower label into the equivalence list if
the label is lower than the value currently in the list. At the end of this kernel call, the equivalence list will
have a list of labels and the lowest other label that they are directly neighbouring. See Algorithm 8.

The problem with this is that there will be equivalence chains, i.e. 16 is equivalent to 12 which is
equivalent to 4 and so on. So there is another kernel that will resolve the equivalence lists so that the list
will store the real lowest equivalent label. As each cell has a unique label at the start of the process, one
thread is launched for each cell (which is the same as one thread for each initial label). These threads will

17

Algorithm 8 The algorithms for the host code and the three phases of Kernel D: Scanning, Analysis and
Labelling.
function Mesh Kernel D Host(Dd, N)

declare integer Ld[N], Rd[N]
do in parallel on the device using N threads: initialise Ld[0 . . . N − 1] such that Ld[i]← i
do in parallel on the device using N threads: initialise Rd[0 . . . N − 1] such that Rd[i]← i
declare boolean md in device memory
repeat

do in parallel on the device using N threads: call Mesh Kernel D Scanning Phase(Dd, Ld, Rd,md)
do in parallel on the device using N threads: call Mesh Kernel D Analysis Phase(Dd, Ld, Rd)
do in parallel on the device using N threads: call Mesh Kernel D Labeling Phase(Dd, Ld, Rd)

until md = false
return

function Mesh Kernel D Scanning Phase(Dd, Ld, Rd,md)
declare integer id, label1, label2 in local memory
declare integer nid[dim] in local memory
id← threadID & blockID from CUDA runtime
nid ← neighbours of id where the cells have the same state
label1 ← Ld[id]
label2 ←MAXINT
for all idn ∈ nid do

min(label2, Ld[idn])
end for
if label2 < label1 then

atomicMin(Rd[label1], label2)
md ← true

end if
return

function Mesh Kernel D Analysis Phase(Dd, Ld, Rd)
declare integer id, ref in local memory
id← threadID & blockID from CUDA runtime
if Ld[id] = id then

ref ← Rd[id]
repeat

ref ← Rd[label]
until ref = Rd[label]
Rd[id]← ref

end if
return

function Mesh Kernel D Labeling Phase(Dd, Ld, Rd)
declare integer id
declare integer ref in local memory
id← threadID & blockID from CUDA runtime
Ld[id]← Rd[Ld[id]]
return

18

! "

#

$%

& ' % $ (

!) !! !& !' !% !$

'&

!" !* !# &) &! && &%

&$ &(&" &* &# ')

'' '% '$ '('" '* '#

%! %& %' %% %$ %(%"

%# $) $! $& $' $$

$" $* $# () (! (& ('

*

!(

&'

'!

%)

%*

$(

(%

!

&

'

%

$

(

"

*

!

&

'

%

$

(

"

*

#

!)

!!

!&

!'

!%

++

(%

#

!)

!!

!&

!'

!%

++

(%

!

&

'

%

$

(

"

*

!

!

&

'

%

$

"

"

#

!)

!!

!&

!'

!%

++

(%

#

#

!)

%

$

(

++

$(

!

&

'

%

$

(

"

*

!

!

!

!

!

!

"

"

#

!)

!!

!&

!'

!%

++

(%

#

#

#

!

!

!

++

$(

! "

#

%%

$) $%

$#

#

#

#

#

#

#

#

#

#

"

"

"

! ! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! !

! ! !%%

%%%%

$)

$)

$%

$%

$%

$%

$%$# $#

Figure 9: A single iteration of the Label Equivalence method. From left to right: the initial scan and initial equivalence list,
the list after the scan, the list after analysis and the mesh after labelling from the equivalence list. Crossed out lines indicate
cells that have do not yet have their final label.

retrieve the label currently assigned to that cell, it will then check to see if the label that cell has is the
same as the label that would have been initially assigned to it. If the label is same then that thread is
considered to own that label and will resolve the equivalence chain, if not it will simply return. The thread
must then expand the equivalence chain to discover what the real lowest label it is equivalent to is. It will
look up its label in the equivalence list and find the label it is equivalent to, it will then look up this label.
This is repeated until the label it looks up in the list is equivalent to itself, this will be the lowest label
in the equivalence chain. Once this value is found it overwrites the equivalence list with this value. See
Algorithm 8.

This process sounds computationally expensive, however, most threads will not need to expand a long
equivalence list. If a thread in the equivalence chain has already expanded and overwritten the equivalence
list, other threads that have that value in their chain will not need to expand the entire chain as some part
of it has already been done. While the order in which CUDA executes the threads is not controllable, the
order of execution is known and repeatable. The scheduler assigns blocks to multiprocessors in order of
block number. In general the threads with lower id’s will be executed first and thus the equivalence list
resolution process will remain relatively fast.

Once the equivalence chains have been expanded, the final stage of the labelling process can take place.
One thread for each cell will be launched that will read that cell’s label. Look up the label in the equivalence
list and then assign the equivalent label to the cell. See Algorithm 8.

This process cannot label the entire mesh in a single pass and several iterations will be required. However,
its method of combining labels rather than cells allows it to process large meshes with very few iterations.
The advantage of this method over a two-pass system is that it does not require a large equivalence matrix
(which uses too much memory) or linked-list processing (which is infeasible on a GPU).

5.3. CPU Implementations

Figure 10: The alternating raster scan patterns used by the CPU I method.

For comparison purposes we have also implemented two hypercubic mesh CCL algorithms on the CPU.
These two algorithms are serial implementations of the algorithms we have previously discussed. The method

19

Table 2: This table gives a brief overview of the different CUDA implementations.

Arbitrarily Structured Graphs
Kernel 1: Operates on the edge set. Compares the colour values of the two vertices connected by an

edge and updates the higher one using atomicMin.
Kernel 2: Operates on the vertices and their adjacency-lists. Uses a frontier array to flag vertices

whose colour has been been changed in one iteration to be processed in the next iteration.
When being processed, a vertex compares its colour value to those of its neighbours and
updates the higher one using atomicMin.

Kernel 3: Performs one breadth-first search for every connected component in the graph. Starting with
a single vertex, it spreads the colour to all other vertices in the same component, processing
all vertices at distance s− 1 from the source during iteration s.

Hypercubic Mesh Graphs
Kernel A: Neighbour Propagation - Each iteration selects the lowest neighbouring label for each cell.
Kernel B: Local Neighbour Propagation - Each iteration resolves the labels within a block.
Kernel C: Directional Propagation - Each iteration propagates labels in a single direction.
Kernel D: Label Equivalence - Each iteration resolves the lowest (most likely) label equivalence chain

and assigns all cells in the chain the final label.

CPU I is simply an alternating raster scan which updates the labels based on each cell’s neighbours. The
raster scan directions are alternated each iteration to ensure that labels are propagated in all directions. See
Figure 10. This raster scan CPU method is the CPU equivalent of Kernels A-C as it performs neighbour
comparison operations each step (as with Kernels A & B) and the alternating scan directions are similar to
the directional propagation method of Kernel C.

The labelling method CPU II uses the same algorithm as Kernel D, but simply finds and resolves the
equivalences in serial on the CPU. Serial processing provides no advantage in the scanning or labelling
phase, but can be more efficient in the analysis phase as the equivalence chains will never be more than
two equivalences long. This method of labelling is very similar to the one described by Suzuki et al in [31].
Although this method is not as fast as some CPU implementations of two-pass algorithms, it still provides
a useful benchmark for comparing the GPU labelling methods.

6. Performance Results

We now analyse the performance of the CUDA kernels and CPU reference implementations and compare
them with each other. Table 2 briefly summarises the different implementations. Section 6.1 describes the
test graphs used for the arbitrary graph performance analysis, which is given in Section 6.2. The results for
the hypercubic mesh graphs are analysed in Section 6.3.

The system used for the performance measurements has the following configuration: An Intel Core2
Quad CPU running at 2.33GHz and 4GB of DDR2-800 system memory (≈ 2.8GB accessible due to the
use of a 32-bit operating system) with an NVIDIA GeForce GTX260 graphics card which has 216 CUDA
cores and 896MB of device memory. The Linux distribution Kubuntu 8.10 is used as the operating system.
Version 2.1 of the CUDA toolkit and the corresponding developer drivers 180.22 for the GPU are installed
on this system.

6.1. Arbitrary Test Graphs
A number of graph instances are used to compare the performance of the CUDA kernels and to see how

well they hold up against the CPU algorithm. Table 3 gives an overview of the graph properties.
Disjoint This algorithm generates graphs with a specified number of major components. Vertices are

assigned to these sets at random. Edges are created between randomly selected vertices from the same
set. This is a variant of the Erdős-Rényi method of generating random graphs that differs in the initial
partitioning of the vertices into different sets. The resulting graph has at least the specified number of

20

Table 3: This table lists the properties of the graphs that are used to analyse the performance of the different labelling
algorithms. Disjoint 1 and 2 have 100 major components, most of the other components that are found in some of their graph
instances are monomers (i.e. vertices with no neighbours). The line, scale-free and Watts-Strogatz (W-S) graph instances
consist of only one component. They are used to determine how well the algorithms perform when they are used to verify that
a graph is fully-connected. Furthermore, Barabási’s scale-free and Watts-Strogatz’s small-world graphs are well known network
models that have been studied in many scientific publications and are therefore of particular interest. The abbreviation m
stand for “millions”.

Vertices Edges Average Components
Degree

Disjoint 1 2m−16m 50m 6.3− 50 100− 31044
Disjoint 2 1m 10m−60m 20− 120 100
Disjoint 3 5m 60m 24 1− 1000019
Line 0.2m−1m 0.2m−1m 2 1
Scale-free 1m−5m 5m−25m 10 1
W-S, p = 0.01 2m−14m 10m−70m 10 1
W-S, p = 0.1 2m−14m 10m−70m 10 1
W-S, p = 1.0 2m−14m 10m−70m 10 1

components. It can have more components, most of them consisting of only one vertex (monomers). This
is more likely to be the case when the number of edges in relation to the number of vertices is small.

Three different tests are performed with this algorithm, listed in the table as Disjoint 1, 2 and 3. The first
one varies the number of vertices in the graph, while keeping the number of edges (50, 000, 000) and major
components (100) fixed. The second one varies the number of edges, while keeping the number of vertices
(1, 000, 000) and major components (100) fixed. And Disjoint 3 varies the number of major components
(100, 101, . . . , 106), while keeping the number of vertices (5, 000, 000) and the number of edges (60, 000, 000)
fixed.

Line A line graph is a simple one-dimensional graph where every vertex is connected to the vertex before
and after itself. The first and last vertex are the only exceptions with only one neighbour. A line is the
graph with the highest possible diameter d = |V | − 1. And as described in Section 4.3, the performance of
the CUDA algorithms proposed in this paper is heavily dependent on the graph diameter. The line graph
is the worst case scenario for them.

Scale-free networks have a power-law degree distribution for which the probability of a node having k
links follows P (k) ∼ k−γ [32]. Typically, the exponent γ lies between 2 and 3 [33, 27]. Such a graph has
a small number of vertices with a very large degree, also called the hub nodes, while most other vertices
have a relatively small degree. The algorithm implements the Barabási-Albert model of gradual growth
and preferential attachment described in [32], where new vertices are gradually added to the graph and
connected to the already present vertices with a probability that is based on the degree of those vertices.

Watts-Strogatz The Watts-Strogatz (W-S) small-world network model described in [34] is often used in
the literature. It starts off with a regular graph where every vertex is connected to its k nearest neighbours.
Then, one end of each edge is randomly rewired with probability p, considering every edge exactly once.
The rewired edges are shortcuts or “long-distance” links in the graph. For a large range of p, W-S have
shown that the resulting networks have a high clustering coefficient and a small path length, which are
characteristic properties of small-world networks.

6.2. Arbitrary Graph Performance Analysis
This section discusses the performance of the different graph labelling algorithms using the graph in-

stances described in the previous section as test cases. Each data point shown in the result plots given in
Figures 11 to 17 is the mean value of 30 measurements. The error bars illustrate the standard deviation from
the mean. The performance results for Kernels 1 and 2, as well as for the CPU reference implementation,
are shown for all of the graph instances. The implementation of Kernel 3 is much slower than the other
approaches for all graphs with the exception of the line graphs. Its results have been omitted from all other

21

Figure 11: The execution times t measured to process the Disjoint 1 graphs excluding (left) and including (right) memory
allocation, deallocation and host ↔ device memory copies. The number of vertices |V | increases from 2, 000, 000− 16, 000, 000.
The number of edges and major components is set to 50, 000, 000 and 100 respectively. The execution times for Kernel 3 are
in the range from ≈ 20− 229 seconds.

result plots as they would otherwise dominate the plots and the performance differences between Kernels 1
and 2 and the CPU algorithm would get lost.

Most of the figures described in this section show two result plots. They illustrate, unless specifically
mentioned otherwise, the CUDA kernel execution times without (left) or with (right) the time taken for
device memory allocation, deallocation and memory copies between the host and device. The kernel exe-
cution times by themselves are of particular interest if the labelling algorithm is used in conjunction with
other CUDA kernels that modify or analyse the same graph instance, which means that the data is already
on the device. The plot on the right, on the other hand, is more relevant if only the component labelling is
done on the device, which means that the graph data has to be copied to device memory before it can be
processed.

Figure 11 illustrates the graph labelling performance for the Disjoint 1 graphs. The results demonstrate
how even large graphs can be labelled in a matter of seconds. When it comes to the raw labelling performance,
then Kernel 2 can clearly finish the task in the shortest amount of time. This is also true when the time
for memory allocation, deallocation and host ↔ device memory copies is included. Only at the last data
point, where |V | = 16, 000, 000 (total device memory usage 443MB for Kernel 1 and 534MB for Kernel 2),
does the mean value of the measurements of Kernel 2 make a sudden jump. The results are also much more
spread out then before, as illustrated by the larger error bar. This behaviour can also be observed on some
of the following result plots and will be discussed at the end of the section.

Disjoint 2 keeps the number of vertices consistently at 1, 000, 000, but increases the number of edges
added between these vertices and therefore the average degree k of the graph instances. The performance
measurements are illustrated in Figure 12. While Kernel 2 again shines for low degrees, Kernel 1 can
outperform it once k exceeds ∼ 90 when excluding and ∼ 55 when including the memory allocation and
copy times. Kernel 1 operates on the edge set E, whereas Kernel 2 operates on the arc sets that make up
the adjacency-lists of the individual vertices. Even though Kernel 1 can not use some of the optimisation
techniques used in Kernel 2, like the frontier array or texture fetches, it makes up for this once the degree
is high enough by only having to traverse half as many connections than Kernel 2.

The performance measurements for Disjoint 3, illustrated in figure 13, show how the number of major
components (100, 101, . . . , 106) effects the execution times of the algorithms. The number of vertices and
edges is kept consistent at 5, 000, 000 and 60, 000, 000 respectively. Both the CPU algorithm and Kernel 1
finish the tasks significantly faster for a large number of components in the graph. The more components, the

22

Figure 12: The execution times t measured to process the Disjoint 2 graphs excluding (left) and including (right) memory
allocation, deallocation and host ↔ device memory copies. The number of edges |E| increases from 10, 000, 000− 60, 000, 000.
The number of vertices and major components is set to 1, 000, 000 and 100 respectively. The execution times for Kernel 3 are
in the range from ≈ 9.8− 11.2 seconds.

Figure 13: The execution times t measured to process the Disjoint 3 graphs excluding (left) and including (right) memory
allocation, deallocation and host ↔ device memory copies. The number of major components increases from 100, 101, . . . , 106.
The number of vertices and edges is set to 5, 000, 000 and 60, 000, 000 respectively. The execution times for Kernel 3 are in the
range from ≈ 47− 1515 seconds.

23

Figure 14: The execution times t measured to process the Line graphs (left). Because the CUDA kernel execution times are
so high and the graphs are rather small (compared to the other graphs used for the performance measurements), the device
memory operations do not change the results in any significant way. The timing results increase logarithmically with the order
of the graph |V | (right), which increases from 200, 000−1, 000, 000. The slopes of the least square linear fits to the data sets on
the logarithmic plot, rounded to two significant digits, are: CPU ≈ 1.00, Kernel 1 ≈ 1.76, Kernel 2 ≈ 1.77 and Kernel 3 ≈ 1.57.
This is the only graph type where Kernel 3 performs better than the other CUDA kernels. However, the CPU algorithm takes
� 1 second for all measured graphs of this type, beating the CUDA kernels by far.

less vertices are in each component, which means the component diameters are smaller too. The execution
times of Kernel 2 are much less effected by the number of components. Interestingly, the decrease of the
execution times of Kernel 1 mostly stops at ∼ 105, whereas the range from ∼ 105 to 106 is where the
execution times for Kernel 2 begin to decrease more noticeably.

The results for the Line graphs are shown in Figure 14. As mentioned before, this is the worst case
scenario for the CUDA kernels, because the diameter d of the graph is equal to N − 1. This requires the
kernel to be called up to N times. The CPU implementation, on the other hand, can very quickly propagate
the colour in N − 1 recursive calls from the first vertex to the last vertex.

Figure 15 illustrates the performance measurements for the Scale-free graphs generated with Barabási’s
model. Kernel 1 and 2 both finish the labelling tasks considerably faster than the CPU implementation and
scale well with the network size. The device memory allocation and host ↔ device memory copies do not
change the outcomes significantly.

Figure 16 illustrates the performance results for the Watts-Strogatz graphs for three different rewiring
probabilities. The CPU algorithm performs well for small values of p, but gets worse with increasing
randomness, whereas Kernel 1 behaves the other way around. Data pre-fetching techniques employed by the
CPU work better on regular, more predictable graphs than on the random data accesses that occur more
frequently the higher the value of p is. Kernel 1, on the other hand, is much less affected by the storage
locations of the vertices that form the end points of an edge. And it benefits a lot from the long-distance
links created by rewiring edges, as these reduce the diameter of the graph.

The results for Kernel 2 are less consistent. Like Kernel 1, it benefits when p is increased from 0.01 to
0.1, as it also benefits from any reduction of the graph diameter. For p = 1.0, however, the performance
goes back down again and is similar to the results obtained for p = 0.01. Graphs with p = 1.0 also appear
to scale worse on Kernel 2 than the two lower values for p.

When the memory allocation, deallocation and host↔ device copies are included in the timings, then the
CUDA kernels lose some ground compared to the CPU. Kernel 2 can again beat the other implementations
for all values of p for graph instances up to |V | ∼ 12, 000, 000 (total device memory usage is 503MB for
Kernel 1 and 572MB for Kernel 2). Once the number of vertices exceeds this value, however, the mean
performance suddenly drops and the results become very inconsistent for both Kernel 1 and Kernel 2.

24

Figure 15: The execution times t measured to process the Scale-free graphs excluding (left) and including (right) memory
allocation, deallocation and host ↔ device memory copies. The plot on the right is given on a logarithmic scale, illustrating
that the results scale logarithmically with the order of the graph |V |, which increases from 1, 000, 000− 5, 000, 000. The slopes
of the least square linear fits to the data sets on the logarithmic plot, rounded to two significant digits, are: CPU ≈ 1.13,
Kernel 1 ≈ 1.06 and Kernel 2 ≈ 1.05. The average degree for all graph instances is k = 10. The execution times for Kernel 3
are in the range from ≈ 9− 47 seconds.

Now that we have looked at all the performance results, it is time to come back to the strange behaviour
of the memory performance observed for large graphs with Kernel 1 and Kernel 2. Figure 17 shows the
dissected time measurements for Kernel 2 on the Watts-Strogatz graphs with p = 1.0 to give a better
insight into what causes this sudden and inconsistent decrease of the result values. It is clearly the memory
allocation operations CudaMallocHost and CudaMalloc. The former allocates page-locked memory on the
host system, whereas the latter allocates memory on the device. Both the host and the device do not reach
their memory limits yet (no swapping on the host). It is not clear why the memory allocation performance
varies so much for large graphs, starting at ∼ 500MB of total device memory usage on the test machine.
This threshold may vary for different system configurations.

As expected, the CUDA profiler shows that the kernels are memory-bound and that non-coalesced
memory accesses and divergent branches are the major problems when labelling arbitrary graphs. The
kernel that can achieve the highest memory bandwidth for a given graph instance generally finishes the
labelling task in the shortest amount of time.

6.3. Hypercubic Performance Analysis
The performance of the GPU labelling algorithms have been tested in two different ways. As the labelling

algorithm was initially designed to find domains within phase-transition simulations, the algorithms were
tested with data from such a simulation at various stages. We have also tested the algorithm on a generated
spiral pattern - a test case designed to be specifically hard to label.

It should be noted here that although it was not described in this article, a two-pass GPU method was
implemented and tested. However, the restrictions of the GPU kernels did not allow for linked-list based
methods for resolving equivalences. This meant a large array was required to store the label equivalences
(the equivalence table for 2D is N4) which means the maximum power of two field length it can label (on a
GTX 260 with 896MB of memory) is N = 64. At this size it performed many times slower than the CPU
implementation. The analysis phase of the two-pass algorithm was also hard to parallelise as many of the
analysis phase algorithms depend on serial processing to find the correct set of equivalences. Although it
was possible to implement, the performance of the algorithm was very poor and could not complete most
of the test sets (due to memory issues) used for the other methods, thus it has not been included in our
performance analysis.

25

Figure 16: The execution times t measured to process the W-S small-world graphs with the number of vertices |V | increasing
from 2, 000, 000− 14, 000, 000. The average degree for all graph instances is k = 10. The plot on the top left shows the results
for all three rewiring probabilities p = {0.01, 0.1, 1.0} excluding memory allocation, deallocation and host ↔ device memory
copies. The error bars in this plot are similar to the symbol size and are hidden to make it easier to distinguish the different
symbols. The other three plots show the timing results for the different p-values including the time taken for memory allocation,
deallocation and host ↔ device memory copies. No measurements with Kernel 2 are available for the graph instances with
|V | = 14, 000, 000 (|A| = |V | × k), as these graphs exceed the 227 arc set size limit, which is due to the maximum size of a
texture reference as described on page 9. The execution times for Kernel 3 are in the range from ≈ 19− 132 seconds for all p.

26

Figure 17: The dissected execution times for Kernel 2 on the Watts-Strogatz graphs with p = 1.0. The datasets illustrate
how long the individual CUDA operations (memory allocations, host to device memory copies, kernel executions and memory
deallocations) take.

6.3.1. Field Equation Data
The labelling algorithms have been tested with the Cahn-Hilliard equation simulation to test their

performance when operating in conjunction with a real simulation. The Cahn-Hilliard equation is a phase-
transition model of a quenching binary alloy, component labelling can be used to determine which phase the
field is currently in. The Cahn-Hilliard simulation used is the GPU-based simulation described in [29]. By
testing the labelling algorithms in conjunction with a real GPU simulation, it will provide performance data
of the algorithms as they would be used in a real situation. This will ensure that there are no unexpected
effects of simulation and labelling kernels interfering with each other.

The simulation was ran for 16384 time-steps and the labelling algorithm was called every 128 steps. This
is a common method of sampling how the number of clusters evolves over time. It also tests the effectiveness
of the different algorithms at labelling fields from the initial random state to the interconnected clusters of
various sizes after phase separation. The time per labelling call is averaged over the simulation. A plot of
the results can be seen in Figure 18.

Field Length (ln)

Figure 18: Left: a comparison of the performance of the GPU and CPU CCL implementations labelling Cahn-Hilliard systems
for field lengths N = 256, 512, 1024, 2048, 4096. Right: the same data presented in ln-ln scale.

27

Of the GPU Kernels A-C, only Kernel A performed worse than its equivalent CPU algorithm (CPU I).
CPU I does not have the problem that each label can only be propagated by one cell per iteration, one major
benefit of serial computation. With their optimisations, Kernels B and C provide similar performance gains
over CPU I with Kernel C performing slightly better. It is interesting to note a cross-over between Kernels
B and C in the ln-ln plot. At N = 1024 the performance lines of Kernels B and C intersect. This shows
that the directional propagation algorithm of Kernel C is only more effective after the field reaches a large
enough size (N > 1024).

Kernel D provides the best performance of any method outperforming the CPU II implementation of
the same algorithm. In this case the algorithm can be decomposed to make use of the parallel processing
power of the GPU. It can be seen from the ln-ln plot that Kernel D performs the best for every field length.
At N = 4096 Kernel D provides a 13x speedup over CPU II method. This is not on the same scale as many
GPU speedup factors but still provides an important performance gain.

6.3.2. The Spiral Model
The spiral data pattern is particularly hard to label as is contains two clusters that are each one pixel

wide. This makes labelling extremely hard, especially for Kernel A which can only propagate a label by
one cell each iteration. The algorithms have been tested with several NxN images with N={256, 512, 1024,
2048, 4096}. A sample spiral image along with the performance results for the GPU Kernels along with the
CPU implementations can be seen in Figure 19.

Figure 19: Left: a sample Spiral image used for testing (32x32). Right: the performance results (in ln-ln scale) of the CPU
and GPU CCL implementations labelling spiral images of size N = 256, 512, 1024, 2048, 4096.

The results from the spiral test case show that the labelling methods react differently as compared with
the simulation results. The performance of Kernel D and CPU II when labelling a spiral was very similar
to labelling a Cahn-Hilliard simulation. In fact Kernel D’s labelling time for a spiral was actually less than
the time for a simulation field.

The performance of the other Kernels (A-C) and CPU I were severely impacted. Kernel A was the most
strongly affected by the spiral structure and performed the worst out of any method, for a 4096x4096 spiral
was over 450,000x slower than Kernel D. This extremely poor performance is a combination of the algorithm
and the spiral, the time required for Kernel A to label a 4096x4096 Cahn-Hilliard system was over 600x less
than for a spiral of the same size.

7. Discussion and Conclusions

We have described our data-parallel algorithms and CUDA implementations of graph component labelling
for the cases of arbitrarily structured graphs and hypercubic data graphs with regular neighbour related

28

connectivities. We have measured execution times and reported performance gains using the NVIDIA
GeForce 260 GPU card on 2.33 and 2.66 GHz Pentium Quad processors running (Ubuntu) Linux.

In the case of arbitrarily structured graphs, we found that the best CUDA implementation depends on
the input graph. We do observe however that Kernel 2, which operates on the vertices and their adjacency-
lists, performs best in most cases; Kernel 1, which operates on the edge set, performs better for graphs with
high connectivity degrees.

We found that the best CUDA algorithm for a given graph can beat the CPU algorithm in most cases
by a factor of up to around an order of magnitude. Our data suggest that a 5-10 times speed-up is likely in
most cases for the largest graph instance when the data is already on the device. Slightly less speed-up is
attained when the data has to be specifically copied to the device to do the labelling. Our CUDA kernels
are much slower than the CPU when processing the line graph - not surprisingly given its structure and
memory following behaviour. This was clearly the worst case scenario for our CUDA kernels. We found
that in general, the breadth-first search based algorithm (Kernel 3) is not a good choice for the component
labelling problem on CPU or GPU systems.

We also note that execution time for the CUDA memory management operations - cudaMallocHost and
cudaMalloc - become inconsistent once the required amount of data becomes large - roughly 500MB on our
test machine, but the exact value most likely depends on the computer system configuration.

For applications where some graph properties are already known, then it is possible to select the best
algorithm for the problem. In general, we found that: if the graph diameter is very large, then use the CPU;
if the average graph degree is very large, then use Kernel 1 and in all other cases use Kernel 2.

In our hypercubic graph component labelling results we still found some worthwhile speed-ups although
not at the stellar levels we have obtained for other applications. Cluster component labelling (CCL) al-
gorithms often depend heavily on the serial memory traversal nature of CPU computation as well as the
tree-based equivalence resolution methods. As neither are possible on the GPU, less efficient labelling (but
parallelisable) algorithms must be used.

While we were unable to provide a dramatic speedup over CPU methods, the GPU implementation
of our CCL algorithm for hypercubic data was comparable to the results described by Wu et al in [30].
Unfortunately we were unable to test our algorithm with precisely the same test data as those authors,
but for the same field length our GPU implementation indicates a slight performance increase. The main
advantage that Kernel D provides over CPU II is that the simulation data can remain completely in the
GPU memory and does not need to be copied out to host memory every time the field needs to be labelled.

This is useful for the sort of partial differential equation field models we simulate and wish to component-
label. The main advantage for hypercubic data is that we avoid use of the memory hungry data structures
necessary for arbitrarily structured graphs, thus allowing more physical memory available to support explo-
ration of larger model data sizes. Graph cluster component labelling plays an important role in some of the
cluster updating algorithms used in some Monte Carlo physics model simulations and we plan to employ
our findings from this work to speed up phase-transition location work in this area [35]. In the introduction
we presented some preliminary results of this work to motivate fast CCL in simulations.

We also anticipate emerging new GPU cards that contain multiple GPU devices and which can be used
to serve separately threaded slave tasks of a CPU hosted application program. This approach will at worst
allow CCL to be farmed out as a completely separate task from the simulation but at best may allow
further problem decomposition so that different devices tackle different parts of the CCL problem. Finally,
although we have developed our algorithms and implementations specifically for NVIDIA hardware and
CUDA language, we anticipate they will port to the forthcoming OpenCL vendor/platform independent
data-parallel language.

References

[1] K. Kawasaki, Diffusion constants near the critical point for time dependent Ising model I, Phys. Rev. 145 (1) (1966)
224–230.

[2] V. C. Barbosa, R. G. Ferreira, On the phase transitions of graph coloring and independent sets, Physica A 343 (2004)
401–423.

29

[3] P. Harish, P. Narayanan, Accelerating large graph algorithms on the GPU using CUDA, in: S. Aluru, M. Parashar,
R. Badrinath, V. Prasanna (Eds.), High Performance Computing - HiPC 2007: 14th International Conference, Proceedings,
Vol. 4873, Springer-Verlag, Goa, India, 2007, pp. 197–208.

[4] A. H. Gebremedhin, F. Manne, Scalable Parallel Graph Coloring Algorithms, Concurrency: Practice and Experience 12
(2000) 1131–1146.

[5] E. G. Boman, D. Bozdag, U. Catalyurek, A. H. Gebremedhin, F. Manne, A scalable parallel graph coloring algorithm for
distributed memory computers, in: Proceedings of Euro-Par 2005 Parallel Processing, Springer, 2005, pp. 241–251.

[6] C. F. Baillie, P. D. Coddington, Cluster identification algorithms for spin models – sequential and parallel, Concurrency:
Practice and Experience 3 (C3P-855) (1991) 129–144.

[7] C. F. Baillie, P. D. Coddington, Comparison of cluster algorithms for two-dimensional potts models, Phys. Rev. B 43
(1991) 10617–10621.

[8] R. Dewar, C. K. Harris, Parallel computation of cluster properties: application to 2d percolation, J. Phys. A Math. Gen.
20 (1987) 985–993.

[9] K. Hawick, W. C.-K. Poon, G. Ackland, Relaxation in the Dilute Ising Model, Journal of Magnetism and Magnetic
Materials 104-107 (1992) 423–424, international Conference on Magnetism,Edinburgh 1991.

[10] P. M. Flanders, Effective use of SIMD processor arrays, in: Parallel Digital Processors, IEE, Portugal, 1988, pp. 143–147,
iEE Conf. Pub. No. 298.

[11] W. D. Hillis, The Connection Machine, MIT Press, 1985.
[12] R. Gould, Graph Theory, The Benjamin/Cummings Publishing Company, 1988.
[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction To Algorithms, 2nd Edition, MIT Press, 2001.
[14] D. Brelaz, New methods to color the vertices of a graph, Communications of the ACM 22 (4) (1979) 251–256.
[15] J. A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatoris 16 (2005) DS6.
[16] W. Press, B. Flannery, S. Teukolsky, W. Vetterling, Numerical Recipes in C, Cambridge University Press, 1988, Ch. 12,

pp. 252–254, determination of Equivalence Classes.
[17] K. Hawick, D. Playne, Hypercubic storage in arbitrary dimensions, Tech. rep., Massey University (2009).
[18] P. Erdös, A. Rényi, On random graphs, Publicationes Mathematicae 6 (1959) 290–297.
[19] H. Jeong, B. Tombor, R. Albert, Z. Oltvai, A.-L. Barabsi, The large-scale organization of metabolic networks, Nature

407 (6804) (2000) 651–654.
[20] D. A. Fell, A. Wagner, The small world of metabolism, Nature Biotechnology 18 (11) (2000) 1121–1122.
[21] A. Wagner, D. A. Fell, The small world inside large metabolic networks, Proceedings of the Royal Society B 268 (1478)

(2001) 1803–1810.
[22] M. E. J. Newman, The structure of scientific collaboration networks, PNAS 98 (2) (2001) 404–409.
[23] M. E. J. Newman, Ego-centered networks and the ripple effect, Social Networks 25 (1) (2003) 83–95.
[24] S. Milgram, The Small-World Problem, Psychology Today 1 (1967) 61–67.
[25] F. Liljeros, C. Edling, L. Amaral, H. Stanley, Y. Aberg, The web of human sexual contacts, Nature 411 (6840) (2001)

907–908.
[26] D. Liben-Nowell, J. Kleinberg, Tracing information flow on a global scale using Internet chain-letter data, PNAS 105 (12)

(2008) 4633–4638.
[27] R. Albert, H. Jeong, A.-L. Barabsi, Diameter of the World-Wide Web, Nature 401 (6749) (1999) 130–131.
[28] NVIDIA R© Corporation, CUDATM 2.1 Programming Guide, last accessed May 2009 (2009).

URL http://www.nvidia.com/

[29] A. Leist, D. Playne, K. Hawick, Exploiting Graphical Processing Units for Data-Parallel Scientific Applications, Concur-
rency and Computation: Practice and Experience 21 (2009) 2400–2437, cSTN-065. doi:10.1002/cpe.1462.

[30] K. Wu, E. Otoo, K. Suzuki, Optimizing two-pass connected-component labeling algorithms, Pattern Anal. Applic. 12
(2009) 117–135. doi:DOI 10.1007/s10044-008-0109-y.

[31] K. Suzuki, I. Horiba, N. Sugie, Fast connected-component labeling based on sequential local operations in the course of
forward raster scan followed by backward raster scan, in: Proc. 15th International Conference on Pattern Recognition
(ICPR’00), Vol. 2, 2000, pp. 434–437.

[32] A.-L. Barabsi, R. Albert, Emergence of scaling in random networks, Science 286 (5439) (1999) 509–512.
[33] D. J. d. Price, Networks of Scientific Papers, Science 149 (3683) (1965) 510–515. doi:10.1126/science.149.3683.
[34] D. J. Watts, S. H. Strogatz, Collective dynamics of ‘small-world’ networks, Nature 393 (6684) (1998) 440–442.
[35] K. A. Hawick, H. A. James, Ising model scaling behaviour on z-preserving small-world networks, Tech. Rep. arXiv.org

Condensed Matter: cond-mat/0611763, Information and Mathematical Sciences, Massey University (February 2006).

30

