
Event-Driven Configuration of a Neural Network CMP System over

a Homogeneous Interconnect Fabric

M.M. Khan*, J. Navaridas†, A.D. Rast*, X. Jin*, L.A. Plana*, M. Luján*,

J.V. Woods*, J. Miguel-Alonso† and S.B. Furber*

*School of Computer Science, The University of Manchester, UK

†University of The Basque Country, Spain

email: khanm@cs.man.ac.uk

Abstract—Configuring a million-core parallel system at boot
time is a difficult process when the system has neither spe-
cialised hardware support for the configuration process nor a
preconfigured default state that puts it in operating condition.
SpiNNaker is a parallel Chip Multiprocessor (CMP) system
for neural network (NN) simulation. Where most large CMP
systems feature a sideband network to complete the boot process,
SpiNNaker has a single homogeneous network interconnect for
both application inter-processor communications and system
control functions such as boot load and run-time user-system
interaction. This network improves fault tolerance and makes
it easier to support dynamic run-time reconfiguration, however,
it requires a boot process that is transaction-level compatible
with the application’s communications model. Since SpiNNaker
uses event-driven asynchronous communications throughout, the
loader operates with purely local control: there is no global
synchronisation, state information, or transition sequence. A
novel two-stage “unfolding” boot-up process efficiently configures
the SpiNNaker hardware and loads the application using a
high-speed flood-fill technique with support for run-time re-
configuration. SystemC simulation of a multi-CMP SpiNNaker
system indicates an error-free CMP configuration time of 1.3
ms, while a high-level simulation of a full-scale system (64K
CMPs) indicates a mean application-loading time of ∼20ms (for
a 100KB application), which is virtually independent of the size
of the system. We verified the CMP configuration process with
hardware-level Verilog simulation.

I. INTRODUCTION

Flexible and efficient boot loading of distributed appli-

cations is an essential support process for the SpiNNaker

multi-CMP massively parallel system organized over a ho-

mogenous communication fabric. The system must somehow

break symmetry, assign and load memory resources, con-

figure communications, and start up the processors, while

balancing concurrency and resource contention for maximum

efficiency. Where previous solutions [4][5] have typically been

using sideband communications or dedicated preconfigured

resources, SpiNNaker confronts the challenge of configuring

an isotropic undifferentiated parallel processing system head-

on.

One approach would be to make no assumptions about

the application and consider it as a problem in general-

purpose computing, leading to a set of standardised, generic

configuration techniques. However, since numerous studies

indicate that parallel processing works best with specific

applications having inherent parallelism, it seems reasonable

Fig. 1. Multi-CMP SpiNNaker System forming a 2D Toroidal Network.

to design parallel systems around a target application, whose

boot process could be correspondingly specialised. SpiNNaker

is a Chip Multiprocessor (CMP) for massively parallel spiking

neural network applications. Simulating large, biologically

realistic neural networks is an excellent candidate application

for distributed processing systems: indeed, the consensus in

the modelling community is that it may be necessary to use

dedicated hardware with architectures more closely similar to

the biology for large-scale neural modelling within realistic

resource limitations [7]. It is efficient to simulate a spiking

neural network as an event-driven real-time application [8],

a model quite different from typical parallel applications and

more akin to embedded applications [11]. A system for neural

network simulation will be, correspondingly, architecturally

different from parallel systems designed mostly for general-

purpose computing. Dedicated parallel systems such as SpiN-

Naker mostly adopt event-driven models of computation and

boot-time configuration considerations that can make fewer

assumptions about the initial state of the system than “con-

ventional” parallel multiprocessor systems.

SpiNNaker provides no sideband communication channel

for boot processes: the system boot must use the same com-

munications fabric as the application. All processors on the

chip are identical; there is no dedicated processor hard-wired

or preconfigured to run the boot process. The task, therefore, is

as follows: It is necessary to configure a symmetric massively

parallel system using only the resources available at run time,

even though the functionality of these resources themselves de-

pends upon having been configured. The configuration process

must do this efficiently and without contention, even though in-

dividual processors have only local state information available,

i.e. the system can use no global state information to configure

itself. We have developed an efficient method for configuring

the SpiNNaker system, based on the resources available at run

time. The process randomly selects one processor per chip as a

“monitor” processor (MProc) and likewise a reference chip in

the multi-CMP SpiNNaker system. This breaks the symmetry

of its homogenous network, having no starting point and

connecting identical CMP’s (Fig. 1). We then use the MProc

to complete the configuration, broadcasting packets over the

network to distribute the neural network configuraton from a

central source point to all the chips. The method demonstrates

a useful way to leverage inherent asynchronicities in both

device and application to achieve a fast boot process in an

application-specific parallel system.

II. REAL-TIME NN SIMULATION MODEL

A. Biological Information Processing Model

SpiNNaker’s target application is the simulation of biolog-

ically realistic neural networks. Neural networks are char-

acteristically massively parallel and highly interconnected,

a virtual “match fit” for a parallel distributed processing

system [1]. Several key properties of “real” neural networks

therefore drive the design of the SpiNNaker application-

specific architecture. Neurons communicate through spikes:

short-duration impulses [1]. It is usual to abstract the spike

to an instantaneous pulse, or event, triggered when the neuron

reaches a certain threshold value [12]. An actual spike has

a duration of about 1 ms, and if we use the point-event

abstraction, an update time resolution of 1 ms per neuron

is adequate [14]. The spiking dynamics involves a refractory

period of the order of ms immediately after a spike during

which the neuron will not spike again, setting an upper bound

on spike rates of about 100/s, average spiking rates being of

the order of 10/s. Neurons typically have high fan-in: ∼1000-

100K inputs per neuron, but sparse activity: ∼0.01-1% active

inputs for a given neuron. Such a neuron might then expect

100 events/s in normal operation, with maximum event rates

of perhaps 10,000 events/s for extremely active populations.

Such event statistics make it practicable to use a “wake-on-

event” processing model within SpiNNaker, where individual

processors remain asleep until activated by the arrival of an

event - a spike.

B. Hardware Support

The SpiNNaker CMP (Fig. 2) is a System-on-Chip (SoC)

architecture with multiple (20) processing nodes (process-

ing core and supporting peripherals, such as the Interrupt

controller, Timer, DMA Controller and Communication Con-

troller) connected through an asynchronous Network-on-Chip

2Gb/s

Comms NoC
(Input) (Output)

Comms NoC

1Gb/s 8Gb/s4Gb/s

Proc3...

PL340 SDRAM I/F

1GB DDR SDRAM

2of7

Enc

2of7

Dec

2of7

Dec

2of7

Dec

2of7

Dec

2of7

Dec

2of7

Dec

2of7

Enc

2of7

Enc

2of7

Enc

2of7

Enc

2of7

Enc

CpuClk CpuClk CpuClk CpuClk CpuClk CpuClk

ROM

System System

Ctlr
Ethernet

Ether MII

System

RAM

Proc0 Proc1 Proc2 ProcN−1ProcN−2 ProcN

System NoC

MemClk

JTAG

Debug

10MHzTestReset
IRQ

Router

control

Decode

Packet Routing Output

Engine Select

I/O Port

AXI Slave AXI Slave AXI SlaveAXI SlaveAXI Slave

Packet Router

AXI Master AXI MasterAXI MasterAXI MasterAXI MasterAXI Master

CommCtlr CommCtlrCommCtlr CommCtlr CommCtlr

AXI Slave

CommCtlr

Input

Links

Output

Links

AXI Master

RtrClk

PLL

Clock

MemClk
RtrClk
CpuClk

Fig. 2. SpiNNaker CMP.

(NoC). The system is physically configured as a triangularly-

connected toroidal mesh (Fig. 1) of CMP’s. While the process-

ing cores are general-purpose ARM968S-E’s, SpiNNaker’s

design is optimised for running the spiking neural network

models in real time - an Application Targetted Integrated

Circuit (ATIC) [2]. SpiNNaker can implement almost any

arbitrary spiking neural simulation model within a tradeoff en-

veloped between model computational complexity, the number

of neurons simulated, and real-time update performance.

The inter-CMP fabric (the Communication Network) itself

uses a packet-based protocol with three different (40-72bits)

packet types: neural multicast packets (MC), point-to-point

packets (P2P), and nearest-neighbour packets (NN). The P2P

packet is used for system-level management, while the NN

packet communicates only among the nearest neighbour chips

and is used for chip-level diagnostics and configuration. A chip

can send an NN packet to any of its neighbours, broadcast to

all neighbours, or use it to “peek” and “poke” the neighbouring

chips’ resources. The NoC uses a configurable on-chip router

to support neural networks with arbitrary connectivity [10].

SpiNNaker has a hierarchical memory system: each processor

has only a small amount of local memory (32KB instruction

and 64KB data tightly-coupled memory (TCM)); supplement-

ing this is a high-speed on-chip SRAM, shared among on-chip

processors. The bulk of memory lies off-chip in a 128MB

SDRAM (one per chip), accessed through a proprietary DMA

controller over a separate NoC (System NoC). There is one

further communication resource for off-system communica-

tions: an on-chip Ethernet interface. Each chip has such an

interface; in a real system, however, only one or at most a

few CMPs actively communicate to the external user interface

device, usually a normal PC called the Host PC.

C. The SpiNNaker Execution Model

SpiNNaker’s processing and communications are event-

driven. Within the system, a set of events makes it possible

to provide fast interrupt-driven hardware support for neural

processing while minimising the detailed low-level knowledge

the user needs to run a given neural model. An on-board con-

figurable vectored interrupt controller provides hardware sup-

port to prioritise interrupts. Three interrupt sources within each

processor: a DMA controller, a timer and a communications

controller, are central to the model. The timer triggers a “mil-

lisecond” interrupt, indicating neuron update timing, while the

DMA generates “DMA-complete” interrupt upon completion

of a background synaptic data transfer to/from SDRAM. The

communications controller issues “packet-received” interrupt

upon receipt of a spike.

SpiNNaker implementation decisions impose a few impor-

tant constraints, critical to the software model design. First,

all dynamically updated model parameters must fit into the

small 64K Data TCM local memory. Second, since neural

updates are timer interrupt driven, any given input update

along with the generation of spike events for a given number of

neurons must finish before the next timer interrupt (nominally

occurring at 1 ms intervals). In [8] we show a way to meet

these constraints conveniently while simulating 1000 neurons

per processor. With 1000 or more connections per neuron,

there are ∼ 10
6 synapses, far too large to fit into the local

memory. We store synaptic information (weight and axonal

delay) associated with each connection in the SDRAM, swap-

ping it into local memory as needed using DMA. In [13] we

demonstrate that by using fast DMA-based memory swapping

over the NoC we can achieve concurrent global memory

utilisation, yet make synaptic data appear virtually local to

the processor. Axonal delay is a function of spike transmission

speed in the model network and is of the order of a few ms [6],

however, the communications network transfers these spikes

only in a few ns. The spikes received in ∼ns are deferred until

the relevant (∼ms) Timer interrupt to ensure a real biological

time behaviour from the system. At the end of each interrupt

handler the code puts the processing core into sleep mode to

conserve power as shown in Fig. 3.

D. Boot-Time Resource Availability

Several features of the design are important in considering

the boot process. Since most on- and off-chip processes are

event-driven, there is no global inter-process synchronisation

and the boot process cannot rely on fixed timing relationships

between processors. While each SpiNNaker chip has a large

memory resource in the SDRAM, it is not accessible until it

has been configured. During application execution, DMA oper-

ations effectively “hide” the non-local nature of the SDRAM,

but at boot time, this is not the case - and in fact the SDRAM

represents another uninitialized, unmapped memory resource.

Similarly, the router is blank at start-up and thus the boot

process can rely only on the default routing mechanisms to

configure the system, while at the same time needing to load

the routing tables. The communications network can use only

NN packets at boot time, since P2P and MC packets require

configured routing tables. The boot configuration process must

use the Ethernet interface as an entry point to the system

Fig. 3. SpiNNaker Event-driven Neural Application Model.

network, but it does not provide any visibility to the system

beyond the chip(s) directly connected to the Host PC using

Ethernet ports.

III. SYSTEM CONFIGURATION

A. Configuration Requirements

Particularly at boot time, but also at run-time, SpiNNaker

appears as a generic processor resource: a neural “blank slate”.

To enable it successfully to load and run a given neural

network, there are, as a result, several key system configuration

considerations.

• For chip-level management, we require one processor

out of the 20 on-board to be the MProc. The MProc

has 3 roles: pre-boot chip-level configuration and testing,

chip-level fault handling, and supporting system-level

management. It must perform these management tasks

without disrupting the application processors running the

neural application. SpiNNaker chips, however, do not

have a dedicated MProc, therefore, the boot process needs

to select a processor per chip to perform this job.

• To route a packet (P2P or MC) to its destination, the

chips need unique addresses. SpiNNaker chips are iden-

tical with no hardwired addresses, while the SpiNNaker

system is organized as a symmetric toroid with no starting

point. Before any application can run on the SpiNNaker

system, we need to configure the chips with unique

addresses.

• To conserve the CMP area, the Boot ROM size has

been kept to a minimum, just sufficient to support initial

testing and device initialization. The remaining CMP- and

system-level configuration must be performed from out-

side the system for better flexibility and fault-tolerance.

• SpiNNaker CMPs are not pre-configured to simulate

a particular neural dynamic model; they can simulate

arbitrary spiking neural models. This means the user

initially configures the application outside the system,

then loads it. Hence, we need a detailed methodology to

load the neural application with associated data to each

chip in an efficient and scalable way.

• A neural network is simply a configuration, not in itself a

running application. The boot process needs to configure

on-chip routers to conform to the neural network. It is,

however, done once and then the target application can

be run many times without reloading the system and it is

not necessary to consider this time as a function of the

time to run a given application - the neural network is

not a terminating “program”.

• SpiNNaker needs to be attached to a Host PC to load the

neural application and interact with the user. Typically,

the Host PC would be a normal PC, necessitating some

way of connecting SpiNNaker to it. Every chip has an

Ethernet interface, but given that only one or at most a

few chips would connect to the Host, there must be a

protocol bridging the Ethernet communication (between

the Host PC and Host-connected chips) and packet-based

communication (among the CMPs).

• Once the application is running, we need to interact with

the system to examine the state of hardware devices

and the application running on the chips. A common

communication language using small packets to interact

with each chip’s MProc is needed.

B. Configuration Process

The SpiNNaker system configuration happens in two

phases. In the first phase, the processors run the Boot ROM

code in batch mode to test/initialize core- and chip-peripherals

independently. In the second phase, the configuration process

employs the SpiNNaker event-driven model to configure the

whole system from the Host PC.

1) Phase I - Chip Level Configuration: Each SpiNNaker

CMP must perform basic power-on testing and initialization

based on basic boot instructions in the ROM. At this point,

all processors run at very low frequency (10MHz) to save

power. After initial testing, the extended boot-up code is

copied to the local TCM of each processor for faster boot time.

Each processor tests/initializes its local peripherals. Healthy

processors compete to access the System Controller (a shared

chip component designed for chip-level management) through

the System NoC arbiter and the first processor to access

the System Controller is selected as the MProc. The System

Controller writes the ID of the selected MProc to one of

its registers, which enables other processors to identify the

MProc. All processors inform the System Controller of their

state. At this stage all processors, except the MProc, go into

sleep mode. The MProc switches the chip clock to the fast

running frequency (200MHz), then performs chip-level testing

and initialization of the chip resources. It writes the state of

the chip resources to the System Controller for later reporting

to the Host PC. The MProc on each chip tests whether a

PHY (Ethernet Physical Layer Module) is present. If a PHY

is attached to the chip, it may be the one (or one of those)

connected to the Host PC. The MProc initializes the Ethernet

Interface to start receiving frames. The MProc, at this stage,

can reset or disable a faulty application processor to restore or

isolate it as part of chip-level recovery. The MProc configures

the Interrupt Service Routines (ISRs) to handle packets (and

Ethernet frames if Ethernet is enabled) to support the event-

driven system-level configuration process. The MProc initiates

an event-driven system-level configuration process among the

SpiNNaker CMPs by broadcasting a “Hello” NN packet to all

its six neighbours, before going to sleep, putting the chip in

wait-for-event (interrupt) mode.

2) Phase II - System Level Configuration: In this phase,

each chip’s MProc runs the configuration process as an event-

driven application. The MProc’s Communications Controller

generates a packet-received event when a message arrives

from a neighbouring chip, while at the chip(s) connected to

the Host PC, the Ethernet Interface issues a frame-received

event to the MProc. Each interrupt triggers the relevant ISR to

perform related configuration tasks before putting the MProc

to sleep again. The MProc on the host-connected chip trans-

lates between the two protocols, i.e. converting the Ethernet

frames it gets from the Host PC to packet-based messages,

and forwarding them to other chips.

From Phase I, each chip should receive a Hello message

from all its neighbours within a certain time. If a given

link times out, the MProc activates a “neighbour diagnostic”

routine which tries to diagnose the fault. If a chip is non-

responsive, one of its six neighbouring chips (with live links

to the dead chip) is selected as a “nurse chip” to diagnose the

fault through an automated process. The diagnostic algorithm

works as an application driven by the packet-received-event.

The NN packet is used to “peek” and “poke” the dead

chip’s resources to diagnose the problem. If the dead chip’s

MProc is in problem, the nurse chip will reset the dead

chip’s processors to reactivate the MProc selection process.

The System Controller will ensure that the same processor is

not selected as the MProc again. If, however, the Boot ROM

malfunctions, the nurse chip will use one of the fault-recovery

features of the chip, mapping the Boot ROM’s address to the

System RAM after loading into it the boot code from its own

Boot ROM. It will then reset all the processors to restart the

chip-level boot-up from the remapped location. In case the

nurse chip can not determine a viable recovery solution, it

resets the whole chip in an attempt to recover from a transient

problem. If nothing works, the nurse chip reports the matter

to the Host PC which can run an interactive recovery process

with the help of the nurse chip MProc to recover the dead chip

or isolate it by disabling all its processors.

Following completion of any neighbour-diagnostic process,

the chips start executing interactive system-level configura-

tion. This, the main component of system boot-up, is driven

by frame-received- and packet-received-events. The Host-

connected chip(s) initiate this process by sending a “Hello”

frame to the Host PC, signalling that the system has completed

its Phase I process. Thereafter, the Host PC nominates a

reference chip to be at the origin address (0, 0) and notifies

it of the number of chips in the system. The reference chip

then broadcasts its address along with the size of the system.

Each neighbouring chip computes its relative address by size-

modulo addition and passes on its own address to the next

neighbouring chips. This process continues outward to cover

the whole toroidal system, breaking its symmetry by assigning

each chip a unique address in the 2D SpiNNaker toroidal

mesh. Upon establishing its location in the system, the MProc

on each chip configures the P2P routing table with a default

pattern based on the logical location of the chips (the Host PC

can later modify these tables according to the system-level

configuration). The reference (0, 0) chip accumulates chips’

status reports using P2P packets and sends them to the Host

PC using Ethernet frame(s). The Host PC loads instructions to

support the remaining configuration and neural network load

process to the chips using a flood-fill mechanism as explained

in Sec. IV. The Host PC configures each chip’s multicast

routing tables as per the mapping and connectivity defined

by the underlying neural network being simulated.

A running application can also use the Host-system interac-

tive communication either to distribute stimuli and accumulate

responses, or to diagnose/debug the state of the hardware or

application.

C. Fault-tolerance

The SpiNNaker hardware supports error detection and han-

dling for several classes of chip component faults with the help

of its configuration and management software. The MProc in

each chip is responsible for dealing with such contingencies

while the other processors continue to run the application.

The SpiNNaker system provides redundancy of resources at

each level of its design to minimise single points of failure.

Each chip’s System Controller maintains a continuously up-

dated state of all its processors and shared chip resources.

Additionally, most chip components generate interrupts at the

MProc to activate a relevant event-driven recovery routine for

common faults. The processors, particularly the MProc, are

loaded with fault-recovery routines to handle most of these

exceptions. One of the main objectives of this research is to

keep the configuration process as fault tolerant as possible

in order to support real-time applications on SpiNNaker.

Dynamic selection of the MProc, configuration of redundant

Host-system links, dynamic chip address allocation, run-time

configuration of routing tables, System RAM remapping for

a dead Boot ROM, and local chip- and system-level recovery

are some features that make the process fault-resilient. The

application loading process itself includes some aspects of

fault-tolerance as explained in Sec. IV

IV. FLOOD-FILL PROCESS

Besides the code to simulate neural dynamics, a typical

neural application includes relevant data such as the neu-

rons’ state, their synaptic states and the neural network map-

ping/connectivity information. We need an efficient way to

load the application, along with a utility functions library to

support chip- and system-level management, from the Host PC

to each CMP in a multi-CMP SpiNNaker system in a minimum

possible time.

Fig. 4. SpiNNaker Flood-fill Application-loading Process.

An efficient and fault-tolerant “flood-fill” mechanism loads

the application and data into the chips as a real-time event-

driven process. As part of this process, the Host PC loads

the data to the Host-connected chip(s) one data block (1K-

16K) at a time using Ethernet frames. The Host-connected

chip performs a checksum on the block before transmitting

it forward, or requests the Host PC to resend the block. The

Host-connected chip informs downstream chips through an NN

packet about the block size and its location in the SpiNNaker

CMP address space. The data block is transmitted one 32-

bit word at a time using NN packets over the SpiNNaker

Communications Network. Receiving chips store the data and

forward it to their next neighbours. A pipelined “wave” of

data thus flows from the Host-connected chips(s) to the whole

toroidal system. To achieve meaningful communication control

among neighbouring chips, we have devised an instruction

set for the NN packets. The protocol includes instructions to

serialize the data, control the flow of data, request missing

bits of data, and various other control functions. The process

ensures that each chip receives every packet at least twice

from different directions to ensure successful delivery of data

in the event of blocked links. The routing key of the NN

packet contains the physical address of the word, identifying

the packet and helping in serialization and duplication control.

If a word has already been received, it will neither be stored

in the memory nor be transmitted further. Missing words can

be requested from neighbours at the end of each data block’s

transmission. The last packet of the data block contains the

block-level checksum. If the block passes the error detection

test, the receiving chip loads it into the specified location in

the memory address space. At the end of the flood-fill process,

the Host PC requests the state of each chip along with blocks

received. At this stage, the chips can request missing blocks

from each other or the Host PC. A dead chip recovering from

its faulty state, as a result of the neighbour-diagnostic process,

can acquire the application and data from its neighbours.

V. EXPERIMENTAL RESULTS

We have developed a SystemC system-level model of a

single- and multi-CMP SpiNNaker system. The model uses a

cycle-accurate ARM968 instruction set simulator (ISS) from

ARM SoC Designer together with models for other ARM

components such as the Interrupt Controller, SDRAM Con-

troller, Watchdog Timer, AHB, APB bus and memories. All

the component models are cycle-accurate and run as part of

ARM SoC Simulator. SystemC models for in-house designed

components [9] have been added to make it a complete

system model. Due to the combination of synchronous and

asynchronous parts, the model as a whole exhibits cycle-

approximate behaviour as expected from SystemC Transaction

Level Modelling (TLM) [3]. The system-level model for

SpiNNaker simulates three processing cores for simplicity

of simulation which enables the running of a large system

simulation efficiently on a host PC (see Table I column 4

for the simulation performance on an Intel Core2 duo 1.6

GHz, 2GB RAM running WindowsXP). The model allows

instruction- and cycle-level debugging of the hardware system

and the application together, as one package. The simulation

results have been verified with a Verilog top-level simulation

of the system. The configuration process proposed in this paper

has been implemented using ARM Realview Development

Studio to generate a loadable Boot ROM binary image. Table I

shows the chip-level boot-up time as a number of ARM968

CPU cycles (200MHz). The boot-up time does not depend

on the number of chips in the SpiNNaker system since it

runs concurrently on all the CMPs. Similarly, it does not

depend on the number of CPUs in each CMP as the boot

code is loaded to the local memory of each processing core

before its execution. We tested an event-driven spiking neural

network application [8] developed for the SpiNNaker multi-

CMP system after configuring the CMPs as per the outlined

configuration process. These results provide satisfactory ver-

ification of the design and functionality of the SpiNNaker

system.

We also developed a high-level simulator for the SpiNNaker

Communication Network to test the application-load process.

We could simulate the SpiNNaker multi-CMP system to its full

scale (64K CMPs) using this simulation. The communication

latency in this model is comparable with the SystemC model

as the network timings were those acquired from SystemC

cycle-accurate simulation. We evaluated the flood-fill process

using the following distribution algorithms:

TABLE I
SPINNAKER CMP CONFIGURATION TIME

CMPs Procs. per CMP CPU Cycles Sim. Time (sec)

1 1 129686 6.00

1 3 129706 8.28

5 3 129706 41.60

9 3 129706 77.86

• broadcast: each CMP’s MProc uses the NN broadcast

mechanism to send a copy of each packet to all neigh-

bours using only 1 router cycle.

• 2msg: the MProc on each CMP sends messages to its

neighbouring chips in the forward direction along X- and

Y-axis in a 2D toroidal configuration of SpiNNaker multi-

CMP system. The router takes two router cycles to send

these packets.

• 3msg: MProc sends messages to three neighbours in the

forward direction (along X-axis, Y-axis and the diagonal).

We require three router cycles to send three packets.

• 5msg: a node sends a copy of the packet to all neighbours,

except the one from which the packet was received. This

requires 5 router cycles.

• rndXX: like the 2msg but adds (XX%) probability to send

packets to more than two neighbours. We send packets to

minimum 2 and maximum 5 neighbours, the decision is

controlled by a random probability of 25% (rnd25), 50%

(rnd50) and 75% (rnd75) for avoiding a deterministic

congestion over the network.

Besides testing the algorithm with all inter-CMP links intact,

we experimented with the following link failure models to

evaluate fault-tolerance of our proposed flood-fill process:

• vertical: all the links along X-axis are disabled, leading

to a network partially split in vertical columns. In this,

and the following 2 models, diagonal links remain intact,

so the network is not completely split

• horizontal: all the links along Y-axis are disabled, leading

to a network partially split in horizontal row.

• cross: the union of the above two, linking the chips only

through its diagonal links.

• random: a random set of links failure. We tested the

system with various number of links failure from 1K

to 64K (total 64K*6=384K links), with a uniformly

distribution at various locations.

We tested the system using 1, 2 and 4 Ethernet connec-

tions to the Host PC from the CMPs located at (0,0),

(X/2,Y/2),(X/2,0) and (0,Y/2) where X and Y are the

number of CMPs along X- and Y-axis respectively in the

SpiNNaker 2D toroidal configuration (Fig. 1). Finally, we

tested different network sizes, all of them square, ranging from

32x32 to 256x256.

Fig. 5 shows our results for error-free configurations with

various application sizes to be loaded to the SpiNNaker

system. The application loading time depends linearly on the

size of data and approximately 20ms is needed to load an

application equivallent to the size of a processing core’s local

memory (100KB). Fig. 6 shows the impact of system size on

the performance of various application loading mechanisms,

while Fig. 7 shows the impact of the number of Ethernet

connections. The results show that the application loading time

is essentially independent of both the number of Ethernet con-

nections and system size in a large-scale multi-CMP system.

The only relevant factors are the data size and the distribution

policies. This is because of the perfect pipelining of the

Fig. 5. Application Loading on SpiNNaker Multi-CMP System.

packets in the flood-fill process. Each chip passes packets on

to its next neighbours, and in a 100KB sample application the

number of hops to reach the farthest point from the origin in

the (256x256=64K chips) system is negligible compared to

the number of (25K) packets. As a result, the process rapidly

transfers application and data across the whole network. The

flood-fill process is virtually independent of the number of

Ethernet links to the Host, exhibiting negligible performance

gain with 4 Ethernet links as compared to 1. There is, however,

a considerable performance gain using the selective forward

multicast flood-fill process (2msg or 3msg), since this relieves

congestion. We found that the 2msg mechanism is the fastest,

however, it does not ensure delivery of a packet at least twice

to each CMP. The mechanism is not fault-tolerant as a broken

link in the start of flood-fill process may deny all the chips in

that direction from the application. It is necessary to ensure

sufficient redundancy of transmitted packets so that a chip with

blocked links should still get the ones from duplicate link(s).

Broadcast and 5msg techniques are the most fault-tolerant,

however, these have the worst performance due to network

congestion caused by injecting too many packets. There is,

therefore, a need to maintain a balance between performance

and redundancy (fault-tolerance) which is achieved with 3msg

and rnd25 mechanism.

Figs. 8 and 9 show the effect of the number of Ethernet con-

nections on the application loading process in the presence of

faulty inter-CMP links as explained above. Though connecting

the Host PC at more than one point to the SpiNNaker system

does not improve the application loading time in a large-

scale system, it does improve the fault-tolerance of the process

as a chip can receive a packet from various directions. It is

particularly important if the network is split in various regions

due to link failures. Here, again, the broadcast mechanism

proves to be the the most robust by losing no packets in any

failure setting, while the 3msg provides reasonably good fault-

tolerance as it is not affected by horizontal and vertical failed

links and random links failures up to 8K (a system degradation

of about 2%).

Fig. 6. Application Loading on SpiNNaker Multi-CMP System.

Fig. 7. Application Loading on SpiNNaker Multi-CMP System.

Fig. 8. Application Loading on SpiNNaker Multi-CMP System.

Fig. 9. Application Loading on SpiNNaker Multi-CMP System.

VI. CONCLUSIONS

We have developed an infrastructure for configuring user-

defined applications on a chip multiprocessor optimised for

general-purpose neural network simulation with the following

components:

• An efficient fault-tolerant configuration mechanism.

• An efficient flood-fill application load process.

• A library of device routines that abstracts functionality to

the model level.

• A cycle-accurate SystemC model for the SpiNNaker

system and a high-level communication simulation.

There remains considerable work on high-level user compo-

nents. We are currently developing a Host PC user interface

that provides access to the low-level tools we have already

developed. Ongoing research is investigating methods for

dynamic and potentially autonomous system reconfiguration

at run time, allowing for neural developmental processes. In

addition, further work is necessary in identifying efficient

routing and mapping schemes. Work is ongoing on developing

the library functions and high-level descriptions to support

multiple classes of neural network in a general-purpose library

of neural functionality that allows the user to specify a model

at a high level and automatically instantiate library files to

generate the requisite routines and mappings, a process akin

to hardware synthesis.

SpiNNaker represents a fundamentally new architecture for

neural networks: an Application-Specific Integrated Circuit

(ASIC). As such it realises the reconfigurability and ability

to model any neural network of FPGAs, and the scalabil-

ity and performance of traditional hardwired neural ASICs.

We have shown that this design approach makes it possi-

ble to develop a system that leverages specific performance

gains from application-focussed circuitry without constraining

model choice or size. Nonetheless, such a “blank slate” ap-

proach requires novel methods for configuration and execution

or the modeller may be faced with a chip so general that

getting it to do anything useful is a research project in itself.

Our research has therefore created an essential infrastructure

the modeller needs to make SpiNNaker a useful practical

tool for hardware neural modelling. Considered as a general

parallel architecture, SpiNNaker offers an alternative to the

traditional large-scale parallel machine: instead of developing

a completely general-purpose chip and designing the applica-

tion to match the hardware capabilities, we have designed a

chip matched to the needs of a specific application known to

be highly parallel and have provided general-purpose software

tools to develop applications. This represents a path for parallel

processing akin to an embedded system where it is understood

at the outset that it is running a definable single application. If

parallel processing is most effective with specific parallelisable

tasks, it seems more logical to develop task-optimised parallel

devices to complement general-purpose uni-processors than to

try to create a parallel processor to replace the uni-processor

outrightly.

ACKNOWLEDGEMENTS

The SpiNNaker project is supported by EPSRC grant

EP/D07908X/1, ARM Ltd. and Silistix Ltd. S.B. Furber holds

a Royal Society-Wolfson Research Merit Award. J. Navaridas

is supported by a doctoral grant of the UPV/EHU and by the

Ministry of Education and Science (Spain) grant TIN2007-

68023-C02-02.

REFERENCES

[1] P. Dayan and L.F. Abbott. “Theoretical Neuroscience”. MIT Press,
Cambridge, 2001.

[2] S.B. Furber, S. Temple, and A.D. Brown. “High-Performance Comput-
ing for Systems of Spiking Neurons”. In AISB’06 workshop on GC5:

Architecture of Brain and Mind, volume 2, pages 29–36, Bristol, April
2006.

[3] F. Ghenassia. “Transaction-Level Modeling with Systemc: TLM Con-

cepts and Applications for Embedded Systems”. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2006.

[4] R. A. Haring and R. Bellofatto et al. “Blue Gene/L Compute Chip:
Control, Test and Bring up Intrastructure”. IBM Journal of Research

and Development, 49(2/3):289–301, 2005.
[5] Cray Inc. “Cray XT3 Datasheet”. Cray Inc., Jan. 2005.
[6] E.M. Izhikevich, J.A. Gally, and G.M. Edelman. “Spike-Timing Dy-

namics of Neuronal Groups”. Cerebral Cortex, 14(8):933–944, 2004.
[7] A. Jahnke, T. Schönauer, U. Roth, K. Mohraz, and H. Klar. “Simulation

of Spiking Neural Networks on Different Hardware Platforms”. In Proc.
1997 Int’l Conf. Artificial Neural Networks (ICANN 1997), pages 1187–
1192, 1997.

[8] X. Jin, S.B. Furber, and J.V. Woods. “Efficient Modelling of Spiking
Neural Networks on a Scalable Chip Multiprocessor”. In Proc. 2008
Int’l Joint Conf. on Neural Networks (IJCNN2008), 2008.

[9] M. Khan, X. Jin, S. Furber, and L.A. Plana. “System-Level Model
for a GALS Massively Parallel Multiprocessor”. In Proc. 19th UK
Asynchronous Forum, pages 9 – 12, London, September 2007.

[10] M.M. Khan, D.R. Lester, L.A. Plana, A. Rast, X. Jin, E. Painkras, and
S.B. Furber. “SpiNNaker: Mapping Neural Networks onto a Massively-
Parallel Chip Multiprocessor”. In Proc. 2008 Int’l Joint Conf. on Neural
Networks (IJCNN2008), 2008.

[11] H. Kopetz. “Real-Time Systems: Design Principles for Distributed

Embedded Applications”. Kluwer Academic Publishers, 1997.
[12] W. Maass and C. M. Bishop (ed). “Pulsed Neural Networks”. MIT

Press, Cambridge, Massachusetts, 1998.
[13] A.D. Rast, S. Yang, M. Khan, and S.B. Furber. “Virtual Synaptic

Interconnect Using an Asynchronous Network-on-Chip”. In Proc. 2008
Int’l Joint Conf. on Neural Networks (IJCNN2008), 2008.

[14] T. P. Trappenberg. “Fundamentals of Computational Neuroscience”.
Oxford University Press, New York, 2002.

