arXiv:1007.1388v1 [cs.DC] 8 Jul 2010

A Flexible Patch-Based Lattice Boltzmann
Parallelization Approach for Heterogeneous GPU-CPU E€Elast

Christian Feichtingér, Johannes Habi€hHarald Kostle?, Georg Hageét, Ulrich Rudé,
Gerhard Wellei

4Chair for System Simulation
University of Erlangen-Nuremberg

bRegional Computing Center Erlangen
University of Erlangen-Nuremberg

Abstract

Sustaining a large fraction of single GPU performance iralelrcomputations is considered to
be the major problem of GPU-based clusters. In this artihis,topic is addressed in the context
of a lattice Boltzmann flow solver that is integrated in thel\Barla software framework. We
propose a multi-GPU implementation using a block-strieduvPI| parallelization, suitable for
load balancing and heterogeneous computations on CPUs Rbd.Gr'he overhead required for
multi-GPU simulations is discussed in detail and it is dest@ted that the kernel performance
can be sustained to a large extent. With our GPU implememtatve achieve nearly perfect
weak scalability on InfiniBand clusters. However, in str@ogling scenarios multi-GPUs make
less efficient use of the hardware than IBM BG/P and x86 dsstdence, a cost analysis must
determine the best course of action for a particular sinanagask. Additionally, weak scaling
results of heterogeneous simulations conducted on CPU& Bk simultaneously are presented
using clusters equipped with varying node configurations.

Keywords: Lattice Boltzmann Method, MPI, CUDA, Heterogeneous Corapahs

1. Introduction

In the field of computational fluid dynamics (CFD), flow solsdrased on the lattice Boltzmann
method (LBM) have become a well-established alternatives@iving the Navier-Stokes equa-
tions directly. The LBM algorithm is a cellular automatorriged from the Boltzmann equation;

each nodedgell) on the computational grid exchanges information with @égjhbors, which makes

memory bandwidth the performance-limiting bottleneckha LBM in most cases. Modeling real
systems requires large computational effort, thereforeopmance optimization and paralleliza-
tion of LBM codes are very active fields of research. GPU aechires offer the highest memory

*Corresponding author
Email addressChristian.Feichtinger@informatik.uni-erlangen.de (Christian Feichtinger)

Preprint submitted to Parallel Computing October 29, 2018

http://arxiv.org/abs/1007.1388v1

to processor chip bandwidth available today in commodityWare and promise a big perfor-
mance gain for memory-bound applications. However, tretoas effort has to be put into highly
efficient LBM codes even on single GPUS [[]LDZ 3]. First pranggesults of nonregular imple-
mentations|__[J4] show that the LBM is applicable to nonunifatomains and multi-GPU clusters
as well.

In order to push these experimental efforts into real priadndCFD applications it is crucial to
establish scalable LBM codes on GPU clusters. Still theeturfop500 Iistﬁb] contains only a
few GPU clusters, since the nonstandard programming gareaind the rather slow CPU-to-GPU
connection are obstacles that hamper their general appiigaThe main contribution of this pa-
per is to show that it is possible to exploit the full compigaal power of currently emerging
GPU-CPU clusters. We start by applying low-level optimizas to the GPU kernels to improve
single-GPU performance, then move to multiple GPUs usind-bBed distributed memory par-
allelization, and finally establish load-balanced hetersgpus GPU-CPU parallelism by incorpo-
rating the otherwise idle multicore CPUs and GPU-less campades into the flow solver.

To bring together high performance and high productivity apply aPatch and Blockdesign,
which divides the computational domain into subregions &ne distributed to theompute units
(GPUs or teams of CPU threads in a multicore node). This iscécehas to how many subre-
gions are assigned to each compute unit instead of indilvadlia, simplifying static load balanc-
ing. Ghost layers are exchanged between neighboring sobegegsing the appropriate data paths
(shared memory, PCle bus, InfiniBand interconnect). A satioih is thus able to run in parallel
on a heterogeneous cluster comprising various differefitctures. The whole code is included
in the WalLBerla (Widely applicable lattice Boltzmann salfrem Erlangen) software framework,
which is employed in many CFD applications. We can show tlgit bomputational performance
can be sustained within WaLBerla and therefore only veryllsapplication management and
communication overhead is added.

This paper is organized as follows. We start with a brief dpon of the architectures used for

measurements and the LBM method in Sec. 2. Code optimizaind performance models are
shown in Sec. 3. Section 4 describes the WalLBerla softwaradwork and the heterogeneous
parallelization approach. In Sec. 5 we finally analyze théopmance behavior of our code on

single CPUs, single GPUs, and heterogeneous CPU-GPU rslustetrong and weak scaling

scenarios.

2. Methods and Architectures

2.1. The Lattice Boltzmann Method

The LBM has evolved over the last two decades and is todaylyvatzepted in academia and
industry for solving incompressible flows. Coming from a glified gas-kinetic description, i.e.
a velocity discrete Boltzmann equation with an appropraiésion term, it satisfies the Navier-
Stokes equations in the macroscopic limit with second cmdeuracyﬁbﬂ?]. In contrast to conven-
tional computational fluid dynamic methods, the LBM usestagparticle distribution functions

(PDF) in each cell to describe the fluid flow. A PDF is definedresdxpected value of particles
in a volume located at the lattice positigmvith the lattice velocityg. Computationally, the LBM

2

is based on a uniform grid of cubic cells that are updated ah d¢ane step using an informa-
tion exchange with nearest neighbor cells only. Struchyrddis is equivalent to an explicit time
stepping for a finite difference scheme. For the LBM the datirelocitiess; determine the finite
difference stencil, whererepresents an entry in the stencil. Here, we use the scddaB&)19
model resulting in a 19 point stencil and 19 PDFs in each &k evolution of a single PDF is
described by

fi(X+ &ALt +At) = fOl(x 1) =
fi (X,t) - % [fl (X,t) - fiEq(p(Kt),[j(X,t))} (1)
£89(p(R,1), U(R,t)) =W [0 + P (36T + 4.5(&)2 — 1.50°)])
i—0...19

and can be split into two steps: A collision step applyingdbBision operator and a propagation
step advecting the PDFs to the neighboring cells. In thislartwe use the single relaxation time
collision operatori__[|7]. In Ed]lfico” denotes the intermediate state after collision but befoyp
agation. The relaxation time can be determined from the kinematic viscosity- (1 — %)cgét,
with cs as the speed of sound. Furth&f!is a Taylor expanded version of the Maxwell-Boltzmann
equilibrium distribution functionﬂ?] optimized for incopnessible rows|]8]. For the isothermal
case, f*? depends on the macroscopic velodilfk,t) and the macroscopic density%,t), and
the lattice weightsy; are%, %3 or 3i6. The macroscopic quantitigsandu are determined from
the 0" and #' order moment of the distribution functiopgX,t) = po + 0p(X,t) = T8, fi(X 1),
and poli(%,t) = T1i8,& fi(X,t), wherep is split into a constant pag and a slightly changing
perturbatiordp. The equation of state of an ideal gas provides the preggure) = c2p(X,t).
Usually, the PDFs are initialized t&°%(po,0). To increase the accuracy of simulations in single
precision we usefi(%,t) = fi(X,t) — £%9(pp,0) and f9(p(%,1),U(X 1)) = Y (p(X1),TUX 1)) —
fieq(po,O) as proposed b)ﬂ[8] resulting in PDF values centered arouniic@ording to<ﬂ], itis
possible with the LBM scheme described above to achieveratmsingle precision results, which
is important for GPU implementations.

A further important issue is the implementation of the pgadtegon, for which there exist two
schemes: First a pushing and second a pulling. For the fiss, dhe PDFs in a cell are first
collided and then pushed to the neighborhood. In the secasel the neighboring PDFs are first
pulled into the lattice cell and then collided. Additionalthe propagation step introduces data
dependencies to the LBM, which commonly result in an impletaton of the LBM using two
PDF grids. However, these dependencies are of local typmlag$?DFs of neighboring cells are
accessed. Hence, the LBM is particularly well suited for shasy parallel simulationﬂ mll].
In WaLBerla, we use thpull approach as it is better suited for our parallelization See[4 for
details on the parallelization).

The most common approach for implementing solid wall bouledan the LBM is the bounce-
back (BB) rule [ESD7] i.e. if a distribution is about to be pegated into a solid cell, the dis-
tribution’s direction is reversed into the original cell.BRyenerally assumes that the wall is in
the middle between the two cell centers, i.e. half-way. Thimulation leads to:f{Xt + At) =

3

fi (X, t) + 6w; po& Uy With &= —& anduy being the velocity prescribed at the wall.

2.2. Hardware Environments
2.2.1. CPU-based Cluster Systems

In general, current clusters based on dual-socket Intal-goee processors offer a peak node per-
formance in the range of 60 to 100 GFLOPS. The on-chip memanyrallers with up to three
DDR3 memory channels per socket provide a theoretical pedk bandwidth of 64 GB/s. The
clusters introduced in the following table all share thismoaon architecture:

Nodes Processor Interconnect Clock Speed Memory nVIDIA &pé&F Node

Xeon [GHZz] [GB]
TinyGPU [12] 8 X5550 DDR IB 2.66 24 2 X TESLA C1060
JUROPA [13] 2208 X5570 QDRIB 2.93 24
NEC Nehalem [14] 700 X5560 DDR IB 2.8 12 2 x TESLA S1070
* Oversubscribed 1B backbone (30 nodes)

The IBM BlueGene/P-based cluster JUGENE [15] comprise288dmpute nodes, each equipped
with one 850 MHz PowerPC 450 quad-core processor and 4 GB myemloich are connected via
a proprietary high speed interconnect offering 850 MB/slipérdirection.

2.2.2. nVIDIA Graphic Processing Units

The GT-200-based GPUs are the second generation of nVIRIphigs cards capable of GPGPU
computing using th€ompute Unified Device Architectu ¢ UDA) [16]. A GPU has several mul-
tiprocessors (MP), each with 8 processor cores. Computatce executed by so-called threads,
whereas up to 1024 threads are concurrently running on onaMRler to hide memory latency
by efficient scheduling. Threads are organized in GPU-lpakich are pinned to an MP over
the whole runtime. Each MP has 16384 registers and 16 kB oédhmemory available, i.e. there
are only 16 registers and about 16 bytes per thread if 1024disrare running in parallel. Hence,
the concurrency is limited if kernels allocate more thanddisters, which has a severe impact on
performance. Seﬁll?] for further details on CUDA and nVIOBRU hardware.

2.3. Interconnects

Most of today’s high performance systems use InfiniBand {tBthe connection of the compute
nodes. Heterogeneous computations on CPUs and GPUs régtlidexpress (PCle) transfers for
both IB and CPU-GPU communication. In order to develop aibEnperformance model, all
involved communication paths must be considered.

PCle 2.0 x16 is currently the fastest peripheral bus withakpgensfer bandwidth of 8 GB/s per
direction. FiguréIl shows that one can maintain about 6 G&8nslwidth if the transfered data is
larger than 2 MB and the CUDA catludahostalloas used to allocate so-callginned memory
on the host. Pinned memory in contrast to memory allocatechdljoc will not be paged out, is
private to the process allocating it, and is local to the plalssocket of the allocating process.
The advantage of pinned memory results from the possilidityse fast direct-memory-accesses

4

1/81/412 1 2 4 8 16 32 64 1282565126
P T T LT L T

6FT
[o-0 PCle Device to Host copy
b 5 =-a PCle Host to Device copy 45
= | oo PCle Device to Host copy pinngd
an} =—u PCle Host to Device copy pinned
.9.47 -0 DDR InfiniBand PingPong 14
c r &-o QDR InfiniBand PingPong
=
e BWG\S_D 3
= o0—0
= L
© I -
c?2 -
©
m (8-
1- -1
i 0

| I BRI N b b b b b e b b b b
/81412 1 2 4 8 16 32 64 128256512
Data transferred [MB]

Figure 1: Host—-GPU and MPI PingPong bandwidth measureneenisnyGPU. The functiomudaMemcpymple-
menting a vector copy is used for all PCle copy operations.

(DMA). With our current LBM implementation packets in thengee of 250 kB to 500 kB are
exchanged per PCle data transfer, leading to an effectimdvindth between about 5 GB/s and
6 GB/s. Please note that two GPUs on the NEC Nehalem clustertbahare the same PCle bus,
which is capable of transferring B2GB/s.

IB host adapters are connected to the host via the PCle x8aoée 1B bandwidth measurements
of the Intel IMB PingPong)enchmarld_L_l|8] for quad-(QDR) and double-(DDR) data ratedB be
found in Fig.[1l. The measurements show that QDR @3B/s) doubles the bandwidth compared
to DDR (15 GBY/s) and that the GPU’s PCle operates with at least twied#amdwidth.

The performance of LBM codes is usually given in termsroffion fluid lattice cell updates per
second(MFLUPS) instead of GFlops, as the actual executed GFlopsatebe determined pre-
cisely. Tabld 1L gives an estimate for the minimal impact efdata transfer over all interconnects
on performance. The compute time of the kepe&nd the 1B and PCle data transfer timtesan
hereby be determined by

3 2
n 2-N%. - NPDF - Npjane* SPDF
ty = cell and t = cell plane

P B ’
whereP is the performance)ce) the number of lattice cells per dimensiowpr the number of
PDFs communicated per boundary caanethe number of planes to be communicat&gr the
size in bytes of a PDF a8 is the bandwidth of the corresponding interconnect. It wessimed
that all domain boundaries have to be communicated, whltsein the transfer of 6 boundary
planes with 5 PDFs per cell.

3. CPU and GPU Kerne Implementation

3.1. Upper Bound Performance Estimation

The performance of our LBM implementation is like most sti@codes dominated by memory
bandwidth. To estimate an upper bound for the obtainable lBkdwidth on CPUs, we employ

5

Steps Tesla C10604(300 MFLUPS)

Compute Time 3.3ms
PCle: 5 GB/s {) 0.48 ms
IB: 3.0 GB/s (1 0.8 ms

Total Time: () 3.78 ms— 264 MFLUPS
(I+1) 4.58 ms— 218 MFLUPS

Table 1: Performance estimates for multi-GPU single precitBM simulations including InfiniBand and PCle
transfers of the complete boundary data. The estimated tareebased on the obtainable bandwidth. A domain size
of 100 lattice cells is assumed for the example and the pure keer@pnance has been taken from Fip. 2.

the vector operation(:) = a(:) from the STREAM BenchmarK49], which results in a mem-
ory bandwidth of 33 GB/s on JUROPA. The CPU’s cache hierassig/arithmetic units are fast
enough so that computations and in-cache transfers areletatypghidden by memory loads and
stores. For the GPU bandwidth, we implemented our own beadhmhich achieved a maximum
memory bandwidth of 78 GB/s on a nVIDIA TESLA C1060, if the apancy is at least.B, i.e. if

at least 512 threads out of the maximum of 1024 (GT-200) tizrese scheduled per MP. Further
benchmark details can be found in [2]. Furthermore, thedyrensferred for each LBM lattice
cell updatenyytescan be determined bﬁbO]

Npytes= Nstencil* (Moads Nstore) - SPDF,

wherengtenci is the size of the LBM stencil, anglgags and nstoresthe number of load and stores.
Due to theRead-for-Ownershighis results in 228 bytes using single precision (SP) artdAses
using double precision (DP) for the CPU, and 152 (SP) / 309 (kes for the GPU implementa-
tion. Thus, it is possible to estimate an upper limit for tH®MLnode performance. For one node
on JUROPA we estimate a performance of 144 (SP) / 72 (DP) MFR.aid 516 (SP) / 258 (DP)
MFLUPS for one nVIDIA TESLA C1060.

3.2. Kernel Performance and Implementation Details

One key aspect for achieving a good LBM kernel performandfesdata layout. There exist
two major implementation strategies: The Array-of-Stanet(AoS) and the Structure-of-Arrays
(SoA) layout. For the AoS layout, the PDFs of each cell areest@adjacent in memory, whereas
for the SoA Layout the PDFs pointing in the same lattice diogcare adjacent in memory. Our
CPU kernel implementation uses the AoS layout together thitpull streaming approach, and to
improve the performance, arithmetic optimizations havenbapplied. In addition, the Patch and
Block data structures introduced in Slec] 4.2 allow for theodeposition of the simulation domain
into smaller subdomains, leading to an implicit spatialcklog. No further unrolling or spatial

and temporal blocking is applied. Our implementation reaalp to 78 (SP) / 55 (DP) MFLUPS
on one node of JUROPA and up t&4SP) / 61 (DP) on one node of JUGENE. This is slightly
lower, but comparable to well-optimized solvers, d:b [Bhe DP kernel is about 23 % off from

the performance estimated before and still in agreemehttivét model. The large discrepancy of

6

450—— ‘ ‘ ‘ 45¢
400 ' ' [aoc
350 1.435C

¢ 300~ " 130C

L 250 25(

227]

i 200 - 120C

= 150 15(
100 10C

L —o SP|
50~ # ~—=DP| 150
3 ‘ \ ‘ \ ‘ \ ‘ \]
% 50 100 150 200 °

Cubic Domain Size

Figure 2. Single-GPU measurements of the pure GPU kerné&rnpesince for SP and DP on a nVIDIA TESLA
C1060.

nearly 50 % for the SP kernel can be attributed to the comipuiatintensity of the nonvectorized
LBM kernel, making the code essentially not memory, but cotaponally bound.

In contrast to the CPU implementation, the GPU implemennatises the SoA layout, because
in combination with the pull streaming approach it is pokstio align the memory writes. In
addition, the scattered loads that occur in our implemantatan be efficiently coalesced by
the memory subsystem. Hence, we do not have to use the sharadrgnof the GPU. For the
scheduling of the threads, we adopted a scheme first prop‘ms[@ﬂj where each GPU thread
updates one lattice cell and one GPU block is assigned onefrtihve simulation domain. In order
to improve the kernel performance, we reduced the numbezg$ters used for each thread by
prefetching the PDFs into temporal variables and also byifyiad the array accesses as described
in [E]. With these optimizations, we can achieve a maximumrupancy of 6. The maximum
performance for some domain sizes has been around 500 (S@)DP), which agrees well with
our performance estimates and also with the resulld in [ZJorparison to|]1] is rather difficult
as they used a different LBM stencil and hardware has evol&iill, the sustained memory
bandwidth of both implementations on the particular hardvisaround 70 % of peak bandwidth.
A detailed kernel performance analysis for cubic domaiasig depicted in Fi¢l]2. The measured
performance fluctuations for varying domain sizes resalnfthe different numbers of scheduled
threads per MP and from memory alignment issues.

4. TheWaLBerla Framework

WalLBerla is a massively parallel multiphysics softwarenfeavork that is originally centered

around the LBM, but whose applicability is not limited togfalgorithm. Its main design goals are
to provide excellent application performance across a wadge of computing platforms and the
easy integration of new functionality. In this context aduhal functionality can either extend the
framework for new simulation tasks, or optimize existingalthms by adding special-purpose
hardware-dependent kernels or new concepts such as laattba strategies. In order to achieve

7

this flexibility, WaLBerla has been designed utilizing sadte engineering concepts such as the
spiral model and prototypin@DZZ], and also using commiesign patterni_[iS]. Several re-
searchers and cooperation partners have already usedfthvarseoframework to solve various
complex simulation tasks. Amongst others, free-surfa(wesf@] using a localized parallel algo-
rithm for bubbles coalescence, free-surface flows with ifigadbjects|[25], flows through porous
media, clotting processes in blood vessels [26], partieulaws for several million volumetric
particles] on up to 8192 cores, and a fluctuating lattioiZBnann] for nano fluids have
been included. In addition to the strictly Eulerian view @idi equations and their discretization,
WalLBerla also supports Lagrangian representations ofigéilyyshenomena, such as e.g. particu-
late flows. Currently, the prototype WalLBerl202s under development extending the framework
for heterogeneous simulations on CPUs and GPUs, and loaddiag) strategies. Heterogeneous
computations are already supported, but the designs famdiroad balancing strategies are cur-
rently under development, although the underlying datactires can already be used for static
load balancing.

In WaLBerla, all simulation tasks are broken down into sal/basic steps, so-calletiveeps A
Sweep can be divided into two parts: a communication stdiling the boundary conditions for
parallel simulations by nearest neighbor communicatiahanommunication independent work
step traversing the process-local grid and performingatpars on all cells. The work step usually
consists of a kernel call, which is realized for instance lyrection object or a function pointer.
As for each work step there may exist a list of possible (harévdependent) kernels, the executed
kernel is selected by our functionality management (seevjelFor pure LBM simulations only
one Sweep is needed exchanging PDF boundary data duringrtimaenication phase and execut-
ing one of the kernels that have been described in[$ec. 3.uAntidnality management in Wal-
Berla 20 selects the required kernels according to meta data prdwiith each kernel. This data
allows the selection of different kernels for different silation runs, processes and subregions of
the simulation domain, so-call®locks(see Sed. 412). Hence, it is possible to specifically select,
for heterogeneous computations even on each single pré@essvare optimized kernels. Further
details on the functionality management can be found in[&éc.

A further fundamental design of the whole software framéwsiour PatchandBlockdata struc-
ture, which is a specific version of block-structured grid8esides forming the basis for the
parallelization and load balancing strategies, Blocksadse essential to configure the domain
subregions with regard to the simulated task and the utilie@dware. More information on the
Patch and Block data structure can be found in Set. 4.2. éuitYaLBerla enables parallel MPI
simulations of various simulation tasks. In order to do be,fgrocess-to-process communication
supports messages, containing data from any kind of datetste conforming to a documented
interface, of arbitrary length and data type as well as thialssation of messages to the same
process. Using our parallelization it is possible to repnégven complex communication pat-
terns, such as our localized bubble merge algori@] [24]uorparallel multigrid solver ported
from @]. The general parallelization design is describe®ec[4.8. For parallel simulations
on GPUs, the boundary data of the GPU has first to be copied GlatPansfer to the CPU and
then be communicated via the MPI parallelization. Thewsftre data structures of the single core
implementation are extended by buffers on GPU and CPU irraod&chieve fast PCle transfers.

8

In addition, on-GPU copy kernels are added to fill these bsiffén Sec[[44 the details of our
parallel GPU implementation are introduced. To supportogfeneous simulations on GPUs and
CPUs, we execute different kernels on CPU and GPU and alseedg@ftommon interface for the
communication buffers, so that an abstraction from theward is possible. Additionally, the
work load of the CPU and the GPU processes has to be balamcedr &pproach this is achieved
by allocating several Blocks on each GPU and only one on e&th-@hly process.

4.1. Functionality Management

The functionality management in WaLBerlaD2allows to select different functionality (e.g. ker-

nels, communication functions) for different granula$i e.g. for the whole simulation, for indi-

vidual processes, and for individual Blocks. This is readiby adding meta data to each function-
ality consisting of three unique identifiers (UID).

UID Name Granularity Example

fs Functionality Selector ~ Simulation Gravity on/off

hs Hardware Selector Process CPU and/or GPU
bs Block Selector Block LBM

On the basis of these UIDs the kernels can be selected angdalihe requirements of the sim-
ulated scenarios. Hence, physical effects can be turnedfaman efficient well-defined manner
by means of thés selector. Hardware-dependent kernels can be selectedféredt architectures
depending on thasselector and simulation tasks can be selected vidbsiselector. A complex
example for the capabilities of our concept are heterogené®M simulations on CPUs and
GPUs described in Sec. 4.5.

4.2. Patch and Block Concept

In WalLBerla the simulation domain is described with our Raaad Block design, which is il-
lustrated in FiglB. It has been developed in order to suppassively parallel simulations, load
balancing strategies and the configuration to simulatiskst@and hardware. A Patch hereby is a
rectangular cuboid describing a region in the simulatiat th discretized with the same resolu-
tion. In principal, these Patches can be arranged hie@ityfor grid refinement techniques, but
in this work we are using only one Patch covering the wholeutation domain. This Patch is
further subdivided into a Cartesian grid of Blocks, agairwaboidal shape, containing the actual
grid-based data for the simulation (simulation data). Wité aid of these Blocks the simula-
tion domain can be partitioned for parallel simulation. dthereby possible to allocate several
Blocks on a process in order to support load balancing sfiede Additionally, with the help of
the functionality management the Blocks’ data can be corgjdor the simulated scenario. In
particular, each Block contains two kinds of data: managenméormation and simulation data.
The management data containsaak parameter, which decides on which process the simulation
data of the Block is allocated. Additionally, a hardwarees&dr his) describes the hardware on
which the Block is allocated, whereby all Blocks on the samae@ss have the same hardware
selector assigned to them. Further, the management datat®a block selectob§) deciding

9

Simulation

Domain

/] [Unkown / Cell
Block Info: /// |Block Data:
o bs » Simulation Data:
oh e Cartesian Data
. Rsank « » o Unstructured Data
e Is Allocated » Configurable:
* AABB . Rlata %t]ructures
| | o Algorithms

* BlockiD BIOCk * Optimizations

Figure 3: Patch and Block Design. Each Block stores manageimiermation consisting of a block and a hardware
selector, a MPI rank, an axis aligned bounding box (AABBY arBlock identifier (BlockID) required for the identi-
fication of individual Blocks. The Blocks’ management infation is stored on all processes, but simulation data is
only allocated on processes which are responsible for twéicplar Block.

which task is simulated on a Block. For the simulation dathdzock stores a dynamic list of
base class pointers. For multiphysics simulations thanallto store an arbitrary number of data
fields, e.g. grid-based data for velocity, temperature aemtal values or unstructured particle
data for particulate flows. Hence, each block can be confijureghe following way: During
the initialization of a simulation WalLBerla creates listsppssible simulation tasks, kernels for
each Sweep and several simulation data types, whereby aaghrea list is connected to meta
data for the functionality management. With the help of telecors stored in the management
information it is possible to select which task has to be $ated, which simulation data has to be
allocated, and which kernels have to be selected for the Bfeem these lists.

4.3. General Design of the MPI Communication

The parallelization of WaLBerla, which is depicted in Fifjcdn be broken down into three steps:
a data extraction step, a MPl communication step and a degétion step. During the data extrac-
tion step, the data that has to be communicated is copiedthrersimulation data structures of the
corresponding Blocks. Therefore, we distinguish betwaergss-local and MPI communication
for Blocks lying on the same or different processes. Locahmmnication directly copies from
the sending Block to the receiving Block, whereas for the kiithmunication the data has first to
be copied into buffers. For each process to which data has sett, one buffer is allocated. With
the buffers, all messages from Blocks (block message) osaime process to another process are
serialized. Additionally, the buffers are of data typgeand thus the MPI messages can contain
any data type that can be converted into bytes. To extraddteto be communicated from the
simulation data, extraction function objects are used.damh communication step and for each
simulation data type several possible function objectspao®ided during the configuration of
the communication. These are again selected via the furadiip management. During the MPI

10

BlockID Data | BlockID] Data [---]
Bytes:[__1 P

2 | Arbitrary Number of Bytes|

Process| " sendBuffer— RecvBuffer Process Il

° . o .
>

L]
. - Extraction of Insertion of ..

. - Boundary Data Boundary Data N
| | =8

MPI
- MPI_Probe() ‘

- MPI_lsend() | - MPI_Get_count() S + MPI_Irecv()
- MPI_Recv()

[]: Block Process Boundary

Figure 4: Design for parallel simulations. In the Figuree 1Pl communication from process | to process Il is
depicted. First, the data to be communicated is extractddprovided functions from each Block and stored in send
buffers. For pure fluid flows only PDFs have to be sent. On tinelisg side an MPIsend is scheduled and on the
receiving side the message is either received with a_Ri®be, MP1GetCount and a MPRecv, or a MPlirecv.
Note, that we attach a header to each Block message comdir@BlocklD and a communication direction. This is
required in order to determine the Block to which the datatbdxe copied on the receiving side.

communication one MPI message is sent to each processgvitidata from the current process.
Therefore, nonblocking MPI functions are used, if the mgessize can be determined a priori.
The data insertion step is similar to the data extractiofy, bare we traverse the block messages
in the communication buffers instead of the Blocks.

CPU Buffers GPU Buffers GPU Buffers MPI Buffers
o [EEEEE NN o o TTTTTTTTTT o %
MPI_Isend o
. « o
\ A EmEEEEE / —_ a
| - 2
Apply BC | =
v £ Swap ~ 15
| "—" i E
HHHHHH B o ,g
MPI_Irecv | |Z
a o a TTTTTTTTITT o E—
PCI Express Local PCI Express InfiniBand
Transfer Communication Transfer Transfer
Local
Boundary GPU - GPU GPU - GPU MPI
Condition Copy Operations Copy Operations Communication

Figure 5: Multi-GPU design.

4.4. Multi GPU Implementation

For parallel GPU simulations part of the data stored on th& GBs to be transferred to the
CPU via PCle transfers before it can be communicated by na&fahe MPI communication. An
efficient implementation of this transfer is important iler to sustain a large portion of the kernel
performance. Hence, we only transfer the minimum amounata decessary, the boundary values
of the PDFs. Our parallel GPU implementation is depictedign[B for one process having two

11

Blocks. It can be seen that we extended the data structuddityonal buffers on the GPU and on
the CPU side. In 3D, we add 6 planes and 12 edge buffers. Taeiguaghost layer of the PDFs
and to prepare the GPU buffers for the MPI communicationtautdil on-GPU copy operations
are needed. The data of the buffers is copied to the ghostdéyiee Blocks before the kernel call
and the PDF boundary values of the PDF data are copied intG ¢ buffers afterwards. For
parallel simulations, the MPI implementation of Sec] 4.8dsd. Here, the only difference to the
CPU implementation are the extraction and insertion fumstj which for the local communication
simply swap the GPU buffers, whereas the functadaMemcpys used to copy the data directly
from the GPU buffers into the MPI buffers and vice versa fa Pl communication. To treat
the boundary conditions at the domain boundary, the cooretipg GPU buffers are transferred
via cudaMemcpyo the CPU buffers. Next, the boundary conditions are ag@ied the data is
copied back into the GPU buffers. The boundary conditioedfilled before the on-GPU copy
operations.

4.5. Heterogeneous GPU / CPU Implementation

@eneous LBM Si@

Process | Process Il
Extraction and Insertion
Hardware: hsCPU Functions: Hardware: hsGPU

copyFromBuf(fs,hsCPU,bs) copyToBuf(fs,hsGPU,bs)
d

N

[

»
copyToBuf(fs,hsCPU,bs) copyFromBuf(fs,hsGPU,bs)

Simulation Data: MPI Buffers Simulation Data:
CPU: CPU + GPU:

! Velocity: Layout AoS
Velocity: Layout AoS Density: Layout AoS
ggr;s.lty: Layto;t AA°S Functionality fs Application bs PDF Buffers

- Layout so (Standard) (Pure LBM) GPU:

PDF: Layout SoA

Figure 6: Heterogeneous simulation on GPU and CPU. Theriitex] simulation is executed on two processes each
having one Block covering half of the simulation domain. Arstard LBM simulation is chosen &sand on all
Blocks thebs pure LBM is activated. Further, the first process runs on a i3CPU), whereas the second uses a
GPU hsGPU. According to these UIDs, the simulation data is allocated the kernels, the extraction and insertion
functions are selected. For the communication, extradtiontionscopyToBufare selected by the UIDs of the cor-
responding Block to copy the communicated data in the spelciirmat into the MPI send buffers. After the MPI
communication, the insertion functionspyFromButopy the data from the MPI buffers back into the receivingdat
structures.

For parallel heterogeneous simulations, the informatibictvBlock runs on which hardware has
to be known on all processes in our implementation. Henagglthe initialization we set on each
process thésof all Blocks to thehsof the process on which they are allocated. To determine the
hs of each process, the input for the simulation describesasible node configurations and a
list which node belongs to which configuration. A node confagion defines how many processes
can be executed on a particular node and whigkhould be used for each process. Using these
hardware selectors, it is now possible to utilize differeBiM kernels and simulation data on

12

3077111711 35C 200—— 11— ; ; ; ; ——20C
| |=—1 Block i — 1 Block
300" |——8 Blocks i -{30C 175~ |-~ 8 Blocks NEIE
- |~ 64 Blocks b | |~ 64 Blocks |
250 . 725C ! I
1 0 105 128
Q- 200 420¢ %]
-] 1100~ 710C
LL 150 415¢ L 1
= |] > 75+ —-75
100f] 10C sl 1o
50 +50 o5l 1o
0 « Al - \ IR AT A N NN SN TR IR N S N1 0 07 & F L | L | L | L | L | L | L | L | 70
0 25 50 75 100 125 150 175200 225 250 275 0 25 50 75 100 125 150 175 200 225
Cubic Domain Size Cubic Domain Size
(a) SP (b) DP

Figure 7: Single-GPU measurements on TinyGPU (TESLA C1883)ingle (SP) and double precision (DP). A three
dimensional partitioning is used to divide the simulatiamthin into Blocks. For a domain size of e.g. 208ttice
cells and 64 Blocks, each Block has a size of Bitice cells.

different compute architectures. Further, all computé&@tens use an identical layout for the MPI
buffers, which acts as an interface for the MPI communicatiéence, the data in the MPI buffers
is independent of the underlying hardware. During the MPPalbalization, only the extraction and
insertion function have to be selected according tdsw the Blocks to extract and insert the data
from the different simulation data structures. Kib. 6 illages this in detail with a heterogeneous
LBM simulation.

5. Investigation of Performance and Scalability

Subsequently, the performance of our design is discussetehys of Lid Driven Cavity scenarios
in 3D. In contrast to other highly optimized implementations d?ls all measurements presented
involve the PCle data transfer of the complete halo layemf@PU to GPU and vice versa in
each time step. Therefore, the actual performance is laweomtrast toml] an(ﬂZ]. However,
scalability will be rather stable as most of the PCle comroatidn time is already accounted for
by the single GPU simulation.

First of all, we investigate the single GPU and CPU perforoeancluding a detailed examination
of the overhead for multi-GPU simulations in Sec.]5.1. Aiddially, the overhead introduced
by several Blocks per process is evaluated to estimate itabsily of the Patch and Block data
structure for load balancing strategies. In $ed. 5.2 weecngdeak and strong scaling experiments
in order to determine how the GPU implementation scaleshenHPC clusters introduced in
Sec[Z.2. Finally, we investigate the performance of ouigiefer heterogeneous computations in

Sec[5.B.

13

5.1. Single GPU and CPU Performance

Our performance results for a single GPU having 1 to 64 lotatl& are depicted in Figl 7. The

performance increases with the domain size and saturatedanain size of around 28attice
cells for a single Block. This is in contrast to the pure kémeasurements of Figl 2, where the
maximum performance is already reached for a domain sizeonind 7§ lattice cells. Fig[B
shows that this results from the additional overhead of th&®U and BC copy operations. The
same holds for the drop in performance using several Blak#he pure kernel runtime of 1 and

64 Blocks is nearly identical. For large domain sizes weéasout 5 % for 8 Blocks and 25 % for
64 Blocks compared to the runtime of one Block. Hence, if s\amall Blocks are required, e.g.
for load balancing strategies, the performance of our GPplementation will be reduced. The
maximum achieved performance is 340 (SP) / 167 (DP) MFLURSngared to the pure kernel

performance we sustain around 80 % using large domains far®® and DP. For small domain

sizes, e.g. 10blattice cells, we estimated in TdB. 1 a drop in performancfaround 300 to 264

MFLUPS (SP), taking only the PCle transfer into account. easurements in Figl 7 show a
performance of around 190 MFLUPS. As can be seen irfFig. 8dikcrepancy again results from
the, in this case dominating, overheads of the on-GPU c@pidghe BC treatment. This clearly
indicates that the PCle transfer, which is included in thet@tment, is not the only component
crucial to sustain a large portion of the kernel performanthe on-GPU copy operations are
hereby unavoidable, but the BC could be treated directlyh@enGPUs for further performance
improvement. This will be investigated in future work.

The single node performance on JUROPA and JUGENE is presentég.[9. Compared to the

maximum single GPU performance the CPU performance carreispto about 25 % in SP and
33% in DP on JUROPA and 2 % in SP an8 36 in DP on JUGENE. Usually, we use domain sizes
ranging from 96 to 13 in DP on one CPU core. For these sizes, the CPU measurementsish

e BC 1 Block Pinned
+— BC 64 Blocks Pinned
=-20n-GPU Copy 1 Block
F |+-0on-GPU Copy 64 Block]
= 5oC | — Kernel 1 Block E
[| -- Kernel 64 Blocks

7]

=

—-0——-0—-0—-""——"—*——

.- - N e e L e il

100 150 200 250
Cubic Domain Size

(a) Runtime

160

140
130
120

80
170

150

10

=
V)
T U-I T

o
\l
T m T

o

GPU Overhead Ratio
. [6)]

o
V)
a

=
=y
o g

[EnY

N
\
| e [|

=-=0n-GPU Copy 1 Block
+-+0n-GPU Copy 64 Block

«— BC 1 Block Pinned
+— BC 64 Blocks Pinned

7]

e womm |
“““““ P il S . ke e B o i . - e .

1.2t

0.5

50

100

150 200 250
Cubic Domain Size

(b) Overhead Ratios

1.7¢
15

0.7¢

0.2¢8

Figure 8: Single-GPU time measurements on TinyGPU(TESLBAED]} in SP. Fig. (a) shows the runtimes of different
parts of the algorithm and Fig. (b) shows the ratio of the fiffte on-GPU copy operations and boundary condition
handling (BC) to the kernel execution time. In both Figuresuits are given for 1 and 64 Blocks. Pinned memory
denotes host memory allocated by the CUDA caltlaHostAlloc

14

80 I I e — A: . 80 8 \ \ —8
L ,440:1:._; :'.——._ —— i b R 4
70r ,..a“’"r:*—‘;—*m v 70 s e " G
G) L i 8 L »” /V,lr::_—}—. /I\ i
S 60 160 Q6 ’ ol AN ST
L] Z |]
& 50 450 g 5F -5
o 1 o 1
401 -40 4t -4
2 L «-+ 1 Block per Core SP | | g L]
D 30 == 8 Blocks per Core SP {30 D 3 «- 1 Block per Core SP| -3
i - ~- 27 Blocks per Core SPH i - «- 27 Blocks per Core SP
= 20 +— 1Block per Core DP |20 = 2 +— 1 Block per Core DP | 2
i — 8 Blocks per Core DR 1 r ~~ 27 Blocks per Core DP |
10? «— 27 Blocks per Core DP| 10 1 11
| | | | | | | | |
% 25 50 75 100 _ 125 © % 25 50 75 100 °
Cubic Domain Size per Core Cubic Domain Size per Core
(a) JUROPA (b) JUGENE

Figure 9: Single node CPU measurements on JUROPA (Xeon XsBicDJUGENE (BlueGene/P) for different Block
numbers per core. For JUROPA 8 and for JUGENE 4 cores are used.

superior performance for multi-Block simulations compki@single Block simulations. Thisis in
contrast to the GPU implementation, where multiple Blocksse a degradation in performance.
This results from an efficient utilization of the cache dudlmcking effects occurring especially
for the AoS data layout. Hence, for the investigated archites block-structured grids are well
suited for load balancing strategies.

5.2. Multi-CPU and GPU Performance

T 27 T
- [+—+360"3 SP 1 500~ +—+360"3 SP s
6(- |==240"3 DR 16 3 =—= 240”3 DR 1
1 o L
1g S 400 40C
4 S [
()
14 9300~ 30C
7
413 0O
17 D 200~ —20C
-
,2 LL L 4
1. = 100 -10c
,1 | |
O | | | | | | | | | | | | | | \7 0 PN T I S T T S N I A T NI |
O 2 4 6 8 10 12 14 16 18 20 22 24 26 28 3 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Nodes (2 GPUs per Node) Nodes (2 GPUs per Node)
(a) Absolute performance (b) Relative performance

Figure 10: Multi-GPU strong scaling experiments on the NE€halem cluster (TESLA S1070) with a domain size
of 360 lattice cells in SP and 240attice cells in DP. The block decomposition is three diniemal. Figure (a) shows
the absolute performance values, whereas Figure (b) shev®lative performance, i.e. the absolute performance
divided by the number of compute nodes.

15

GFLUPS

There are two basic scenarios to investigate parallel peence: weak scaling and strong scaling.
In weak scaling experiments, the work load per compute nedept constant for an increasing
number of nodes. With this scenario the scalability and therall manageable parallelism of the
code is evaluated. Strong scaling experiments answer #siqn how much the time to solution
can be reduced for a given problem. Therefore, the work Idatl nodes is kept constant leading
to a dominating communication overhead and thus a drop iadsgewith an increasing number
of nodes. An important point for the scalability of multi-GRimulations is whether the perfor-
mance scales if using two GPUs on the same node. On TinyGPlthandEC Nehalem cluster
this has been the case, as we achieved around 95 % parabiereffi for two GPUs. Further,
weak scaling experiments on the NEC Nehalem cluster showeshdy linear scaling up to 60
GPUs for the domain size 222esulting in a maximum performance of around 16 GFLUPS in SP.
In comparison to todays CPUSs, single GPUs offer a superidopeance. Hence, on the one hand
they should be well suited to reduce the time to solution iralpa simulations as less internode
parallelism is required. On the other hand, the multi-GPWgumance is not only hampered by
the MPI communication, but also by the PCle transfers, th&BlJ copies, and, in contrast to
the CPU, the missing cache effect for small domains. In oud GRong scaling experiments,
depicted in Figl_Tl0, it can be seen that the relative perfanador 1 to 30 compute nodes drops
from around 500 to 235 MFLUPS in SP and from around 250 to 10QW#FS in DP. Compared
to the CPU strong scaling experiments in Figl 11, we neednar@u(SP & DP) compute nodes
on JUROPA and 75 (SP) / 50 (DP) on JUGENE to achieve the peaioceof a single GPU node
on the NEC Nehalem cluster. To achieve the performance of 30 Gompute nodes, we need
around 137 (SP) / 70 (DP) compute nodes on JUROPA and 1275 (&®) (DP) on JUGENE.
The corresponding parallel efficiencies are: 46 (SP) / 37) (@Hor the GPU implementation
on NEC Nehalem cluster, 65 (SP) / 93 (DP) % for the CPU implagatean on JUROPA and
90 (SP) / 98 (DP) % on JUGENE. Hence, to achieve the same tirseltition our GPU imple-

¥ L ©O
QA >
A
1T \ A1 Soiy/‘—é_“,_‘é\u”,uH,HH,HH,HH,HH,HH,HLBO
100 7] 10 e N &-©JUGENE 36073 SP
I] @ 70- ‘v & JUGENE 24073 DP| 70
ol 2l d9 '8 L . =8 JUROPA 360"3 SP!
sl g > 60j \E\ =+ JUROPA 24073 DZ{GO
7k 17 @ soF ey 50
6 -16 r 1
n 40‘8/5\5/8\9—5\9\8 140
5+ -5 ol L]
N i D 30+ =30
s 55 JUGENE 360°35P17 =1 1]
3 e-©JUGENE 240"3DP|3 L 5oL 120
5 =5 JUROPA 360"3 SP|, = 77|]
i =+ JUROPA 240"3 DP] 10 110
11 L Be==ee==Bmmmgog oo O 5--- oo ___4
d | \ \ \ \ \ TR NI IR AT NN N SRS SUR S
2000 4000 6000 8000 10000 12000 94 0 16 32 64 128256 5121024 2048 4096 81920
Cores Cores
(a) Absolute performance (b) Relative performance

Figure 11: Multi-CPU strong scaling performance on JURORAdn X5570) and JUGENE (BlueGene/P). The block
decomposition is three dimensional.

16

mentation makes less efficient use of the utilized hardwarealso requires fewer nodes.

5.3. Heterogeneous GPU-CPU Performance

500—— ‘ ‘ ‘ ———50C Block Size 76 718 90 918
b 1 Blocks 44 44 50 50
400~ A0c Processes
n 2 x GPU 379.1 341.6 422.6 404.3
o300~ —<30C 2XGPU+6xCPU 423.2 382.6 466.7 446.1
S |
S 200 20
Block Size 78 713 90° 913
100- -10c Processes
1 6 x CPU (6 Blocks) 58.5 58.6 58.1 58.1
00 : ‘5 : ‘ 1‘5 2‘5 0 2xGPU (2Blocks) 388.2 431.2 4953 469.2

10 20
Blocks on each GPU

(a) Investigation of the load balance with 6 CPU-only prab) Performance comparison between homogeneous and
cesses each working on one Block and 2 GPU proces$éeserogeneous setups depending on the Block size.

with varying block counts. The Block size is dattice

cells.

Figure 12: Heterogeneous performance on one compute nddey@PU (TESLA C1060) in SP.

To discuss the capabilities of heterogeneous simulatin@RiJs and CPUs we first investigate the
performance on a single compute node of TinyGPU. Here, lesfdnmnance results are achieved
with 6 CPU only processes and 2 for the GPUs. Additionallymiork load for each process has to
be adjusted. This is depicted in Fig._l2a, where each CPUepsdtas one Block with SQattice
cells, whereas the number of blocks allocated on each GPtekgsas increased until the work
load is balanced. Note that in the load-balanced case of @Blon each GPU, the runtime of
the GPU kernel is still 33 % lower than the runtime of the CPthké as on the GPU side a larger
communication overhead is added to overall runtime. Furth&ab[12b the node performance of
heterogeneous simulations is compared to simulationg usity GPUs having the same number
of Blocks or just one Block on each GPU. Hereby, the numberlotig is chosen so that the
heterogeneous simulations are load balanced. It can betlsaetne heterogeneous simulations
yield an increase in performance of around 42 MFLUPS for EltB sizes, whereas the maximum
for 6 CPU processes would be around 58 MFLUPS. Compared tdaions running on two GPU
processes, which have only one Block on each process we &osad 5- 12 % performance
due to the increased overhead. For thé Bldck size the kernel performance is overly high due
to padding effects and hence we gain around 10 % in perforeaaBummarizing, for the mere
purpose of a performance increase our current heterogememementation is not suitable, but
for simulations requiring several blocks on each procegsfer load balancing strategies or other
optimizations, it is possible to improve the performanceldiionally, with our implementation
the memory of GPU and CPU can be utilized, which allows fogéaisimulation setups. So far,
we have only considered heterogeneous simulations on Esiogipute node. In Tabl 2 weak

17

Blocks GPU: 1 GPU: 22,CPU: 1

Nodes 1 30 1 30 60 90
Processes 2xGPU 60xGPU 2xGPU+ 60xGPU+ 60GPU+ 60GPU+
6 x CPU 180xCPU 420xCPU 660 x CPU

MFLUPS 476 14480 459 13267 15684 17846

Table 2: Heterogeneous weak scaling experiments using 8@ tompute nodes on the NEC Nehalem cluster. The
simulation domain for nodes with GPUs isx@®00k90 and for CPU-only nodes 8840x90. All presented results are
in SP and the load for the heterogeneous simulations is tedan

scaling experiments up to 90 compute nodes are depictedwaalk scaling experiment using 60
GPUs on 30 compute nodes shows a perfect parallel efficiamtyee heterogeneous experiment
running on 60 GPUs and 180 CPU only processes has a paréttedredy of 96 %. In addition, we
have conducted scaling experiments using different kindoofipute nodes, e.g. compute nodes
having only a CPU and nodes having additional GPUs. It carebe that the performance scales
well from 30 up to 90 compute nodes. Hence, with our implemtm it is possible to efficiently
utilize all nodes on clusters having heterogeneous nodégrwations. A further improvement
of our heterogeneous design for multiphysics simulatiomsicc be the simulation of complex
spatially contained functionality, e.g. a rising bubble,processes running on CPUs and to only
simulate pure fluid regions on the GPUs, for which they areeruily suited best.

6. Conclusion

A fundamental requirement for the utilization of GPUs in HEIGsters are scalable multi-GPU
implementations. In this article, we have shown that thigdssible for the LBM. Additionally,
by means of our Patch and Block design, and our functionaliiypagement we have presented
an approach for heterogeneous simulation on clusters ediwith varying node configurations.
Further, we have shown that with our WalLBerla framework goaatime performance results
can be achieved on various compute platforms despite thrdeae for flexibility and its suitabil-
ity for multiphysics simulations. In future work, we will émize the memory accesses of our
GPU implementation with the help of padding strategies ds ageimplement arbitrary bound-
ary conditions, directly computed on the GPU. We will alseeistigate hybrid OpenMP and MPI
parallelization in combination with heterogeneous sirtiafes.

Acknowledgments

This work is partially funded by the European CommissionhidECODE CORDIS project
no. 213295, by the Bundesministerium fur Bildung und Fowsg under th&KALBproject, no.
01IHO8003A, as well as by the “Kompetenznetzwerk fur Testim-Wissenschaftliches Hoch- und
Hochstleistungsrechnen in BayerrK@QNWIHR via walLBerlaMC Compute resources on JU-
GENE and JUROPA were provided by the John-von-NeumannuitsijResearch Centre Julich)
under the HER12 project. We thank the DEISA Consortium, wadéd through the EU FP6

18

project RI-031513 and the FP7 project RI-222919, for supaod access to Juropa within the
DEISA Extreme Computing Initiative. Access to the systeirdlaRS was granted througBun-
desprojekt LBA-Diff

References

[1] J. Tolke, M. Krafczyk, Teraflop Computing on a Desktop ®€&h GPUs for 3D CFD, Int. J. Comput. Fluid
Dyn. 22 (7) (2008) 443-456.

[2] J. Habich, T. Zeiser, G. Hager, G. Wellein, Speeding upa#tite Boltzmann Kernel on nVIDIA GPUs, in:
Proceedings of the First International Conference on RrBlistributed and Grid Computing for Engineering,
Civil-Comp Press, 2009, p. 17.

[3] C. Obrecht, F. Kuznik, B. Tourancheau, J.-J. Roux, A Nepproach to the Lattice Boltzmann Method for
Graphics Processing Units, Computers & Mathematics withlisptions In Press, Corrected Proof.

[4] M. Bernaschi, M. Fatica, S. Melchionna, S. Succi, E. Kagj A Flexible High-Performance Lattice Boltzmann
GPU Code for the Simulations of Fluid Flows in Complex Geamet Concurrency and Computation: Practice
and Experience 22 (1) (2010) 1-14.

[5] TOP500 Supercomputer Sitds;tp://www.top500.org/ (Mar. 2010).

[6] S. Chen, G. D. Doolen, Lattice Boltzmann Method for Fl&idws, Annual Review of Fluid Mechanics 30 (1)

(1998) 329-364.

[7] S. Succi, The Lattice Boltzmann Equation for Fluid Dyriesend Beyond (Numerical Mathematics and Scien-
tific Computation), Oxford University Press, USA, 2001.

[8] X.He, L.-S. Luo, Lattice Boltzmann Model for the Incongssible NavierStokes Equation, Stat. Phys. 88 (3-4)

(1997) 927-944.

[9] T.Zeiser, G. Hager, G. Wellein, Benchmark Analysis amqphAcation Results for Lattice Boltzmann Simulations

on NEC SX Vector and Intel Nehalem Systems, Parallel Pracgé®tters 19 (4) (2009) 491-511.

[10] C. K. Aidun, J. R. Clausen, Lattice-Boltzmann Method@omplex Flows, Annual Review of Fluid Mechanics
42 (1) (2010) 439-472.

[11] C. Feichtinger, J. Gotz, S. Donath, K. Iglberger, Wdr; WalLBerla: Exploiting Massively Parallel Systems for
Lattice Boltzmann Simulations, in: R. Trobec, M. Vajterdic Zinterhof (Eds.), Parallel Computing. Numerics,
Applications, and Trends, Springer-Verlag, Berlin, Hdideg, New York, 2009, pp. 240-259.

[12] Regionales Rechenzentrum Erlangettp: //www.rrze.de/dienste/arbeiten-rechnen/hpc/systeme/tinygpu-clus
(May 2010).

[13] JUROPA Cluster Forschungszentrum Julicttp: //www.fz-juelich.de/portal/forschung/information/supercomp
(May 2010).

[14] NEC Nehalem Cluster Hochstleistungsrechenzentrutigarthttp: //www.hlrs.de/systems/platforms/nec-nehalem
(May 2010).

[15] JUGENE Cluster Forschungszentrum Julicti,p: //www.fz-juelich.de/portal/forschung/information/supercomg
(May 2010).

[16] nVIDIA Cuda Toolkit 2.3http://www.nvidia.com/object/cuda_get.html (Sep. 2009).

[17] nVIDIA Cuda Programming Guide 2.3Attp://developer.download.nvidia.com/compute/cuda/2_3/toolkit/doc:
(Aug. 2009).

[18] Intel MPI Benchmarkshttp://software.intel.com/en-us/articles/intel-mpi-benchmarks/(May
2010).

[19] The Stream Benchmarkttp://www.streambench.org/ (Mar. 2010).

[20] G. Wellein, T. Zeiser, G. Hager, S. Donath, On the SirRjlecessor Performance of Simple Lattice Boltzmann
Kernels, Computers & Fluids 35 (8-9) (2006) 910-919.

[21] B. Boehm, A Spiral Model of Software Development and Bnéement, ACM SIGSOFT Software Engineering
Notes 11 (4) (1986) 14-24.

[22] H. van Vliet, Software Engineering: Principles and ®i@e, 3rd Edition, John Wiley & Sons, Inc. New York,
NY, USA, 2008.

19

http://www.top500.org/
http://www.rrze.de/dienste/arbeiten-rechnen/hpc/systeme/tinygpu-cluster.shtml
http://www.fz-juelich.de/portal/forschung/information/supercomputer/juropa
http://www.hlrs.de/systems/platforms/nec-nehalem-cluster/
http://www.fz-juelich.de/portal/forschung/information/supercomputer/jugene
http://www.nvidia.com/object/cuda_get.html
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.3.pdf
http://software.intel.com/en-us/articles/intel-mpi-benchmarks/
http://www.streambench.org/

(23]

[24]

[25]

[26]

[27]
(28]

[29]

E. Gamma, R. Helm, R. Johnson, J. Vlissides, DesigreRatt Elements of Reusable Object-Oriented Software,
Addison-Wesley Longman Publishing Co., Inc. Boston, MA AJ$995.

S. Donath, C. Feichtinger, T. Pohl, J. Gotz, U. Ruidecalized Parallel Algorithm for Bubble Coalescence in
Free Surface Lattice-Boltzmann Method, in: Lecture Note€omputer Science, Euro-Par 2009, Vol. 5704,
Springer, 2009, pp. 735-746.

S. Bogner, Simulation of Floating Objects in Free-&ad Flovy, Diploma Thesis (2009).
URLhttp://wwwl0.informatik.uni-erlangen.de/Publications/Theses/2009/Bogner_DA0O9.pdf

D. Haspel, Simulation of Clotting Processes using N&wtonian Blood Models and the Lattice Boltzmann Method,
Master’s Thesis (2009).
URLhttp://wwwl0.informatik.uni-erlangen.de/Publications/Theses/2009/Haspel _MAO9.pdf

J. Gotz, K. Iglberger, C. Feichtinger, S. Donath, Wide; Coupling Multibody Dynamics and Computational
Fluid Dynamics on 8192 Processor Cores, Parallel Comp@6n@-3) (2010) 142 — 151.

B. Dunweg, U. Schiller, A. J. C. Ladd, Statistical Mexctics of the Fluctuating Lattice Boltzmann Equation,
Phys. Rev. E 76 (3) (2007) 036704.

H. Kdstler, A Multigrid Framework for Variational Appaches in Medical Image Processing and Computer
Vision, Verlag Dr. Hut, Minchen, 2008.

20

http://www10.informatik.uni-erlangen.de/Publications/Theses/2009/Bogner_DA09.pdf
http://www10.informatik.uni-erlangen.de/Publications/Theses/2009/Bogner_DA09.pdf
http://www10.informatik.uni-erlangen.de/Publications/Theses/2009/Haspel_MA09.pdf
http://www10.informatik.uni-erlangen.de/Publications/Theses/2009/Haspel_MA09.pdf

	1 Introduction
	2 Methods and Architectures
	2.1 The Lattice Boltzmann Method
	2.2 Hardware Environments
	2.2.1 CPU-based Cluster Systems
	2.2.2 nVIDIA Graphic Processing Units

	2.3 Interconnects

	3 CPU and GPU Kernel Implementation
	3.1 Upper Bound Performance Estimation
	3.2 Kernel Performance and Implementation Details

	4 The WaLBerla Framework
	4.1 Functionality Management
	4.2 Patch and Block Concept
	4.3 General Design of the MPI Communication
	4.4 Multi GPU Implementation
	4.5 Heterogeneous GPU / CPU Implementation

	5 Investigation of Performance and Scalability
	5.1 Single GPU and CPU Performance
	5.2 Multi-CPU and GPU Performance
	5.3 Heterogeneous GPU–CPU Performance

	6 Conclusion

