
ar
X

iv
:1

00
7.

13
88

v1
 [

cs
.D

C
]

8
Ju

l 2
01

0

A Flexible Patch-Based Lattice Boltzmann
Parallelization Approach for Heterogeneous GPU–CPU Clusters

Christian Feichtingera,∗, Johannes Habichb, Harald Köstlera, Georg Hagerb, Ulrich Rüdea,
Gerhard Welleinb

aChair for System Simulation
University of Erlangen-Nuremberg

bRegional Computing Center Erlangen
University of Erlangen-Nuremberg

Abstract

Sustaining a large fraction of single GPU performance in parallel computations is considered to
be the major problem of GPU-based clusters. In this article,this topic is addressed in the context
of a lattice Boltzmann flow solver that is integrated in the WaLBerla software framework. We
propose a multi-GPU implementation using a block-structured MPI parallelization, suitable for
load balancing and heterogeneous computations on CPUs and GPUs. The overhead required for
multi-GPU simulations is discussed in detail and it is demonstrated that the kernel performance
can be sustained to a large extent. With our GPU implementation, we achieve nearly perfect
weak scalability on InfiniBand clusters. However, in strongscaling scenarios multi-GPUs make
less efficient use of the hardware than IBM BG/P and x86 clusters. Hence, a cost analysis must
determine the best course of action for a particular simulation task. Additionally, weak scaling
results of heterogeneous simulations conducted on CPUs andGPUs simultaneously are presented
using clusters equipped with varying node configurations.

Keywords: Lattice Boltzmann Method, MPI, CUDA, Heterogeneous Computations

1. Introduction

In the field of computational fluid dynamics (CFD), flow solvers based on the lattice Boltzmann
method (LBM) have become a well-established alternative for solving the Navier-Stokes equa-
tions directly. The LBM algorithm is a cellular automaton derived from the Boltzmann equation;
each node (cell) on the computational grid exchanges information with its neighbors, which makes
memory bandwidth the performance-limiting bottleneck of the LBM in most cases. Modeling real
systems requires large computational effort, therefore performance optimization and paralleliza-
tion of LBM codes are very active fields of research. GPU architectures offer the highest memory

∗Corresponding author
Email address:Christian.Feichtinger@informatik.uni-erlangen.de (Christian Feichtinger)

Preprint submitted to Parallel Computing October 29, 2018

http://arxiv.org/abs/1007.1388v1

to processor chip bandwidth available today in commodity hardware and promise a big perfor-
mance gain for memory-bound applications. However, tremendous effort has to be put into highly
efficient LBM codes even on single GPUs [1, 2, 3]. First promising results of nonregular imple-
mentations [4] show that the LBM is applicable to nonuniformdomains and multi-GPU clusters
as well.

In order to push these experimental efforts into real production CFD applications it is crucial to
establish scalable LBM codes on GPU clusters. Still the current Top500 list [5] contains only a
few GPU clusters, since the nonstandard programming paradigm and the rather slow CPU-to-GPU
connection are obstacles that hamper their general applicability. The main contribution of this pa-
per is to show that it is possible to exploit the full computational power of currently emerging
GPU–CPU clusters. We start by applying low-level optimizations to the GPU kernels to improve
single-GPU performance, then move to multiple GPUs using MPI-based distributed memory par-
allelization, and finally establish load-balanced heterogeneous GPU–CPU parallelism by incorpo-
rating the otherwise idle multicore CPUs and GPU-less compute nodes into the flow solver.

To bring together high performance and high productivity weapply aPatch and Blockdesign,
which divides the computational domain into subregions that are distributed to thecompute units
(GPUs or teams of CPU threads in a multicore node). This is a choice as to how many subre-
gions are assigned to each compute unit instead of individual cells, simplifying static load balanc-
ing. Ghost layers are exchanged between neighboring subregions using the appropriate data paths
(shared memory, PCIe bus, InfiniBand interconnect). A simulation is thus able to run in parallel
on a heterogeneous cluster comprising various different architectures. The whole code is included
in the WaLBerla (Widely applicable lattice Boltzmann solver from Erlangen) software framework,
which is employed in many CFD applications. We can show that high computational performance
can be sustained within WaLBerla and therefore only very small application management and
communication overhead is added.

This paper is organized as follows. We start with a brief description of the architectures used for
measurements and the LBM method in Sec. 2. Code optimizations and performance models are
shown in Sec. 3. Section 4 describes the WaLBerla software framework and the heterogeneous
parallelization approach. In Sec. 5 we finally analyze the performance behavior of our code on
single CPUs, single GPUs, and heterogeneous CPU–GPU clusters in strong and weak scaling
scenarios.

2. Methods and Architectures

2.1. The Lattice Boltzmann Method

The LBM has evolved over the last two decades and is today widely accepted in academia and
industry for solving incompressible flows. Coming from a simplified gas-kinetic description, i.e.
a velocity discrete Boltzmann equation with an appropriatecollision term, it satisfies the Navier-
Stokes equations in the macroscopic limit with second orderaccuracy [6, 7]. In contrast to conven-
tional computational fluid dynamic methods, the LBM uses a set of particle distribution functions
(PDF) in each cell to describe the fluid flow. A PDF is defined as the expected value of particles
in a volume located at the lattice position~x with the lattice velocity~ei . Computationally, the LBM

2

is based on a uniform grid of cubic cells that are updated in each time step using an informa-
tion exchange with nearest neighbor cells only. Structurally, this is equivalent to an explicit time
stepping for a finite difference scheme. For the LBM the lattice velocities~ei determine the finite
difference stencil, wherei represents an entry in the stencil. Here, we use the so-called D3Q19
model resulting in a 19 point stencil and 19 PDFs in each cell.The evolution of a single PDFfi is
described by

fi(~x+~ei∆t, t+∆t) = f coll
i (~x, t) =

fi(~x, t)−
1
τ
[

fi(~x, t)− f eq
i (ρ(~x, t),~u(~x, t))

]

(1)

f eq
i (ρ(~x, t),~u(~x, t)) = wi

[

ρ +ρ0
(

3~ei~u+4.5(~ei~u)2
−1.5~u2

)]

(2)

i = 0. . .19,

and can be split into two steps: A collision step applying thecollision operator and a propagation
step advecting the PDFs to the neighboring cells. In this article, we use the single relaxation time
collision operator [7]. In Eq. 1,f coll

i denotes the intermediate state after collision but before prop-
agation. The relaxation timeτ can be determined from the kinematic viscosityν = (τ − 1

2)c
2
sδ t,

with cs as the speed of sound. Further,f eq
i is a Taylor expanded version of the Maxwell-Boltzmann

equilibrium distribution function [7] optimized for incompressible flows [8]. For the isothermal
case, f eq

i depends on the macroscopic velocity~u(~x, t) and the macroscopic densityρ(~x, t), and
the lattice weightswi are 1

3, 1
18 or 1

36. The macroscopic quantitiesρ and~u are determined from
the 0th and 1st order moment of the distribution functionsρ(~x, t) = ρ0+ δρ(~x, t) = ∑18

i=0 fi(~x, t),
and ρ0~u(~x, t) = ∑18

i=0~ei fi(~x, t), whereρ is split into a constant partρ0 and a slightly changing
perturbationδρ . The equation of state of an ideal gas provides the pressurep(~x, t) = c2

sρ(~x, t).
Usually, the PDFs are initialized tof eq

i (ρ0,0). To increase the accuracy of simulations in single
precision we usef̃i(~x, t) = fi(~x, t)− f eq

i (ρ0,0) and f̃ eq
i (ρ(~x, t),~u(~x, t)) = f eq

i (ρ(~x, t),~u(~x, t))−
f eq
i (ρ0,0) as proposed by [8] resulting in PDF values centered around 0.According to [1], it is

possible with the LBM scheme described above to achieve accurate single precision results, which
is important for GPU implementations.

A further important issue is the implementation of the propagation, for which there exist two
schemes: First a pushing and second a pulling. For the first case, the PDFs in a cell are first
collided and then pushed to the neighborhood. In the second case, the neighboring PDFs are first
pulled into the lattice cell and then collided. Additionally, the propagation step introduces data
dependencies to the LBM, which commonly result in an implementation of the LBM using two
PDF grids. However, these dependencies are of local type, asonly PDFs of neighboring cells are
accessed. Hence, the LBM is particularly well suited for massively parallel simulations [9, 10, 11].
In WaLBerla, we use thepull approach as it is better suited for our parallelization (seeSec. 4 for
details on the parallelization).

The most common approach for implementing solid wall boundaries in the LBM is the bounce-
back (BB) rule [6, 7], i.e. if a distribution is about to be propagated into a solid cell, the dis-
tribution’s direction is reversed into the original cell. BB generally assumes that the wall is in
the middle between the two cell centers, i.e. half-way. Thisformulation leads to:fī(~x, t +∆t) =

3

fi(~x, t)+6wiρ0~ei~uw with~eī =−~ei anduw being the velocity prescribed at the wall.

2.2. Hardware Environments

2.2.1. CPU-based Cluster Systems

In general, current clusters based on dual-socket Intel quad-core processors offer a peak node per-
formance in the range of 60 to 100 GFLOPS. The on-chip memory controllers with up to three
DDR3 memory channels per socket provide a theoretical peak node bandwidth of 64 GB/s. The
clusters introduced in the following table all share this common architecture:

Nodes Processor Interconnect Clock Speed Memory nVIDIA GPUs per Node
Xeon [GHz] [GB]

TinyGPU [12] 8 X5550 DDR IB 2.66 24 2 x TESLA C1060
JUROPA [13] 2208 X5570 QDR IB 2.93 24
NEC Nehalem [14] 700 X5560 DDR IB∗ 2.8 12 2 x TESLA S1070
∗ Oversubscribed IB backbone (30 nodes)

The IBM BlueGene/P-based cluster JUGENE [15] comprises 73728 compute nodes, each equipped
with one 850 MHz PowerPC 450 quad-core processor and 4 GB memory, which are connected via
a proprietary high speed interconnect offering 850 MB/s perlink direction.

2.2.2. nVIDIA Graphic Processing Units

The GT–200-based GPUs are the second generation of nVIDIA graphics cards capable of GPGPU
computing using theCompute Unified Device Architecture(CUDA) [16]. A GPU has several mul-
tiprocessors (MP), each with 8 processor cores. Computations are executed by so-called threads,
whereas up to 1024 threads are concurrently running on one MPin order to hide memory latency
by efficient scheduling. Threads are organized in GPU-blocks, which are pinned to an MP over
the whole runtime. Each MP has 16384 registers and 16 kB of shared memory available, i.e. there
are only 16 registers and about 16 bytes per thread if 1024 threads are running in parallel. Hence,
the concurrency is limited if kernels allocate more than 16 registers, which has a severe impact on
performance. See [17] for further details on CUDA and nVIDIAGPU hardware.

2.3. Interconnects

Most of today’s high performance systems use InfiniBand (IB)for the connection of the compute
nodes. Heterogeneous computations on CPUs and GPUs requirePCI-Express (PCIe) transfers for
both IB and CPU–GPU communication. In order to develop a sensible performance model, all
involved communication paths must be considered.

PCIe 2.0 x16 is currently the fastest peripheral bus with a peak transfer bandwidth of 8 GB/s per
direction. Figure 1 shows that one can maintain about 6 GB/s bandwidth if the transfered data is
larger than 2 MB and the CUDA callcudahostallocis used to allocate so-calledpinned memory
on the host. Pinned memory in contrast to memory allocated bymallocwill not be paged out, is
private to the process allocating it, and is local to the physical socket of the allocating process.
The advantage of pinned memory results from the possibilityto use fast direct-memory-accesses

4

1/8

1/8

1/4

1/4

1/2

1/2

1

1

2

2

4

4

8

8

16

16

32

32

64

64

128

128

256

256

512

512

Data transferred [MB]
0 0

1 1

2 2

3 3

4 4

5 5

6 6

B
an

dw
id

th
 [G

B
/s

]

PCIe Device to Host copy
PCIe Host to Device copy
PCIe Device to Host copy pinned
PCIe Host to Device copy pinned
DDR InfiniBand PingPong
QDR InfiniBand PingPong

Figure 1: Host–GPU and MPI PingPong bandwidth measurementson TinyGPU. The functioncudaMemcpyimple-
menting a vector copy is used for all PCIe copy operations.

(DMA). With our current LBM implementation packets in the range of 250 kB to 500 kB are
exchanged per PCIe data transfer, leading to an effective bandwidth between about 5 GB/s and
6 GB/s. Please note that two GPUs on the NEC Nehalem cluster have to share the same PCIe bus,
which is capable of transferring 12.8 GB/s.

IB host adapters are connected to the host via the PCIe x8 interface. IB bandwidth measurements
of the Intel IMBPingPongbenchmark [18] for quad-(QDR) and double-(DDR) data rate IBcan be
found in Fig. 1. The measurements show that QDR (3.0 GB/s) doubles the bandwidth compared
to DDR (1.5 GB/s) and that the GPU’s PCIe operates with at least twice the bandwidth.

The performance of LBM codes is usually given in terms ofmillion fluid lattice cell updates per
second(MFLUPS) instead of GFlops, as the actual executed GFlops cannot be determined pre-
cisely. Table 1 gives an estimate for the minimal impact of the data transfer over all interconnects
on performance. The compute time of the kerneltk and the IB and PCIe data transfer timestt can
hereby be determined by

tk =
n3

cell

P
and tt =

2 ·n2
cell ·nPDF ·nplane·sPDF

B
,

whereP is the performance,nCell the number of lattice cells per dimension,nPDF the number of
PDFs communicated per boundary cell,nplane the number of planes to be communicated,sPDF the
size in bytes of a PDF andB is the bandwidth of the corresponding interconnect. It was assumed
that all domain boundaries have to be communicated, which results in the transfer of 6 boundary
planes with 5 PDFs per cell.

3. CPU and GPU Kernel Implementation

3.1. Upper Bound Performance Estimation

The performance of our LBM implementation is like most scientific codes dominated by memory
bandwidth. To estimate an upper bound for the obtainable LBMbandwidth on CPUs, we employ

5

Steps Tesla C1060 (∼ 300 MFLUPS)

Compute Time 3.3 ms
PCIe: 5 GB/s (I) 0.48 ms
IB: 3.0 GB/s (II) 0.8 ms

Total Time: (I) 3.78 ms→ 264 MFLUPS
(I+II) 4.58 ms→ 218 MFLUPS

Table 1: Performance estimates for multi-GPU single precision LBM simulations including InfiniBand and PCIe
transfers of the complete boundary data. The estimated times are based on the obtainable bandwidth. A domain size
of 1003 lattice cells is assumed for the example and the pure kernel performance has been taken from Fig. 2.

the vector operationc(:) = a(:) from theSTREAM Benchmarks[19], which results in a mem-
ory bandwidth of 33 GB/s on JUROPA. The CPU’s cache hierarchyand arithmetic units are fast
enough so that computations and in-cache transfers are completely hidden by memory loads and
stores. For the GPU bandwidth, we implemented our own benchmark, which achieved a maximum
memory bandwidth of 78 GB/s on a nVIDIA TESLA C1060, if the occupancy is at least 0.5, i.e. if
at least 512 threads out of the maximum of 1024 (GT–200) threads are scheduled per MP. Further
benchmark details can be found in [2]. Furthermore, the bytes transferred for each LBM lattice
cell updatenbytescan be determined by [20]

nbytes= nstencil· (nloads+nstore) ·sPDF,

wherenstencil is the size of the LBM stencil, andnloads andnstoresthe number of load and stores.
Due to theRead-for-Ownership, this results in 228 bytes using single precision (SP) and 456 bytes
using double precision (DP) for the CPU, and 152 (SP) / 304 (DP) bytes for the GPU implementa-
tion. Thus, it is possible to estimate an upper limit for the LBM node performance. For one node
on JUROPA we estimate a performance of 144 (SP) / 72 (DP) MFLUPS and 516 (SP) / 258 (DP)
MFLUPS for one nVIDIA TESLA C1060.

3.2. Kernel Performance and Implementation Details

One key aspect for achieving a good LBM kernel performance isthe data layout. There exist
two major implementation strategies: The Array-of-Structure (AoS) and the Structure-of-Arrays
(SoA) layout. For the AoS layout, the PDFs of each cell are stored adjacent in memory, whereas
for the SoA Layout the PDFs pointing in the same lattice direction are adjacent in memory. Our
CPU kernel implementation uses the AoS layout together withthe pull streaming approach, and to
improve the performance, arithmetic optimizations have been applied. In addition, the Patch and
Block data structures introduced in Sec. 4.2 allow for the decomposition of the simulation domain
into smaller subdomains, leading to an implicit spatial blocking. No further unrolling or spatial
and temporal blocking is applied. Our implementation reaches up to 78 (SP) / 55 (DP) MFLUPS
on one node of JUROPA and up to 7.3 (SP) / 6.1 (DP) on one node of JUGENE. This is slightly
lower, but comparable to well-optimized solvers, e.g. [9].The DP kernel is about 23 % off from
the performance estimated before and still in agreement with the model. The large discrepancy of

6

0 50 100 150 200
Cubic Domain Size

0 0

50 50

100 100

150 150

200 200

250 250

300 300

350 350

400 400

450 450

M
F

LU
P

S

SP
DP

Figure 2: Single-GPU measurements of the pure GPU kernel performance for SP and DP on a nVIDIA TESLA
C1060.

nearly 50 % for the SP kernel can be attributed to the computational intensity of the nonvectorized
LBM kernel, making the code essentially not memory, but computationally bound.

In contrast to the CPU implementation, the GPU implementation uses the SoA layout, because
in combination with the pull streaming approach it is possible to align the memory writes. In
addition, the scattered loads that occur in our implementation can be efficiently coalesced by
the memory subsystem. Hence, we do not have to use the shared memory of the GPU. For the
scheduling of the threads, we adopted a scheme first proposedin [1], where each GPU thread
updates one lattice cell and one GPU block is assigned one rowof the simulation domain. In order
to improve the kernel performance, we reduced the number of registers used for each thread by
prefetching the PDFs into temporal variables and also by modifying the array accesses as described
in [2]. With these optimizations, we can achieve a maximum occupancy of 0.5. The maximum
performance for some domain sizes has been around 500 (SP) / 250 (DP), which agrees well with
our performance estimates and also with the results in [3]. Acomparison to [1] is rather difficult
as they used a different LBM stencil and hardware has evolved. Still, the sustained memory
bandwidth of both implementations on the particular hardware is around 70 % of peak bandwidth.
A detailed kernel performance analysis for cubic domain sizes is depicted in Fig. 2. The measured
performance fluctuations for varying domain sizes result from the different numbers of scheduled
threads per MP and from memory alignment issues.

4. The WaLBerla Framework

WaLBerla is a massively parallel multiphysics software framework that is originally centered
around the LBM, but whose applicability is not limited to this algorithm. Its main design goals are
to provide excellent application performance across a widerange of computing platforms and the
easy integration of new functionality. In this context additional functionality can either extend the
framework for new simulation tasks, or optimize existing algorithms by adding special-purpose
hardware-dependent kernels or new concepts such as load balancing strategies. In order to achieve

7

this flexibility, WaLBerla has been designed utilizing software engineering concepts such as the
spiral model and prototyping [21, 22], and also using commondesign patterns [23]. Several re-
searchers and cooperation partners have already used the software framework to solve various
complex simulation tasks. Amongst others, free-surface flows [24] using a localized parallel algo-
rithm for bubbles coalescence, free-surface flows with floating objects [25], flows through porous
media, clotting processes in blood vessels [26], particulate flows for several million volumetric
particles [27] on up to 8192 cores, and a fluctuating lattice Boltzmann [28] for nano fluids have
been included. In addition to the strictly Eulerian view of field equations and their discretization,
WaLBerla also supports Lagrangian representations of physical phenomena, such as e.g. particu-
late flows. Currently, the prototype WaLBerla 2.0 is under development extending the framework
for heterogeneous simulations on CPUs and GPUs, and load balancing strategies. Heterogeneous
computations are already supported, but the designs for dynamic load balancing strategies are cur-
rently under development, although the underlying data structures can already be used for static
load balancing.

In WaLBerla, all simulation tasks are broken down into several basic steps, so-calledSweeps. A
Sweep can be divided into two parts: a communication step fulfilling the boundary conditions for
parallel simulations by nearest neighbor communication and a communication independent work
step traversing the process-local grid and performing operations on all cells. The work step usually
consists of a kernel call, which is realized for instance by afunction object or a function pointer.
As for each work step there may exist a list of possible (hardware dependent) kernels, the executed
kernel is selected by our functionality management (see below). For pure LBM simulations only
one Sweep is needed exchanging PDF boundary data during the communication phase and execut-
ing one of the kernels that have been described in Sec. 3. The functionality management in WaL-
Berla 2.0 selects the required kernels according to meta data provided with each kernel. This data
allows the selection of different kernels for different simulation runs, processes and subregions of
the simulation domain, so-calledBlocks(see Sec. 4.2). Hence, it is possible to specifically select,
for heterogeneous computations even on each single process, hardware optimized kernels. Further
details on the functionality management can be found in Sec.4.1.

A further fundamental design of the whole software framework is ourPatchandBlockdata struc-
ture, which is a specific version of block-structured grids.Besides forming the basis for the
parallelization and load balancing strategies, Blocks arealso essential to configure the domain
subregions with regard to the simulated task and the utilized hardware. More information on the
Patch and Block data structure can be found in Sec. 4.2. Further, WaLBerla enables parallel MPI
simulations of various simulation tasks. In order to do so, the process-to-process communication
supports messages, containing data from any kind of data structure conforming to a documented
interface, of arbitrary length and data type as well as the serialization of messages to the same
process. Using our parallelization it is possible to represent even complex communication pat-
terns, such as our localized bubble merge algorithm [24] or our parallel multigrid solver ported
from [29]. The general parallelization design is describedin Sec. 4.3. For parallel simulations
on GPUs, the boundary data of the GPU has first to be copied by a PCIe transfer to the CPU and
then be communicated via the MPI parallelization. Therefore, the data structures of the single core
implementation are extended by buffers on GPU and CPU in order to achieve fast PCIe transfers.

8

In addition, on-GPU copy kernels are added to fill these buffers. In Sec. 4.4 the details of our
parallel GPU implementation are introduced. To support heterogeneous simulations on GPUs and
CPUs, we execute different kernels on CPU and GPU and also define a common interface for the
communication buffers, so that an abstraction from the hardware is possible. Additionally, the
work load of the CPU and the GPU processes has to be balanced. In our approach this is achieved
by allocating several Blocks on each GPU and only one on each CPU-only process.

4.1. Functionality Management

The functionality management in WaLBerla 2.0 allows to select different functionality (e.g. ker-
nels, communication functions) for different granularities, e.g. for the whole simulation, for indi-
vidual processes, and for individual Blocks. This is realized by adding meta data to each function-
ality consisting of three unique identifiers (UID).

UID Name Granularity Example

fs Functionality Selector Simulation Gravity on/off
hs Hardware Selector Process CPU and/or GPU
bs Block Selector Block LBM

On the basis of these UIDs the kernels can be selected according to the requirements of the sim-
ulated scenarios. Hence, physical effects can be turned on/off in an efficient well-defined manner
by means of thefsselector. Hardware-dependent kernels can be selected for different architectures
depending on thehsselector and simulation tasks can be selected via thebsselector. A complex
example for the capabilities of our concept are heterogeneous LBM simulations on CPUs and
GPUs described in Sec. 4.5.

4.2. Patch and Block Concept

In WaLBerla the simulation domain is described with our Patch and Block design, which is il-
lustrated in Fig. 3. It has been developed in order to supportmassively parallel simulations, load
balancing strategies and the configuration to simulation tasks and hardware. A Patch hereby is a
rectangular cuboid describing a region in the simulation that is discretized with the same resolu-
tion. In principal, these Patches can be arranged hierarchically for grid refinement techniques, but
in this work we are using only one Patch covering the whole simulation domain. This Patch is
further subdivided into a Cartesian grid of Blocks, again ofcuboidal shape, containing the actual
grid-based data for the simulation (simulation data). Withthe aid of these Blocks the simula-
tion domain can be partitioned for parallel simulation. It is hereby possible to allocate several
Blocks on a process in order to support load balancing strategies. Additionally, with the help of
the functionality management the Blocks’ data can be configured for the simulated scenario. In
particular, each Block contains two kinds of data: management information and simulation data.
The management data contains arank parameter, which decides on which process the simulation
data of the Block is allocated. Additionally, a hardware selector (hs) describes the hardware on
which the Block is allocated, whereby all Blocks on the same process have the same hardware
selector assigned to them. Further, the management data contains a block selector (bs) deciding

9

Figure 3: Patch and Block Design. Each Block stores management information consisting of a block and a hardware
selector, a MPI rank, an axis aligned bounding box (AABB), and a Block identifier (BlockID) required for the identi-
fication of individual Blocks. The Blocks’ management information is stored on all processes, but simulation data is
only allocated on processes which are responsible for that particular Block.

which task is simulated on a Block. For the simulation data each block stores a dynamic list of
base class pointers. For multiphysics simulations this allows to store an arbitrary number of data
fields, e.g. grid-based data for velocity, temperature or potential values or unstructured particle
data for particulate flows. Hence, each block can be configured in the following way: During
the initialization of a simulation WaLBerla creates lists of possible simulation tasks, kernels for
each Sweep and several simulation data types, whereby each entry in a list is connected to meta
data for the functionality management. With the help of the selectors stored in the management
information it is possible to select which task has to be simulated, which simulation data has to be
allocated, and which kernels have to be selected for the Sweeps from these lists.

4.3. General Design of the MPI Communication

The parallelization of WaLBerla, which is depicted in Fig. 4, can be broken down into three steps:
a data extraction step, a MPI communication step and a data insertion step. During the data extrac-
tion step, the data that has to be communicated is copied fromthe simulation data structures of the
corresponding Blocks. Therefore, we distinguish between process-local and MPI communication
for Blocks lying on the same or different processes. Local communication directly copies from
the sending Block to the receiving Block, whereas for the MPIcommunication the data has first to
be copied into buffers. For each process to which data has to be sent, one buffer is allocated. With
the buffers, all messages from Blocks (block message) on thesame process to another process are
serialized. Additionally, the buffers are of data typebyteand thus the MPI messages can contain
any data type that can be converted into bytes. To extract thedata to be communicated from the
simulation data, extraction function objects are used. Foreach communication step and for each
simulation data type several possible function objects areprovided during the configuration of
the communication. These are again selected via the functionality management. During the MPI

10

Figure 4: Design for parallel simulations. In the Figure, the MPI communication from process I to process II is
depicted. First, the data to be communicated is extracted with provided functions from each Block and stored in send
buffers. For pure fluid flows only PDFs have to be sent. On the sending side an MPIIsend is scheduled and on the
receiving side the message is either received with a MPIProbe, MPIGetCount and a MPIRecv, or a MPIIrecv.
Note, that we attach a header to each Block message containing the BlockID and a communication direction. This is
required in order to determine the Block to which the data hasto be copied on the receiving side.

communication one MPI message is sent to each process waiting for data from the current process.
Therefore, nonblocking MPI functions are used, if the message size can be determined a priori.
The data insertion step is similar to the data extraction, only here we traverse the block messages
in the communication buffers instead of the Blocks.

Figure 5: Multi-GPU design.

4.4. Multi GPU Implementation

For parallel GPU simulations part of the data stored on the GPU has to be transferred to the
CPU via PCIe transfers before it can be communicated by meansof the MPI communication. An
efficient implementation of this transfer is important in order to sustain a large portion of the kernel
performance. Hence, we only transfer the minimum amount of data necessary, the boundary values
of the PDFs. Our parallel GPU implementation is depicted in Fig. 5 for one process having two

11

Blocks. It can be seen that we extended the data structures byadditional buffers on the GPU and on
the CPU side. In 3D, we add 6 planes and 12 edge buffers. To update the ghost layer of the PDFs
and to prepare the GPU buffers for the MPI communication additional on-GPU copy operations
are needed. The data of the buffers is copied to the ghost layer of the Blocks before the kernel call
and the PDF boundary values of the PDF data are copied into theGPU buffers afterwards. For
parallel simulations, the MPI implementation of Sec. 4.3 isused. Here, the only difference to the
CPU implementation are the extraction and insertion functions, which for the local communication
simply swap the GPU buffers, whereas the functioncudaMemcpyis used to copy the data directly
from the GPU buffers into the MPI buffers and vice versa for the MPI communication. To treat
the boundary conditions at the domain boundary, the corresponding GPU buffers are transferred
via cudaMemcpyto the CPU buffers. Next, the boundary conditions are applied and the data is
copied back into the GPU buffers. The boundary conditions are fulfilled before the on-GPU copy
operations.

4.5. Heterogeneous GPU / CPU Implementation

Figure 6: Heterogeneous simulation on GPU and CPU. The illustrated simulation is executed on two processes each
having one Block covering half of the simulation domain. A standard LBM simulation is chosen asfs and on all
Blocks thebspure LBM is activated. Further, the first process runs on a CPU(hsCPU), whereas the second uses a
GPU (hsGPU). According to these UIDs, the simulation data is allocatedand the kernels, the extraction and insertion
functions are selected. For the communication, extractionfunctionscopyToBufare selected by the UIDs of the cor-
responding Block to copy the communicated data in the specified format into the MPI send buffers. After the MPI
communication, the insertion functionscopyFromBufcopy the data from the MPI buffers back into the receiving data
structures.

For parallel heterogeneous simulations, the information which Block runs on which hardware has
to be known on all processes in our implementation. Hence, during the initialization we set on each
process thehsof all Blocks to thehsof the process on which they are allocated. To determine the
hs of each process, the input for the simulation describes all possible node configurations and a
list which node belongs to which configuration. A node configuration defines how many processes
can be executed on a particular node and whichhsshould be used for each process. Using these
hardware selectors, it is now possible to utilize differentLBM kernels and simulation data on

12

0 25 50 75 100 125 150 175200 225 250 275
Cubic Domain Size

0 0

50 50

100 100

150 150

200 200

250 250

300 300

350 350

M
F

LU
P

S

1 Block
8 Blocks
64 Blocks

(a) SP

0 25 50 75 100 125 150 175 200 225
Cubic Domain Size

0 0

25 25

50 50

75 75

100 100

125 125

150 150

175 175

200 200

M
F

LU
P

S

1 Block
8 Blocks
64 Blocks

(b) DP

Figure 7: Single-GPU measurements on TinyGPU (TESLA C1060)for single (SP) and double precision (DP). A three
dimensional partitioning is used to divide the simulation domain into Blocks. For a domain size of e.g. 2003 lattice
cells and 64 Blocks, each Block has a size of 503 lattice cells.

different compute architectures. Further, all compute platforms use an identical layout for the MPI
buffers, which acts as an interface for the MPI communication. Hence, the data in the MPI buffers
is independent of the underlying hardware. During the MPI parallelization, only the extraction and
insertion function have to be selected according to thehsof the Blocks to extract and insert the data
from the different simulation data structures. Fig. 6 illustrates this in detail with a heterogeneous
LBM simulation.

5. Investigation of Performance and Scalability

Subsequently, the performance of our design is discussed bymeans of Lid Driven Cavity scenarios
in 3D. In contrast to other highly optimized implementations on GPUs all measurements presented
involve the PCIe data transfer of the complete halo layer from CPU to GPU and vice versa in
each time step. Therefore, the actual performance is lower in contrast to [1] and [2]. However,
scalability will be rather stable as most of the PCIe communication time is already accounted for
by the single GPU simulation.

First of all, we investigate the single GPU and CPU performance including a detailed examination
of the overhead for multi-GPU simulations in Sec. 5.1. Additionally, the overhead introduced
by several Blocks per process is evaluated to estimate the suitability of the Patch and Block data
structure for load balancing strategies. In Sec. 5.2 we conduct weak and strong scaling experiments
in order to determine how the GPU implementation scales, on the HPC clusters introduced in
Sec. 2.2. Finally, we investigate the performance of our design for heterogeneous computations in
Sec. 5.3.

13

5.1. Single GPU and CPU Performance

Our performance results for a single GPU having 1 to 64 local Blocks are depicted in Fig. 7. The
performance increases with the domain size and saturates ata domain size of around 2003 lattice
cells for a single Block. This is in contrast to the pure kernel measurements of Fig. 2, where the
maximum performance is already reached for a domain size of around 703 lattice cells. Fig. 8
shows that this results from the additional overhead of the on-GPU and BC copy operations. The
same holds for the drop in performance using several Blocks,as the pure kernel runtime of 1 and
64 Blocks is nearly identical. For large domain sizes we loose about 5 % for 8 Blocks and 25 % for
64 Blocks compared to the runtime of one Block. Hence, if several small Blocks are required, e.g.
for load balancing strategies, the performance of our GPU implementation will be reduced. The
maximum achieved performance is 340 (SP) / 167 (DP) MFLUPS. Compared to the pure kernel
performance we sustain around 80 % using large domains for both SP and DP. For small domain
sizes, e.g. 1003 lattice cells, we estimated in Tab. 1 a drop in performance from around 300 to 264
MFLUPS (SP), taking only the PCIe transfer into account. Themeasurements in Fig. 7 show a
performance of around 190 MFLUPS. As can be seen in Fig. 8, this discrepancy again results from
the, in this case dominating, overheads of the on-GPU copiesand the BC treatment. This clearly
indicates that the PCIe transfer, which is included in the BCtreatment, is not the only component
crucial to sustain a large portion of the kernel performance. The on-GPU copy operations are
hereby unavoidable, but the BC could be treated directly on the GPUs for further performance
improvement. This will be investigated in future work.

The single node performance on JUROPA and JUGENE is presented in Fig. 9. Compared to the
maximum single GPU performance the CPU performance corresponds to about 25 % in SP and
33 % in DP on JUROPA and 2 % in SP and 3.5 % in DP on JUGENE. Usually, we use domain sizes
ranging from 903 to 1303 in DP on one CPU core. For these sizes, the CPU measurements show a

100 150 200 250
Cubic Domain Size

10 10

20 20

30 30

40 40

50 50

60 60

70 70

80 80

T
im

e
pe

r
ite

ra
tio

n
[m

s] BC 1 Block Pinned
BC 64 Blocks Pinned
on-GPU Copy 1 Block
on-GPU Copy 64 Blocks
Kernel 1 Block
Kernel 64 Blocks

(a) Runtime

50 100 150 200 250
Cubic Domain Size

0.25 0.25

0.5 0.5

0.75 0.75

1 1

1.25 1.25

1.5 1.5

1.75 1.75

2 2

G
P

U
 O

ve
rh

ea
d

R
at

io on-GPU Copy 1 Block
on-GPU Copy 64 Blocks
BC 1 Block Pinned
BC 64 Blocks Pinned

(b) Overhead Ratios

Figure 8: Single-GPU time measurements on TinyGPU(TESLA C1060) in SP. Fig. (a) shows the runtimes of different
parts of the algorithm and Fig. (b) shows the ratio of the times for on-GPU copy operations and boundary condition
handling (BC) to the kernel execution time. In both Figures results are given for 1 and 64 Blocks. Pinned memory
denotes host memory allocated by the CUDA callcudaHostAlloc.

14

0 25 50 75 100 125
Cubic Domain Size per Core

0 0

10 10

20 20

30 30

40 40

50 50

60 60

70 70

80 80

M
F

LU
P

S
 p

er
 N

od
e

1 Block per Core SP
8 Blocks per Core SP
27 Blocks per Core SP
1Block per Core DP
8 Blocks per Core DP
27 Blocks per Core DP

(a) JUROPA

0 25 50 75 100
Cubic Domain Size per Core

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

M
F

LU
P

S
 p

er
 N

od
e

1 Block per Core SP
27 Blocks per Core SP
1 Block per Core DP
27 Blocks per Core DP

(b) JUGENE

Figure 9: Single node CPU measurements on JUROPA (Xeon X5570) and JUGENE (BlueGene/P) for different Block
numbers per core. For JUROPA 8 and for JUGENE 4 cores are used.

superior performance for multi-Block simulations compared to single Block simulations. This is in
contrast to the GPU implementation, where multiple Blocks cause a degradation in performance.
This results from an efficient utilization of the cache due toblocking effects occurring especially
for the AoS data layout. Hence, for the investigated architectures block-structured grids are well
suited for load balancing strategies.

5.2. Multi-CPU and GPU Performance

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Nodes (2 GPUs per Node)

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

G
F

LU
P

S

360^3 SP
240^3 DP

(a) Absolute performance

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Nodes (2 GPUs per Node)

0 0

100 100

200 200

300 300

400 400

500 500

M
F

LU
P

S
 p

er
 N

od
e 360^3 SP

240^3 DP

(b) Relative performance

Figure 10: Multi-GPU strong scaling experiments on the NEC Nehalem cluster (TESLA S1070) with a domain size
of 3603 lattice cells in SP and 2403 lattice cells in DP. The block decomposition is three dimensional. Figure (a) shows
the absolute performance values, whereas Figure (b) shows the relative performance, i.e. the absolute performance
divided by the number of compute nodes.

15

There are two basic scenarios to investigate parallel performance: weak scaling and strong scaling.
In weak scaling experiments, the work load per compute node is kept constant for an increasing
number of nodes. With this scenario the scalability and the overall manageable parallelism of the
code is evaluated. Strong scaling experiments answer the question how much the time to solution
can be reduced for a given problem. Therefore, the work load of all nodes is kept constant leading
to a dominating communication overhead and thus a drop in speedup with an increasing number
of nodes. An important point for the scalability of multi-GPU simulations is whether the perfor-
mance scales if using two GPUs on the same node. On TinyGPU andthe NEC Nehalem cluster
this has been the case, as we achieved around 95 % parallel efficiency for two GPUs. Further,
weak scaling experiments on the NEC Nehalem cluster showed anearly linear scaling up to 60
GPUs for the domain size 2223 resulting in a maximum performance of around 16 GFLUPS in SP.
In comparison to todays CPUs, single GPUs offer a superior performance. Hence, on the one hand
they should be well suited to reduce the time to solution in parallel simulations as less internode
parallelism is required. On the other hand, the multi-GPU performance is not only hampered by
the MPI communication, but also by the PCIe transfers, the on-GPU copies, and, in contrast to
the CPU, the missing cache effect for small domains. In our GPU strong scaling experiments,
depicted in Fig. 10, it can be seen that the relative performance for 1 to 30 compute nodes drops
from around 500 to 235 MFLUPS in SP and from around 250 to 100 MFLUPS in DP. Compared
to the CPU strong scaling experiments in Fig. 11, we need around 6 (SP & DP) compute nodes
on JUROPA and 75 (SP) / 50 (DP) on JUGENE to achieve the performance of a single GPU node
on the NEC Nehalem cluster. To achieve the performance of 30 GPU compute nodes, we need
around 137 (SP) / 70 (DP) compute nodes on JUROPA and 1275 (SP)/ 750 (DP) on JUGENE.
The corresponding parallel efficiencies are: 46 (SP) / 37 (DP) % for the GPU implementation
on NEC Nehalem cluster, 65 (SP) / 93 (DP) % for the CPU implementation on JUROPA and
90 (SP) / 98 (DP) % on JUGENE. Hence, to achieve the same time tosolution our GPU imple-

0 2000 4000 6000 8000 10000 12000 14000
Cores

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

G
F

LU
P

S

51
2

10
24

20
48

40
96

JUGENE 360^3 SP
JUGENE 240^3 DP
JUROPA 360^3 SP
JUROPA 240^3 DP

(a) Absolute performance

16 32 64 128 256 512 1024 2048 4096 8192
Cores

0 0

10 10

20 20

30 30

40 40

50 50

60 60

70 70

80 80

M
F

LU
P

S
 p

er
 N

od
e

JUGENE 360^3 SP
JUGENE 240^3 DP
JUROPA 360^3 SP
JUROPA 240^3 DP

(b) Relative performance

Figure 11: Multi-CPU strong scaling performance on JUROPA (Xeon X5570) and JUGENE (BlueGene/P). The block
decomposition is three dimensional.

16

mentation makes less efficient use of the utilized hardware,but also requires fewer nodes.

5.3. Heterogeneous GPU–CPU Performance

0 5 10 15 20 25
Blocks on each GPU

0 0

100 100

200 200

300 300

400 400

500 500

M
F

LU
P

S

(a) Investigation of the load balance with 6 CPU-only pro-
cesses each working on one Block and 2 GPU processes
with varying block counts. The Block size is 903 lattice
cells.

Block Size 703 713 903 913

Blocks 44 44 50 50

Processes
2 x GPU 379.1 341.6 422.6 404.3
2 x GPU + 6 x CPU 423.2 382.6 466.7 446.1

Block Size 703 713 903 913

Processes
6 x CPU (6 Blocks) 58.5 58.6 58.1 58.1
2 x GPU (2 Blocks) 388.2 431.2 495.3 469.2

(b) Performance comparison between homogeneous and
heterogeneous setups depending on the Block size.

Figure 12: Heterogeneous performance on one compute node ofTinyGPU (TESLA C1060) in SP.

To discuss the capabilities of heterogeneous simulations on GPUs and CPUs we first investigate the
performance on a single compute node of TinyGPU. Here, best performance results are achieved
with 6 CPU only processes and 2 for the GPUs. Additionally, the work load for each process has to
be adjusted. This is depicted in Fig. 12a, where each CPU process has one Block with 903 lattice
cells, whereas the number of blocks allocated on each GPU process is increased until the work
load is balanced. Note that in the load-balanced case of 22 Blocks on each GPU, the runtime of
the GPU kernel is still 33 % lower than the runtime of the CPU kernel, as on the GPU side a larger
communication overhead is added to overall runtime. Further, in Tab. 12b the node performance of
heterogeneous simulations is compared to simulations using only GPUs having the same number
of Blocks or just one Block on each GPU. Hereby, the number of Blocks is chosen so that the
heterogeneous simulations are load balanced. It can be seenthat the heterogeneous simulations
yield an increase in performance of around 42 MFLUPS for all Block sizes, whereas the maximum
for 6 CPU processes would be around 58 MFLUPS. Compared to simulations running on two GPU
processes, which have only one Block on each process we loosearound 5−12 % performance
due to the increased overhead. For the 703 Block size the kernel performance is overly high due
to padding effects and hence we gain around 10 % in performance. Summarizing, for the mere
purpose of a performance increase our current heterogeneous implementation is not suitable, but
for simulations requiring several blocks on each process, e.g. for load balancing strategies or other
optimizations, it is possible to improve the performance. Additionally, with our implementation
the memory of GPU and CPU can be utilized, which allows for larger simulation setups. So far,
we have only considered heterogeneous simulations on a single compute node. In Tab. 2 weak

17

Blocks GPU: 1 GPU: 22, CPU: 1

Nodes 1 30 1 30 60 90
Processes 2 x GPU 60 x GPU 2 x GPU + 60 x GPU + 60 GPU + 60 GPU +

6 x CPU 180 x CPU 420 x CPU 660 x CPU

MFLUPS 476 14480 459 13267 15684 17846

Table 2: Heterogeneous weak scaling experiments using up to90 compute nodes on the NEC Nehalem cluster. The
simulation domain for nodes with GPUs is 90x4500x90 and for CPU-only nodes 90x540x90. All presented results are
in SP and the load for the heterogeneous simulations is balanced.

scaling experiments up to 90 compute nodes are depicted. Theweak scaling experiment using 60
GPUs on 30 compute nodes shows a perfect parallel efficiency and the heterogeneous experiment
running on 60 GPUs and 180 CPU only processes has a parallel efficiency of 96 %. In addition, we
have conducted scaling experiments using different kind ofcompute nodes, e.g. compute nodes
having only a CPU and nodes having additional GPUs. It can be seen that the performance scales
well from 30 up to 90 compute nodes. Hence, with our implementation it is possible to efficiently
utilize all nodes on clusters having heterogeneous node configurations. A further improvement
of our heterogeneous design for multiphysics simulations could be the simulation of complex
spatially contained functionality, e.g. a rising bubble, on processes running on CPUs and to only
simulate pure fluid regions on the GPUs, for which they are currently suited best.

6. Conclusion

A fundamental requirement for the utilization of GPUs in HPCclusters are scalable multi-GPU
implementations. In this article, we have shown that this ispossible for the LBM. Additionally,
by means of our Patch and Block design, and our functionalitymanagement we have presented
an approach for heterogeneous simulation on clusters equipped with varying node configurations.
Further, we have shown that with our WaLBerla framework goodruntime performance results
can be achieved on various compute platforms despite the overhead for flexibility and its suitabil-
ity for multiphysics simulations. In future work, we will optimize the memory accesses of our
GPU implementation with the help of padding strategies as well as implement arbitrary bound-
ary conditions, directly computed on the GPU. We will also investigate hybrid OpenMP and MPI
parallelization in combination with heterogeneous simulations.

Acknowledgments

This work is partially funded by the European Commission with DECODE, CORDIS project
no. 213295, by the Bundesministerium für Bildung und Forschung under theSKALBproject, no.
01IH08003A, as well as by the “Kompetenznetzwerk für Technisch-Wissenschaftliches Hoch- und
Höchstleistungsrechnen in Bayern” (KONWIHR) via waLBerlaMC. Compute resources on JU-
GENE and JUROPA were provided by the John-von-Neumann Institute (Research Centre Jülich)
under the HER12 project. We thank the DEISA Consortium, co-funded through the EU FP6

18

project RI-031513 and the FP7 project RI-222919, for support and access to Juropa within the
DEISA Extreme Computing Initiative. Access to the systems at HLRS was granted throughBun-
desprojekt LBA-Diff.

References

[1] J. Tölke, M. Krafczyk, Teraflop Computing on a Desktop PCwith GPUs for 3D CFD, Int. J. Comput. Fluid
Dyn. 22 (7) (2008) 443–456.

[2] J. Habich, T. Zeiser, G. Hager, G. Wellein, Speeding up a Lattice Boltzmann Kernel on nVIDIA GPUs, in:
Proceedings of the First International Conference on Parallel, Distributed and Grid Computing for Engineering,
Civil-Comp Press, 2009, p. 17.

[3] C. Obrecht, F. Kuznik, B. Tourancheau, J.-J. Roux, A New Approach to the Lattice Boltzmann Method for
Graphics Processing Units, Computers & Mathematics with Applications In Press, Corrected Proof.

[4] M. Bernaschi, M. Fatica, S. Melchionna, S. Succi, E. Kaxiras, A Flexible High-Performance Lattice Boltzmann
GPU Code for the Simulations of Fluid Flows in Complex Geometries, Concurrency and Computation: Practice
and Experience 22 (1) (2010) 1–14.

[5] TOP500 Supercomputer Sites,http://www.top500.org/ (Mar. 2010).
[6] S. Chen, G. D. Doolen, Lattice Boltzmann Method for FluidFlows, Annual Review of Fluid Mechanics 30 (1)

(1998) 329–364.
[7] S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Numerical Mathematics and Scien-

tific Computation), Oxford University Press, USA, 2001.
[8] X. He, L.-S. Luo, Lattice Boltzmann Model for the Incompressible NavierStokes Equation, Stat. Phys. 88 (3-4)

(1997) 927–944.
[9] T. Zeiser, G. Hager, G. Wellein, Benchmark Analysis and Application Results for Lattice Boltzmann Simulations

on NEC SX Vector and Intel Nehalem Systems, Parallel Processing Letters 19 (4) (2009) 491–511.
[10] C. K. Aidun, J. R. Clausen, Lattice-Boltzmann Method for Complex Flows, Annual Review of Fluid Mechanics

42 (1) (2010) 439–472.
[11] C. Feichtinger, J. Götz, S. Donath, K. Iglberger, U. R¨ude, WaLBerla: Exploiting Massively Parallel Systems for

Lattice Boltzmann Simulations, in: R. Trobec, M. Vajtersic, P. Zinterhof (Eds.), Parallel Computing. Numerics,
Applications, and Trends, Springer-Verlag, Berlin, Heidelberg, New York, 2009, pp. 240–259.

[12] Regionales Rechenzentrum Erlangen,http://www.rrze.de/dienste/arbeiten-rechnen/hpc/systeme/tinygpu-cluster.shtml

(May 2010).
[13] JUROPA Cluster ForschungszentrumJülich,http://www.fz-juelich.de/portal/forschung/information/supercomputer/juropa

(May 2010).
[14] NEC Nehalem Cluster HöchstleistungsrechenzentrumStuttgart,http://www.hlrs.de/systems/platforms/nec-nehalem-cluster/

(May 2010).
[15] JUGENE Cluster ForschungszentrumJülich,http://www.fz-juelich.de/portal/forschung/information/supercomputer/jugene

(May 2010).
[16] nVIDIA Cuda Toolkit 2.3,http://www.nvidia.com/object/cuda_get.html (Sep. 2009).
[17] nVIDIA Cuda Programming Guide 2.3.1,http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.3.pdf

(Aug. 2009).
[18] Intel MPI Benchmarks,http://software.intel.com/en-us/articles/intel-mpi-benchmarks/ (May

2010).
[19] The Stream Benchmark,http://www.streambench.org/ (Mar. 2010).
[20] G. Wellein, T. Zeiser, G. Hager, S. Donath, On the SingleProcessor Performance of Simple Lattice Boltzmann

Kernels, Computers & Fluids 35 (8-9) (2006) 910–919.
[21] B. Boehm, A Spiral Model of Software Development and Enhancement, ACM SIGSOFT Software Engineering

Notes 11 (4) (1986) 14–24.
[22] H. van Vliet, Software Engineering: Principles and Practice, 3rd Edition, John Wiley & Sons, Inc. New York,

NY, USA, 2008.

19

http://www.top500.org/
http://www.rrze.de/dienste/arbeiten-rechnen/hpc/systeme/tinygpu-cluster.shtml
http://www.fz-juelich.de/portal/forschung/information/supercomputer/juropa
http://www.hlrs.de/systems/platforms/nec-nehalem-cluster/
http://www.fz-juelich.de/portal/forschung/information/supercomputer/jugene
http://www.nvidia.com/object/cuda_get.html
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.3.pdf
http://software.intel.com/en-us/articles/intel-mpi-benchmarks/
http://www.streambench.org/

[23] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1995.

[24] S. Donath, C. Feichtinger, T. Pohl, J. Götz, U. Rüde, Localized Parallel Algorithm for Bubble Coalescence in
Free Surface Lattice-Boltzmann Method, in: Lecture Notes in Computer Science, Euro-Par 2009, Vol. 5704,
Springer, 2009, pp. 735–746.

[25] S. Bogner, Simulation of Floating Objects in Free-Surface Flow, Diploma Thesis (2009).
URL http://www10.informatik.uni-erlangen.de/Publications/Theses/2009/Bogner_DA09.pdf

[26] D. Haspel, Simulation of Clotting Processes using Non-Newtonian Blood Models and the Lattice Boltzmann Method,
Master’s Thesis (2009).
URL http://www10.informatik.uni-erlangen.de/Publications/Theses/2009/Haspel_MA09.pdf

[27] J. Götz, K. Iglberger, C. Feichtinger, S. Donath, U. R¨ude, Coupling Multibody Dynamics and Computational
Fluid Dynamics on 8192 Processor Cores, Parallel Computing36 (2-3) (2010) 142 – 151.

[28] B. Dünweg, U. Schiller, A. J. C. Ladd, Statistical Mechanics of the Fluctuating Lattice Boltzmann Equation,
Phys. Rev. E 76 (3) (2007) 036704.

[29] H. Köstler, A Multigrid Framework for Variational Approaches in Medical Image Processing and Computer
Vision, Verlag Dr. Hut, München, 2008.

20

http://www10.informatik.uni-erlangen.de/Publications/Theses/2009/Bogner_DA09.pdf
http://www10.informatik.uni-erlangen.de/Publications/Theses/2009/Bogner_DA09.pdf
http://www10.informatik.uni-erlangen.de/Publications/Theses/2009/Haspel_MA09.pdf
http://www10.informatik.uni-erlangen.de/Publications/Theses/2009/Haspel_MA09.pdf

	1 Introduction
	2 Methods and Architectures
	2.1 The Lattice Boltzmann Method
	2.2 Hardware Environments
	2.2.1 CPU-based Cluster Systems
	2.2.2 nVIDIA Graphic Processing Units

	2.3 Interconnects

	3 CPU and GPU Kernel Implementation
	3.1 Upper Bound Performance Estimation
	3.2 Kernel Performance and Implementation Details

	4 The WaLBerla Framework
	4.1 Functionality Management
	4.2 Patch and Block Concept
	4.3 General Design of the MPI Communication
	4.4 Multi GPU Implementation
	4.5 Heterogeneous GPU / CPU Implementation

	5 Investigation of Performance and Scalability
	5.1 Single GPU and CPU Performance
	5.2 Multi-CPU and GPU Performance
	5.3 Heterogeneous GPU–CPU Performance

	6 Conclusion

