
Parallel Computing xxx (2011) xxx–xxx
Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier .com/ locate/parco
Parallel solution of partial symmetric eigenvalue problems
from electronic structure calculations q

T. Auckenthaler a, V. Blum b, H.-J. Bungartz a, T. Huckle a, R. Johanni c, L. Krämer d, B. Lang d,⇑,
H. Lederer c, P.R. Willems d

a Fakultät für Informatik, Technische Universität München, D-85748 Garching, Germany
b Fritz-Haber-Institut der Max-Planck-Gesellschaft, D-14195 Berlin, Germany
c Rechenzentrum Garching der Max-Planck-Gesellschaft am Max-Planck-Institut für Plasmaphysik, D-85748 Garching, Germany
d Fachbereich C, Bergische Universität Wuppertal, D-42097 Wuppertal, Germany
a r t i c l e i n f o

Article history:
Available online xxxx

Keywords:
Electronic structure calculations
Eigenvalue and eigenvector computation
Blocked Householder transformations
Divide-and-conquer tridiagonal eigensolver
Parallelization
0167-8191/$ - see front matter � 2011 Elsevier B.V
doi:10.1016/j.parco.2011.05.002

q This work was supported by the Bundesminis
Petaflop-Großanwendungen’’, Förderkennzeichen 01
⇑ Corresponding author.

E-mail addresses: auckenth@in.tum.de (T. Aucke
(T. Huckle), rrj@rzg.mpg.de (R. Johanni), lkraeme
(H. Lederer), willems@math.uni-wuppertal.de (P.R.

Please cite this article in press as: T. Aucken
structure calculations, Parallel Comput. (2011
a b s t r a c t

The computation of selected eigenvalues and eigenvectors of a symmetric (Hermitian)
matrix is an important subtask in many contexts, for example in electronic structure cal-
culations. If a significant portion of the eigensystem is required then typically direct eigen-
solvers are used. The central three steps are: reduce the matrix to tridiagonal form,
compute the eigenpairs of the tridiagonal matrix, and transform the eigenvectors back.
To better utilize memory hierarchies, the reduction may be effected in two stages: full
to banded, and banded to tridiagonal. Then the back transformation of the eigenvectors
also involves two stages. For large problems, the eigensystem calculations can be the com-
putational bottleneck, in particular with large numbers of processors. In this paper we dis-
cuss variants of the tridiagonal-to-banded back transformation, improving the parallel
efficiency for large numbers of processors as well as the per-processor utilization. We also
modify the divide-and-conquer algorithm for symmetric tridiagonal matrices such that it
can compute a subset of the eigenpairs at reduced cost. The effectiveness of our modifica-
tions is demonstrated with numerical experiments.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Finding the eigenvalues and eigenvectors of symmetric (Hermitian) matrices is a classic problem in linear algebra, and
computationally efficient solutions are enormously important. Since the solution effort for the full spectrum scales as
O(n3) with matrix size n, solving an eigenproblem as part of a larger computational task can easily dominate the entire work-
load, or can even render the solution impossible even on the most advanced computational hardware available today. Here
we discuss two particular improvements to the efficiency of general-purpose eigensolvers, regarding the overall workload
and the parallel performance on platforms with thousands of CPUs. The examples in the paper arise in large-scale, all-
electron electronic structure theory, i.e., the prediction of materials properties from the atomic scale on upwards, based only
on the ‘‘first principles’’ of quantum mechanics. However, all algorithms described in this paper are general, and applicable in
any field where the solution of large (almost) dense eigenproblems is needed.
. All rights reserved.

terium für Bildung und Forschung within the project ‘‘ELPA—Hochskalierbare Eigenwert-Löser für
IH08007.

nthaler), blum@fhi-berlin.mpg.de (V. Blum), bungartz@in.tum.de (H.-J. Bungartz), huckle@in.tum.de
r@math.uni-wuppertal.de (L. Krämer), lang@math.uni-wuppertal.de (B. Lang), lederer@rzg.mpg.de
Willems).

thaler et al., Parallel solution of partial symmetric eigenvalue problems from electronic
), doi:10.1016/j.parco.2011.05.002

http://dx.doi.org/10.1016/j.parco.2011.05.002
mailto:auckenth@in.tum.de
mailto:blum@fhi-berlin.mpg.de
mailto:bungartz@in.tum.de
mailto:huckle@in.tum.de
mailto:rrj@rzg.mpg.de
mailto:lkraemer@math.uni-wuppertal.de
mailto:lang@math.uni-wuppertal.de
mailto:lederer@rzg.mpg.de
mailto:willems@math.uni-wuppertal.de
http://dx.doi.org/10.1016/j.parco.2011.05.002
http://www.sciencedirect.com/science/journal/01678191
http://www.elsevier.com/locate/parco
http://dx.doi.org/10.1016/j.parco.2011.05.002

2 T. Auckenthaler et al. / Parallel Computing xxx (2011) xxx–xxx
A central task of electronic structure theory is the solution of Schrödinger-like eigenproblems bHWm ¼ EmWm, with bH a
Hamilton operator, Wm a wave function and Em the corresponding eigenenergy. Most frequently the ground-state total
energy of a many-electron system in a given external potential (usually due to classical atomic nuclei at fixed geometry)
is sought. The most widely used approach to this problem is Kohn–Sham (KS) density functional theory (DFT) [1], for which
a set of effective single-particle eigenvalue/eigenfunction pairs for an eigenproblem bHKSwl ¼ �lwl must be found. Similar
eigenproblems arise in many other contexts in electronic structure theory, for example Hartree–Fock (HF) theory [2], or
in the description of optical excitations through the Bethe–Salpeter [3] or Casida [4] equations. In KS-DFT, wl(r) are contin-
uous functions in three-dimensional space. In practice, they are usually discretized by inserting a set of basis functions {/i(r),
i = 1, . . . ,n} such that wlðrÞ ¼

P
icli/iðrÞ. The result is a generalized matrix eigenproblem:
Please
struct
HKScl ¼ �lScl; ð1Þ
with Hamilton matrix HKS and overlap matrix S, where S = I for some but not all basis types. In KS or HF theory, only the
lowest k out of n possible eigenvalue/-vector pairs are needed. They correspond to those electronic ‘‘orbitals’’ which are
‘‘occupied,’’ and which thus contribute to the ground-state electron density nðrÞ ¼

Pk
l¼1jwlðrÞj

2. Eq. (1) is not a linear eigen-
value problem as the Hamiltonian HKS � HKS[n(r)] depends on its own eigenvectors cl through n(r). One thus seeks a partic-
ular Hamiltonian that yields as solutions the same eigenvectors cl used to construct it in the first place—a ‘‘self-consistent’’
solution of (1). To find such solutions HKS and cl iteratively, (1) must be solved successively for ten(s) of times even in simple
cases such as self-consistency for a single, fixed nuclear geometry. Hundreds of thousands (or more) iterations may be desir-
able for other questions, such as long ab initio molecular dynamics simulations, where the nuclear geometry changes with
every step.

The key point is that the solution effort to find cl scales as O(N3). Here, N loosely refers to overall system size, i.e., the num-
ber and type of atoms in a molecule or solid, not necessarily just the matrix size n. This scaling arises either through the
matrix problem (1) itself, or at least through the practical need to orthonormalize cl. By contrast, all other steps needed
to set up and solve HKS can be implemented to scale essentially as O(N). Even if these steps can dominate for many cases
and require sophisticated approaches of their own (e.g., parallel FFTs), the solution of (1) will eventually come to dominate
as the system size increases. In practice, the crossover often occurs for molecule or unit cell sizes of �100–1000s of atoms
[5–10] even for favorable basis sets, well within the range of interest for many applications (biomolecules, nano-electronics,
defects in solids, etc.). In the limit, O(N3) scaling means that any larger calculations are rendered infeasible even on the most
advanced supercomputers, unless the prefactor of the time needed for the respective operations can be reduced. Adding to
the problem is the fact that solving (1) directly as a linear problem in parallel requires quite fine-grained, communication-
intensive operations. Especially on massively parallel computer systems with thousands of processor cores and using stan-
dard implementations, this places an additional practical limitation on the calculations that can be done.

Solving or even circumventing the solution of (1) is thus an active research field, with many new and original contribu-
tions even in the most recent literature [6,7,9,11–19]. Among the strategies pursued in electronic structure theory, one finds:

(i) For specific problem classes—eigenspectra with a gap between occupied and unoccupied electronic states—the solu-
tion of (1) can be avoided altogether; see, e.g., [5,20–23]. Where this works, O(N) scaling for systems up to even
millions of atoms has been demonstrated [24]. However, O(N) strategies are not generally applicable. For example,
the requirement for a spectral gap excludes all metals. Likewise, any calculation where the effective single-particle
band structure �l itself is of interest of course requires a solution of (1).

(ii) Instead of iterating exact solutions of the linear problem (1) for successive intermediate versions of HKS, one can view
the full Kohn–Sham problem directly as a non-linear minimization problem with parameters cl. Refined minimization
strategies (often, conjugate gradients) can be used to find cl. (Ref. [16] gives a good overview over the literature).

(iii) Another active research area are iterative solution strategies for the linear problem (Lanczos, Davidson [25]-based,
locally optimal preconditioned gradient [26,27], many others [28,29]), for cases where only a small fraction k/n of
all possible eigenpairs are needed (e.g., large, systematically convergeable basis types such as plane waves or real-
space grid functions). For example, a well preconditioned blocked Davidson scheme is superior even for augmented
plane wave based all-electron DFT, with k/n � 3–10% [9]. To our knowledge, iterative strategies such as (ii) and (iii)
usually still require at least one O(N3) operation, at least in practice [14,6,27,29,30,9] (subspace diagonalization, re-ort-
honormalization, matrix inversion at the outset, etc.).

(iv) A straightforward path to push the crossover point between (1) and all other, O(N) type operations out is to reduce n,
the basis size itself. Obviously, in a system with k occupied states to be treated, n P k sets a lower bound. Nonetheless,
k/n is often already in the range 10%–40% for localized Gaussian-type basis sets of quantum chemistry [2,6]. Other
choices, e.g., Slater-type or numerically tabulated atom-centered orbitals (NAOs) (see [8] for references and
discussion), can yield essentially converged accuracy with even more compact basis sets that still remain generically
transferable. Finally, a recent localization-based filtering approach [7,19] contracts a large, generic basis set into a
system-dependent minimal basis (n = k), prior to solving (1). The O(N3) bottleneck is then reduced to the minimum
cost O(k3), at negligible accuracy loss.

In practice, (iv) is attractive because, for many relevant system sizes, (1) then does not yet dominate the overall compu-
tational effort. Therefore, robust, conventional eigensolver strategies such as implemented in LAPACK [31] can be used,
cite this article in press as: T. Auckenthaler et al., Parallel solution of partial symmetric eigenvalue problems from electronic
ure calculations, Parallel Comput. (2011), doi:10.1016/j.parco.2011.05.002

http://dx.doi.org/10.1016/j.parco.2011.05.002

T. Auckenthaler et al. / Parallel Computing xxx (2011) xxx–xxx 3
avoiding system-specific complications such as the exact form of the eigenspectrum, or the choice of an optimal precondi-
tioning strategy [11,9]. Even for (i)–(iii), though, a conventional diagonalization of some kind may still be required or is a
necessary fallback.

In general, the solution of (1) proceeds in five steps: (A) Transformation to a dense standard eigenproblem (e.g., by Chole-
sky decomposition of S), HKScl = �lScl [AqA = kqA, k � �l; (B) Reduction to tridiagonal form, A [T; (C) Solution of the tridi-
agonal problem for k eigenvalues and vectors, TqT = kqT; (D) Back transformation of k eigenvectors to dense orthonormal
form, qT [qA; (E) Back transformation to the original, non-orthonormal basis, qA [cl. Fig. 1 shows the overall timings of
these operations on a massively parallel IBM BlueGene/P system, for one specific example: the electronic structure of a
1003-atom polyalanine peptide (small protein) conformation in an artificially chosen, fixed a-helical geometry. The example
is set up using the ‘‘Fritz Haber Institute ab initio molecular simulations’’ (FHI-aims) all-electron electronic structure package
[8,32], at essentially converged basis set accuracy for DFT (tier 2 [8]). For (1), this means n = 27,069. The number of calculated
eigenpairs is k = 3410, somewhat more than the theoretical minimum kmin = 1905, one state per two electrons. Steps (A)–(E)
were performed using only subroutine calls as in the ScaLAPACK [33] library where available, as implemented in IBM’s sys-
tem-specific ESSL library, combined as described briefly in [8, Section 4.2]. The reason is that ScaLAPACK or its interfaces are
widely used for (massively) parallel linear algebra and readily available; no claim as to whether our use is the best or only
possible alternative is implied. ScaLAPACK provides the driver routine pdsyevd, which calls pdsytrd, pdstedc, and
pdormtr for tridiagonalization, solution of the tridiagonal eigenproblem and back transformation respectively. pdstedc
is based on the divide-and-conquer (D&C) algorithm, tridiagonalization and back transformation are done using Householder
transformations and blocked versions thereof [34,35]. The back transformation was done only for the needed eigenvectors.

Our point here are some key conclusions, in agreement with reports in the wider literature [12,6,36]. What is most appar-
ent from Fig. 1 is that even for this large electronic structure problem, the calculation does not scale beyond 1024 cores, thus
limiting the performance of any full electronic structure calculation with more processors. By timing steps (A)–(E) individ-
ually, it is obvious that (B) the reduction to tridiagonal form, and then (C) the solution of the tridiagonal problem using the
D&C approach dominate the calculation, and prevent further scaling. For (B), the main reason is that the underlying House-
holder transformations involve matrix–vector operations (use of BLAS-2 subroutines and unfavorable communication pat-
tern); the magnitude of (C) is more surprising (see below). By contrast, the matrix multiplication-based transformations
(A), (D), and (E) either still scale or take only a small fraction of the overall time.

In the present paper, we assume that step (A) already has been completed, and step (E) will not be considered, either. We
present a new parallel implementation based on the two-step band reduction of Bischof et al. [37] concerning step (B), tri-
diagonalization; Section 2.1, with improvements mainly for step (D), back transformation; Section 2.2. We also extend the
D&C algorithm, thus speeding up step (C); Section 3. Some additional optimization steps in the algorithmic parts not specif-
ically discussed here (reduction to banded form, optimized one-step reduction to tridiagonal form, and corresponding back
transformations) will be published as part of an overall implementation in [38]. These routines are also included in recent
production versions of FHI-aims. For simplicity we will present only the real symmetric case; the complex Hermitian case is
similar.

In addition to synthetic testcases, we show benchmarks for two large, real-world problems from all-electron electronic
structure theory: first, the n = 27,069, k = 3410 polyalanine case of Fig. 1, which will be referred to as Poly27069 problem
in the following, and second, an n = 67,990 generalized eigenproblem arising from a periodic Pt (100)-‘‘(5 � 40)’’, large-scale
reconstructed surface calculation with 1046 heavy-element atoms, as needed in [39]. In the latter calculation, the large frac-
tion of core electrons for Pt (atomic number Z = 78) makes for a much higher ratio of needed eigenstates to overall basis size,
k = 43,409 � 64%, than in the polyalanine case, even though the basis set used is similarly well converged. This problem will
be referred to as Pt67990. Benchmarks are performed on two distinct computer systems: The IBM BlueGene/P machine
‘‘genius’’ used in Fig. 1, and a Sun Microsystems-built, Infiniband-connected Intel Xeon (Nehalem) cluster with individual
eight-core nodes. We note that for all standard ScaLAPACK or PBLAS calls, i.e., those parts not implemented by ourselves,
the optimized ScaLAPACK-like implementations by IBM (ESSL) or Intel (MKL) were employed.
Fig. 1. Left: Segment of the a-helical polyalanine molecule Ala100 as described in the text. Right: Timings for the five steps (A): reduction to standard
eigenproblem, (B): tridiagonalization, (C): solution of the tridiagonal problem, and back transformation of eigenvectors to the full standard problem (D) and
the generalized problem (E), of a complete eigenvalue/-vector solution for this molecule, n = 27,069, k = 3410, as a function of the number of processor
cores. The calculation was performed on an IBM BlueGene/P system, using a completely ScaLAPACK-based implementation. Step (C) was performed using
the divide-and-conquer method.

Please cite this article in press as: T. Auckenthaler et al., Parallel solution of partial symmetric eigenvalue problems from electronic
structure calculations, Parallel Comput. (2011), doi:10.1016/j.parco.2011.05.002

http://dx.doi.org/10.1016/j.parco.2011.05.002

4 T. Auckenthaler et al. / Parallel Computing xxx (2011) xxx–xxx
2. Efficient tridiagonalization and back transformation

The two-step band reduction of Bischof et al. [37] is a promising approach for an efficient parallel tridiagonalization of
dense symmetric matrices. In this approach the full matrix A of size n is first reduced to banded symmetric form with (semi)
bandwidth b. In a second step the banded matrix B is brought to tridiagonal form. This procedure has the advantage that the
vast majority of the operations can be done with highly efficient BLAS-3 routines instead of memory bandwidth limited
BLAS-2 routines. The drawback of the two-step approach is the additional computational effort for the second reduction step
and its back transformation respectively. While the reduction from banded to tridiagonal form is comparatively cheap (6bn2

flops), the additional costs for the back transformation are significant (2kn2 flops). This holds especially true for a high num-
ber k of desired eigenvectors.

For the parallel reduction to banded form and the corresponding back transformation of eigenvectors we used well estab-
lished algorithms based on Householder transformations. We refer to [37] and [40] for further information.

In Section 2.1 we will briefly revisit the bulge-chasing algorithm for reducing banded symmetric matrices to tridiagonal
form [41]. In Sections 2.2 and 2.3 we will present new parallelization strategies for the tridiagonal-to-banded back transfor-
mation of eigenvectors.
2.1. Reduction from banded to tridiagonal form

For the reduction of banded matrices to tridiagonal form there exist specialized algorithms which exploit the banded
structure of the matrix. In [42], Schwarz introduced an algorithm which successively decreases the bandwidth of the matrix
by one, using Givens rotations. In [41] a parallel algorithm based on Householder transformations was presented, where
b � 1 subdiagonal elements are removed at once. This concept was generalized to a successive band reduction [43,44]. All
algorithms necessarily generate intermediate fill-in. To preserve the banded structure, all or some of the fill-in is removed
with bulge-chasing techniques.

The bulge-chasing algorithm in [41] takes n � 2 stages to tridiagonalize a symmetric matrix B ¼ ðbijÞ ¼: Bð1Þ 2 Rn�n having
(semi) bandwidth b. In the vth stage, column v of the band is brought to tridiagonal form. To this end, the remaining band is
treated as a block tridiagonal matrix B(v) with BðvÞ00 ¼ bvv 2 R1�1 and BðvÞ10 ¼ ðbvþ1;v ; . . . ; bvþb;v ÞT 2 Rb�1 containing just the first
remaining column, and diagonal blocks BðvÞbb and subdiagonal blocks BðvÞbþ1;b of size b � b for b P 1 (except for smaller blocks at
the end of the band):

Note that because of symmetry only the lower triangle of B(v) needs consideration.
Stage v is initiated by a length-b Householder transformation, which reduces the first remaining column to tridiagonal

form: UðvÞ
T

1 BðvÞ10 ¼ ð�;0; . . . ;0ÞT . This transformation must be applied to the whole first block row and block column,
B11 ¼ UðvÞ

T

1 BðvÞ11 UðvÞ1 ; B21 ¼ BðvÞ21 UðvÞ1 , thereby filling the subdiagonal block completely. To preserve the banded structure for fu-
ture stages, at least the zeros in the first column of B21 must be recovered with a second Householder transformation, and so
on. More precisely, in the bth step of stage v, the first column of the subdiagonal block BðvÞb;b�1 has been filled by the preceding
transformation, Bb;b�1 ¼ BðvÞb;b�1UðvÞb�1. The next length-b transformation UðvÞb is chosen to re-eliminate this column,
UðvÞ

T

b Bb;b�1ð:;1Þ ¼ ð�;0; . . . ;0ÞT . This transformation must be applied to the whole bth block row and block column,
Bbb ¼ UðvÞ

T

b BðvÞbb UðvÞb ; Bbþ1;b ¼ BðvÞbþ1;bUðvÞb , which in turn leads to the transformation UðvÞbþ1. The stage is complete when the end
of the band is reached, and then the block decomposition is shifted by one row/column for the next stage. (Thus the
rows/columns affected by Uðvþ1Þ

b are shifted by one position, as compared to those affected by UðvÞb .)
The transformations from the whole reduction and their data dependency are sketched in Fig. 2. One column (v) of the

figure contains the Householder vectors (their nonzero entries) from one stage v of the described algorithm. The first sweep
of transformations (vectors painted white) eliminates elements of the original banded matrix B. All other sweeps (painted in
gray and black) remove intermediate fill-in.
Please cite this article in press as: T. Auckenthaler et al., Parallel solution of partial symmetric eigenvalue problems from electronic
structure calculations, Parallel Comput. (2011), doi:10.1016/j.parco.2011.05.002

http://dx.doi.org/10.1016/j.parco.2011.05.002

Fig. 2. Householder vectors from the bulge-chasing algorithm for the reduction from banded to tridiagonal form [41]. The arrows indicate the order of
execution during reduction (left) and back transformation of eigenvectors (right).

T. Auckenthaler et al. / Parallel Computing xxx (2011) xxx–xxx 5
2.2. Tridiagonal-to-banded back transformation of eigenvectors

In the tridiagonal-to-banded back transformation all the transformations from the banded-to-tridiagonal reduction have
to be applied from the left side to the desired eigenvectors qTi

of the tridiagonal matrix,
Fig. 3.
with th

Please
struct
qB i ¼
Y
v;b

UðvÞb

 !
qT i; i ¼ 1; . . . ; k: ð2Þ
For this task two different approaches have been implemented, which rely on two different parallel data layouts. Of course,
the Householder transformations are not given as matrices, but as a set of Householder vectors v, where each vector has at
most b nonzero elements: UðvÞb ¼ I� svvT .

The work from (2) can run perfectly in parallel, because each eigenvector can be transformed independently. This fact has
been used for the first parallelization approach, where the k eigenvectors are distributed uniformly across the p processes.
For the second approach [45] the k eigenvectors are seen as a matrix of size n � k, which is distributed in a 2D blocked man-
ner across a 2D processor grid with pr rows and pc columns. Each process transforms its local part of the matrix. In the
following, the costs of the two approaches will be analyzed and compared to each other. According to the data distribution,
the approaches will be called 1D- and 2D-parallelization.

For the 1D-approach each process transforms k/p eigenvectors. Thus the computational costs are of order 2kn2/p. Addi-
tionally every process needs all the Householder vectors from the reduction step, leading to a communication volume of n2/2
words per process. Beside the distribution of Householder vectors no further synchronization is necessary.

For the 2D-parallelization a second level of parallelism is used. A Householder transformation alters only those rows of
the eigenvector matrix where the corresponding Householder vector has nonzero entries. This fact allows us to transform a
single eigenvector in parallel. The 2D-approach is organized as follows: The k eigenvectors are distributed uniformly across
pc process columns, similarly to the 1D-approach. The individual eigenvectors in turn are distributed in a blocked manner
across the pr processes of a process column. For the parallelization within one process column the dependencies in Fig. 2
(right) have to be preserved. This leads to a pipelining algorithm. The process at the bottom of a process column starts
the pipeline and applies the Householder transformations from the first sweep to its local part of the eigenvectors. In the
next step the upper neighboring process can apply transformations from sweep one to its local part of the eigenvector
Example of the distribution of Householder vectors with static (left) and dynamic (right) data distribution (n = 17, b = 4). The Householder vectors
e same shading are distributed across one row of the 4 � 4 process grid.

cite this article in press as: T. Auckenthaler et al., Parallel solution of partial symmetric eigenvalue problems from electronic
ure calculations, Parallel Comput. (2011), doi:10.1016/j.parco.2011.05.002

http://dx.doi.org/10.1016/j.parco.2011.05.002

Fig. 4. Dynamic adaptation of the 2D data layout.

Table 1
Comparison of different parallelization approaches for the back transformation of eigenvectors (costs per process).

Computation [flops] Communication [#words]

1D 2kn2/p n2/2
2D without load balancing 4kn2/p n2/pr + 2kn/pc

2D 2kn2/p n2/2pr + 3kn/pc

6 T. Auckenthaler et al. / Parallel Computing xxx (2011) xxx–xxx
matrix, while the process on the bottom can start with the transformations from sweep two, and so on. After each of the n/b
steps, vertically neighboring processes have to exchange blocks of size b � (k/pc) due to data dependencies. But in contrast to
the 1D-approach, the communication scales with the number of processes (1D: n2/2, 2D: n2/pr words).

The distribution of Householder vectors is adapted to the distribution of work. Each Householder vector resides in the
process row where it will be used during the algorithm. An example of the Householder vector distribution is depicted in
Fig. 3. The picture also reveals the poor load balancing of the 2D-parallelization. The lower blocks of the eigenvector matrix
are affected by much more Householder transformations than the upper blocks. This leads to load imbalances by a factor of 2
and a computation amount of 4kn2/p for the lowermost processes.

The load imbalances have been resolved with a dynamic adaptation of the parallel data layout (Fig. 4). After each sweep,
the b uppermost rows are removed from the matrix and the data distribution is adapted accordingly. To avoid memory
imbalances, the removed rows have to be distributed uniformly to the whole processor grid, which results in additional com-
munication costs of size kn/pc for the topmost processes. On the other hand the dynamic data layout not only balances the
computational load, but also the distribution of Householder vectors (see Fig. 3). Table 1 summarizes the costs for the
different parallelization strategies.
 1

 10

 64 128 256 512 1k 2k 4k 8k 16k 32k 64k

tim
e

[s
]

#cores

Poly27069

WY, 1D
non−WY, 1D

WY, 2D
non−WY, 2D

 10

 100

 1000

 64 128 256 512 1k 2k 4k 8k 16k 32k 64k

tim
e

[s
]

#cores

Pt67990

WY, 1D
non−WY, 1D

WY, 2D
non−WY, 2D

Fig. 5. Strong scalability of the tridiagonal-to-banded back transformation of eigenvectors for Poly27069 and Pt67990 (bandwidth b = 64). Lines starting at
64 cores: Intel cluster, lines starting at 512 or 1024 cores: BlueGene/P. The WY, 1D times for Poly27069 on BlueGene/P are above the plotting area.

Please cite this article in press as: T. Auckenthaler et al., Parallel solution of partial symmetric eigenvalue problems from electronic
structure calculations, Parallel Comput. (2011), doi:10.1016/j.parco.2011.05.002

http://dx.doi.org/10.1016/j.parco.2011.05.002

T. Auckenthaler et al. / Parallel Computing xxx (2011) xxx–xxx 7
Fig. 5 shows the strong scalability of the tridiagonal-to-banded back transformation for the Poly27069 and Pt67990 prob-
lems on the BlueGene/P and the Intel Nehalem cluster. For the Pt67990 problem, both parallelization strategies perform well,
because most time is spent in computations. For the Poly27069 problem, however, the 1D parallelization does not scale
beyond 1024 cores on the BlueGene/P and much less than ideal beyond 256 cores on the Intel Nehalem cluster. The different
variants of the algorithm (WY, non-WY) and their behavior will be described in the next subsection.
2.3. Non-WY approaches for blocking Householder transformations

The back transformation of eigenvectors can be performed using WY transformations or variants thereof; cf. e.g. [34,35].
Here nb Householder transformations are combined to a blocked Householder transformation, which is represented by
matrices W and Y (Fig. 6). While the application of blocked Householder transformations is very efficient due to the use
of BLAS-3 routines, it also creates a lot of computational overhead compared to the non-blocked application of the transfor-
mations. Each Householder vector has b nonzero entries. Thus, the non-blocked application of nb such Householder transfor-
mations to k eigenvectors requires 4kbnb flops. Due to the fact that the nonzero entries are shifted in each Householder
vector, the matrices W and Y are not of size b � nb but (b + nb � 1) � nb (see Fig. 6), bringing the flop count for the application
of the WY transformations from 4kbnb to 4k(b + nb � 1)nb.

To overcome this overhead without losing the cache efficiency of BLAS-3 operations, we implemented our own optimized
kernel routines [46]. We used cache blocking to exploit the memory hierarchy and loop unrolling to make use of vector oper-
ations (Dual FPU on BlueGene/P and SSE on x86). This means that in each step not all k eigenvectors are transformed at once,
but only a subset of kb eigenvectors. The number kb should be set such that, first, the working set of b � kb words fits into the
(L1-) cache and, second, kb + 2 words (a vector of length kb and one element of the current Householder vector and eigen-
vector) fit into the registers to reduce the data transfer to the caches.

Optimized kernels were implemented for the PowerPC 450 (BlueGene/P) and for x86 processors. Figs. 5 and 7 compare
the runtime of the WY and non-WY approach for the banded-to-tridiagonal back transformation of eigenvectors. The com-
parison of the different approaches (1D WY, 1D non-WY, 2D WY, 2D non-WY) reveals some platform and problem size
dependence in detail, but the overall trends are clear. (i) The current 1D or 2D non-WY implementations almost always out-
perform the WY approaches, in particular for short Householder vectors (small b). (ii) The 2D approach is superior to 1D, in
particular for the smaller Poly27069 problem and increasing numbers of cores. This can be understood because the 1D
approach must stop scaling as the number of cores approaches the number of needed eigenvectors. The distribution of
Householder vectors also becomes increasingly expensive in the 1D approach.
3. Partial eigensystems of symmetric tridiagonal matrices

The current release 1.8.0 of the ScaLAPACK library [33] provides three different methods for computing eigenvalues and
eigenvectors of a symmetric tridiagonal matrix: xSTEQR2, the implicit QL/QR method [47]; PxSTEBZ and PxSTEIN, a com-
bination of bisection and inverse iteration (B&I) [48,49]; and PxSTEDC, the divide-and-conquer (D&C) method [50–52].
LAPACK 3.2.2 [31] and release 3.2 of the PLAPACK library [53] also provide the new MRRR algorithm [54,12], which will
be included in a future ScaLAPACK release as well [55].

B&I is able to compute a subset of k eigenpairs at reduced cost, but for clustered eigenvalues this method may take O(k2n)
operations or/and lose orthogonality. The MRRR algorithm can also compute subsets (at cost O(kn)), but the current imple-
mentations in rare cases fail to attain satisfying orthogonality; recent research towards improving its robustness is described
in [56,57]. Compared with these two methods, QR/QL and D&C produce very good eigensystems, but both are designed to
compute either all or no eigenvectors. In the ‘‘all eigenvectors’’ case, D&C typically is much faster than QR/QL, at the cost
of 2n2 additional workspace. The same is true for D&C vs. B&I, as is well documented in the literature [12,58]. In practice
D&C is therefore often used to compute all eigenvectors, even if only a subset of them is needed, and we restrict ourselves
to this case here for space reasons.

In the following we will briefly review the D&C algorithm and show how it can be modified to compute a subset of the
eigenvectors at reduced cost.
Fig. 6. Nonzero structure of the matrices W and Y during the back transformation of eigenvectors.

Please cite this article in press as: T. Auckenthaler et al., Parallel solution of partial symmetric eigenvalue problems from electronic
structure calculations, Parallel Comput. (2011), doi:10.1016/j.parco.2011.05.002

http://dx.doi.org/10.1016/j.parco.2011.05.002

 15

 20

 25

 30

 35

 40

 16 32 48 64 80 96 112

tim
e

[s
]

b

Poly27069

2D, WY, BlueGene/P, 512 cores
2D, non−WY, BlueGene/P, 512 cores

1D, WY, Intel−cluster, 64 cores
1D, non−WY, Intel−cluster, 64 cores

 300

 400

 500

 600

 700

 800

 900

 16 32 48 64 80 96 112

tim
e

[s
]

b

Pt67990

2D, WY, BlueGene/P, 1024 cores
2D, non−WY, BlueGene/P, 1024 cores

1D, WY, Intel−cluster, 256 cores
1D, non−WY, Intel−cluster, 256 cores

Fig. 7. Runtime of the tridiagonal-to-banded back transformation for Poly27069 and Pt67990 using different intermediate bandwidths b.

8 T. Auckenthaler et al. / Parallel Computing xxx (2011) xxx–xxx
3.1. Outline of the divide-and-conquer algorithm

To determine the eigendecomposition T = QKQT of a symmetric tridiagonal matrix T 2 Rn�n, D&C proceeds as follows.
Split the tridiagonal matrix into two half-sized submatrices:
Please
struct
T ¼
T1

T2

� �
þ qwwT ; ð3Þ
where T1 and T2 are of size n1 � n/2 and n2 = n � n1, resp., and w 2 Rn has nonzeros only at positions n1 and n1 + 1.
Solve subproblems, i.e., call the D&C routine recursively to compute the eigendecompositions T1 ¼ Q 1K1Q T

1 and
T2 ¼ Q 2K2Q T

2. If the subproblems are ‘‘small enough’’ then QR/QL may be used instead, which terminates the recursion. Note
that by (3) we have
T ¼ Q subðKsub þ qzzTÞQ subT
; ð4Þ
where Qsub = diag (Q1,Q2), Ksub = diag (K1,K2), and z = Q subT

. Thus the next steps are aimed at computing the eigendecom-
position for a rank-one perturbed diagonal matrix, Ksub þ qzzT ¼ bQ K bQ T .

Deflate. If some components zi of z are (almost) zero then the corresponding ðksub
i ;qsub

Ti
Þ are also (within small error

bounds) eigenpairs of T. Similarly, if two eigenvalues in Ksub are identical (or close) then a zero (or small entry) in z can
be generated by applying a sequence of plane rotations, thus again leading to the first case. Assume that d eigenpairs can
be computed cheaply in this way and that these are permuted to the end, that is, PT RT z ¼ ðzT

n;0Þ
T , where RT is the product

of all rotations, PT is the permutation, and zn contains the components that cannot be made zero. Then (4) reduces to
T ¼ Q subRP
Ksub

n þ qznzT
n

Ksub
d

 !
ðQ subRPÞT ; ð5Þ
that is, the size of the rank-one perturbed diagonal eigenproblem is reduced by d (‘‘deflation’’). Note that Ksub
d 2 Rd�d contains

the deflated eigenvalues ksub
i corresponding to a zero in PTRTz, whereas Ksub

n contains the n � d non-deflated eigenvalues.
Solve the secular equation. The eigenvalues ki of the matrix Ksub

n þ qznzT
n are given by the solutions of the secular equation
f ðkÞ ¼ 1þ q
Xn�d

k¼1

f2
k

‘k � k
¼ 0; ð6Þ
where fk and ‘k denote the kth component of zn and the kth diagonal entry in Ksub
n , respectively. In theory, the corresponding

eigenvectors are given by diagonal scalings cqT i ¼ ðKsub
n � kiIÞ�1zn, but they must be computed in another way to ensure

orthogonality.
Propagate eigenvectors. According to (5), the eigenvectors of T are given by
Q ¼ Q subRP bQ ¼ Q 1

Q 2

� �
RP

bQ n

Id

 !" #
:

To improve the efficiency of this computation, the matrix in square brackets is further permuted as V11 V12 0 V14

0 V22 V23 V24

� �
,

where the first and third block columns contain the eigenvectors from T1 (from T2, resp.) that were not involved in any
cite this article in press as: T. Auckenthaler et al., Parallel solution of partial symmetric eigenvalue problems from electronic
ure calculations, Parallel Comput. (2011), doi:10.1016/j.parco.2011.05.002

http://dx.doi.org/10.1016/j.parco.2011.05.002

Table 2
Time (in seconds) for computing partial eigensystems with D&C for the matrices from the Poly27069 and Pt67990 problems.

128-CPU Intel cluster 1024-CPU BlueGene/P

n = 27,069 n = 67,990 n = 27,069 n = 67,990

1 eigenvector 7.0 78.5 7.3 69.2
20% eigenvectors 7.6 81.1 7.7 70.0
40% eigenvectors 10.3 100.0 9.3 79.4
60% eigenvectors 13.5 138.6 10.9 102.1
80% eigenvectors 16.4 184.7 12.7 128.8
All eigenvectors 19.4 223.9 14.3 149.1

Table 3
Time (in seconds) for computing partial eigensystems with D&C on a BlueGene/P.

512 CPUs 1024 CPUs 2048 CPUs

Poly27069 (�13%) 13.5 7.3 5.7
Pt67990 (�64%) 201.4 105.1 62.4

T. Auckenthaler et al. / Parallel Computing xxx (2011) xxx–xxx 9
rotation, the fourth block column contains the deflated eigenvectors, which need no further processing, and the second block
column comprises the rest. Then the update actually involves two matrix–matrix products
Please
struct
Q 1 � ðV11;V12Þ and Q 2 � ðV22;V23Þ: ð7Þ
Two factors contribute to the mostly excellent performance of the D&C method: most arithmetic operations take place in
heavily optimized matrix–matrix products, and deflation often leads to a significant reduction of the complexity as com-
pared to the O(n3) worst case.
3.2. Computing a subset of the eigenvectors with D&C

The recursive calls of the D&C algorithm correspond to a binary call tree. Profiling reveals that the final two matrix–matrix
products (7) at the root of the recursion tree can account for up to 70% of the total time, unless extreme deflation takes place.
In that case the matrix products contribute only a few percent to the total time.

If only a subset of the eigenvectors is required then only these must be propagated in the two products. This can be
accomplished in two ways. Either only the wanted vectors are included in (V11,V12) and (V22,V23), thus reducing the size
of the matrix products, or unwanted vectors are set to zero before the multiplication. The latter approach reduces memory
traffic, but it only works with zero-aware xGEMM implementations.

Note that splitting the matrix into irreducible blocks, as done in the LAPACK routine xSTEDC (but not in the ScaLAPACK
implementation), requires an additional preprocessing step. First, we must determine which eigenpairs are required from
each block (e.g., eigenpairs 10:50 of the whole matrix may correspond to eigenpairs 3:18 of the first block, eigenpairs
5:13 of the second, and eigenpairs 4:19 of the third block). This functionality is provided by the routine xLARXI from our
new MRRR implementation [56,57]. Then the modified D&C algorithm is called for each irreducible block with the respective
sub-subset.

Table 2 shows that this modification yields considerable savings. If the matrix is large enough and not too few eigenvec-
tors are sought then the method also scales well up to large numbers of processors; see Table 3.

Since at least 30% of D&C’s work is spent outside the two top-level matrix–matrix multiplications, at most threefold
speed-up can be achieved this way. Thus it is natural to ask if subsets can also lead to savings at deeper recursion levels.
Unfortunately this seems not to be the case because the secular equation (6) involves all non-deflated eigenvalues, and these
are independent from the subset.
4. Conclusions

We have presented improvements for two stages in the computation of eigensystems of symmetric matrices.
For the banded-to-tridiagonal back transformation of the eigenvectors, which is necessary if a two-step tridiagonalization

has been used, a dynamic 2D data layout reduces the communication volume (as compared to a 1D layout) without incurring
significant load imbalance (as would be the case with a static 2D layout). In addition, explicit cache blocking can reduce the
computational overhead for the blocked application of the Householder transformations, as compared to WY-based tech-
niques. Combined, these two approaches can yield significant improvements for the parallel efficiency, in particular for large
cite this article in press as: T. Auckenthaler et al., Parallel solution of partial symmetric eigenvalue problems from electronic
ure calculations, Parallel Comput. (2011), doi:10.1016/j.parco.2011.05.002

http://dx.doi.org/10.1016/j.parco.2011.05.002

 10

 100

 64 128 256 512 1k 2k 4k 8k 16k 32k 64k

tim
e

[s
]

#cores

Poly27069

Intel−cluster: ScaLAPACK
one−step
two−step

BlueGene/P: ScaLAPACK
one−step
two−step

 100

 1000

 64 128 256 512 1k 2k 4k 8k 16k 32k 64k

tim
e

[s
]

#cores

Pt67990

Intel−cluster: ScaLAPACK
one−step
two−step

BlueGene/P: ScaLAPACK
one−step
two−step

Fig. 8. Overall runtime of the symmetric eigenvalue problem. The ScaLAPACK implementation pdsyevd is compared to the implementation presented in
[38] (one-step) and the two-step approach, presented in this paper. The one-step implementation as well as the two-step approach make use of the
improved divide-and-conquer algorithm. For the tridiagonal-to-banded back transformation in each case the fastest implementation was used; see Fig. 5.

10 T. Auckenthaler et al. / Parallel Computing xxx (2011) xxx–xxx
numbers of processor cores, as well as for the per-processor utilization, and they enable further large savings by using a two-
step reduction to tridiagonal form.

The solution of the tridiagonal eigenproblem has been addressed, too. The popular divide-and-conquer tridiagonal eigen-
solver features high speed and accuracy, but it is designed to compute either all or no eigenvectors. We have presented a
modification that allows to compute partial eigensystems at reduced cost, on serial and parallel machines.

Fig. 8 summarizes our findings and improvements. As can be seen, the vendor-optimized ScaLAPACK implementations
(ESSL or MKL) always stop scaling, even for the very large Pt67990 problem. Our present two-step implementation is clearly
more efficient than even our optimized one-step implementation [38] for both problems on the Intel cluster. Only on the
BlueGene/P, and for the large problem Pt67990, does the one-step implementation remain competitive, due to the large ratio
of needed eigenvectors to matrix size, k/n � 64%. This indicates that the one-step tridiagonalization would be more beneficial
if all eigenpairs were needed on BlueGene/P, as expected due to the higher operations count of the two-step approach, but
remarkably, the same is not necessarily true on Intel/Infiniband.

For the measurements in Fig. 8 we used an intermediate bandwidth b = 64 on both machines. An optimal choice of b for
the whole algorithm (reduction and back transformation) depends on the matrix size n, the number of desired eigenvectors
k, the number of processes p, and last but not least on the used hardware. A larger b allows BLAS routines to operate near
peak performance and decreases the number of messages sent, but it also increases the runtime of the reduction from
banded to tridiagonal form. Experience has shown that b � 50 is a good choice; see also Fig. 7. The choice of an optimal
parameter set will be the subject of further research.

While our research is driven by demands arising in electronic structure theory, the techniques described in this paper are
general and applicable to any field where the solution of large symmetric eigenproblems is required.
Note added in proof

We also compared to the alternative tridiagonalization routine pdsyntrd in ScaLAPACK. On the BlueGene/P, pdsyntrd
was significantly faster than pdsytrd for non-square processor grids (35:2 s vs. 81:8 s for the tridiagonalization of
Poly27069 on 8192 processors with block size 16), while our one-step and two-step reductions remained superior (29:3 s
and 21:6 s, resp.). The respective timings for 16384 processors were 43:5 s / 60:0 s / 26:2 s / 18:9 s. On the Intel cluster,
pdsyntrd performed slightly worse than pdsytrd.
Acknowledgements

The authors want to thank the referees for their valuable comments that helped to improve the presentation and Jack
Poulson for fruitful discussions on pdsyntrd.
References

[1] W. Kohn, L. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (1965) A1133–A1138.
[2] A. Szabo, N. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, Dover, 1996.
[3] M. Rohlfing, S.G. Louie, Electron-hole excitations in semiconductors and insulators, Phys. Rev. Lett. 81 (1998) 2312–2315.
Please cite this article in press as: T. Auckenthaler et al., Parallel solution of partial symmetric eigenvalue problems from electronic
structure calculations, Parallel Comput. (2011), doi:10.1016/j.parco.2011.05.002

http://dx.doi.org/10.1016/j.parco.2011.05.002

T. Auckenthaler et al. / Parallel Computing xxx (2011) xxx–xxx 11
[4] M. Casida, All-electron local and gradient-corrected density-functional calculations of Nan dipole polarizabilities for n = 1–6, in: P. Chong (Ed.), Recent
Advances in Density Functional Methods, Part I, World Scientific, Singapore, 1995, p. 155.

[5] J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez-Portal, The SIESTA method for ab initio order-N materials simulation, J.
Phys.: Condens. Matter 14 (2002) 2745–2779.

[6] M.J. Rayson, P.R. Briddon, Rapid iterative method for electronic-structure eigenproblems using localised basis functions, Comput. Phys. Commun. 178
(2008) 128–134.

[7] M.J. Rayson, P.R. Briddon, Highly efficient method for Kohn–Sham density functional calculations of 500–10000 atom systems, Phys. Rev. B 80 (2009)
205104-1–205104-11.

[8] V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, M. Scheffler, Ab initio molecular simulations with numeric atom-centered orbitals,
Comput. Phys. Commun. 180 (2009) 2175–2196.

[9] P. Blaha, H. Hofstätter, O. Koch, R. Laskowski, K. Schwarz, Iterative diagonalization in augmented plane wave based methods in electronic structure
calculations, J. Comput. Phys. 229 (2010) 453–460.

[10] N.D.M. Hine, P.D. Hayes, A.A. Mostofi, M.C. Payne, Linear-scaling density-functional simulations of charged point defects in Al2O3 using hierarchical
sparse matrix algebra, J. Chem. Phys. 133 (2010) 114111.

[11] J. Vandevondele, J. Hutter, An efficient orbital transformation method for electronic structure calculations, J. Chem. Phys. 118 (2003) 4365–4369.
[12] P. Bientinesi, I.S. Dhillon, R.A. van de Geijn, A parallel eigensolver for dense symmetric matrices based on multiple relatively robust representations,

SIAM J. Sci. Comput. 27 (1) (2005) 43–66.
[13] W.N. Gansterer, J. Zottl, Parallelization of divide-and-conquer eigenvector accumulation, in: J.C. Cunha, P.D. Medeiros (Eds.), Euro-Par 2005, Springer,

Berlin, 2005, pp. 847–856.
[14] Y. Zhou, Y. Saad, M.L. Tiago, J.R. Chelikowsky, Parallel self-consistent-field calculations via Chebyshev-filtered subspace acceleration, Phys. Rev. E 74

(2006) 066704-1–066704-8.
[15] Y. Bai, R.C. Ward, Parallel block tridiagonalization of real symmetric matrices, J. Parallel Distrib. Comput. 68 (2008) 703–715.
[16] V. Weber, J. VanDeVondele, J. Hutter, A. Niklasson, Direct energy functional minimization under orthogonality constraints, J. Chem. Phys. 128 (2008)

084113.
[17] E. Polizzi, Density-matrix-based algorithm for solving eigenvalue problems, Phys. Rev. B 79 (2009) 115112-1–115112-6.
[18] J.-L. Fattebert, Accelerated block preconditioned gradient method for large scale wave functions calculations in density functional theory, J. Comput.

Phys. 229 (2010) 441–452.
[19] M.J. Rayson, Rapid filtration algorithm to construct a minimal basis on the fly from a primitive Gaussian basis, Comput. Phys. Commun. 181 (2010)

1051–1056.
[20] S. Goedecker, Linear scaling electronic structure methods, Rev. Mod. Phys. 71 (1999) 1085–1123.
[21] D. Bowler, T. Miyazaki, M. Gillan, Recent progress in linear scaling ab initio electronic structure techniques, J. Phys.: Condens. Matter 14 (2002) 2781–

2799.
[22] C.-K. Skylaris, P.D. Haynes, A.A. Mostofi, M.C. Payne, Introducing ONETEP: linear-scaling density functional simulations on parallel computers, J. Chem.

Phys. 122 (2005) 084119.
[23] C.J. Garcia-Cervera, J. Lu, Y. Xuan, W. E, Linear-scaling subspace-iteration algorithm with optimally localized nonorthogonal wave functions for Kohn–

Sham density functional theory, Phys. Rev. B 79 (2009) 115110-1–115110-13.
[24] D. Bowler, T. Miyazaki, Calculations for millions of atoms with density functional theory: linear scaling shows its potential, J. Phys.: Condens. Matter 22

(2010) 074207.
[25] E.R. Davidson, The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices, J. Comput.

Phys. 17 (1975) 87–94.
[26] A.V. Knyazev, Toward the optimal preconditioned eigensolver: locally optimal block preconditioned conjugate gradient method, SIAM J. Sci. Comput.

23 (2001) 517–541.
[27] F. Bottin, S. Leroux, A. Knyazev, G. Zerah, Large-scale ab initio calculations based on three levels of parallelization, Comput. Mater. Sci. 42 (2008) 329–

336.
[28] D.M. Wood, A. Zunger, A new method for diagonalising large matrices, J. Phys. A: Math. Gen. 18 (1985) 1343–1359.
[29] C. Vömel, S.Z. Tomov, O.A. Marques, A. Canning, L.-W. Wang, J.J. Dongarra, State-of-the-art eigensolvers for electronic structure calculations of large-

scale nano-systems, J. Comput. Phys. 227 (2008) 7113–7124.
[30] J. Iwata, D. Takahashi, A. Oshiyama, T. Boku, K. Shiraishi, S. Okada, K. Yabana, A massively-parallel electronic-structure calculations based on real-space

density functional theory, J. Comput. Phys. 229 (2010) 2339–2363.
[31] E. Anderson, Z. Bai, C.H. Bischof, L.S. Blackford, J.W. Demmel, J.J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, D.C. Sorensen,

LAPACK Users’ Guide, third ed., SIAM, Philadelphia, PA, 1999.
[32] V. Havu, V. Blum, P. Havu, M. Scheffler, Efficient O(N) integration for all-electron electronic structure calculation using numeric basis functions, J.

Comput. Phys. 228 (2009) 8367–8379.
[33] L.S. Blackford, J.Y. Choi, A.J. Cleary, E. D’Azevedo, J.W. Demmel, I.S. Dhillon, J.J. Dongarra, S. Hammarling, G. Henry, A.P. Petitet, K.S. Stanley, D.W. Walker,

R.C. Whaley, ScaLAPACK Users’ Guide, SIAM, Philadelphia, PA, 1997.
[34] C.H. Bischof, C.F. Van Loan, The WY representation for products of Householder matrices, SIAM J. Sci. Stat. Comput. 8 (1) (1987) s2–s13.
[35] R.S. Schreiber, C.F. Van Loan, A storage-efficient WY representation for products of Householder transformations, SIAM J. Sci. Stat. Comput. 10 (1989)

53–57.
[36] A.G. Sunderland, Parallel diagonalization performance on high-performance computers, in: R. Ciegis et al. (Eds.), Parallel Scientific Computing and

Optimization: Advances and Applications, Springer, Berlin, 2009, pp. 57–66.
[37] C. Bischof, B. Lang, X. Sun, Parallel tridiagonalization through two-step band reduction, in: Proceedings of the Scalable High-Performance Computing

Conference, IEEE Computer Society Press, Los Alamitos, CA, 1994, pp. 23–27.
[38] R. Johanni, V. Blum, V. Havu, H. Lederer, M. Scheffler, (2011), in preparation.
[39] P. Havu, V. Blum, V. Havu, P. Rinke, M. Scheffler, Large-scale surface reconstruction energetics of Pt(100) and Au(100) by all-electron density functional

theory, Phys. Rev. B 82 (2010) 161418(R).
[40] B. Lang, Effiziente Orthogonaltransformationen bei der Eigen-und Singulärwertzerlegung, Habilitationsschrift, Bergische Universität GH Wuppertal,

Fachbereich Mathematik, 1997.
[41] B. Lang, A parallel algorithm for reducing symmetric banded matrices to tridiagonal form, SIAM J. Sci. Comput. 14 (6) (1993) 1320–1338.
[42] H.R. Schwarz, Tridiagonalization of a symmetric band matrix, Numer. Math. 12 (1968) 231–241.
[43] C.H. Bischof, B. Lang, X. Sun, A framework for symmetric band reduction, ACM Trans. Math. Softw. 26 (4) (2000) 581–601.
[44] C.H. Bischof, B. Lang, X. Sun, Algorithm 807: The SBR toolbox—software for successive band reduction, ACM Trans. Math. Softw. 26 (4) (2000) 602–616.
[45] T. Auckenthaler, H.-J. Bungartz, T. Huckle, L. Krämer, B. Lang, P.R. Willems, Developing algorithms and software for the parallel solution of the

symmetric eigenvalue problem, in press.
[46] R. Wittmann, Development and implementation of purpose-built high performance linear algebra kernels for the use on supercomputers, Bachelor’s

thesis, Institut für Informatik, Technische Universität München, 2010.
[47] J.G.F. Francis, The QR transformation: A unitary analogue to the LR transformation, Paart I and II, Computer J. 4 (1961/62) 265–274. 332–345.
[48] J.W. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, PA, 1997.
[49] J.W. Demmel, K.S. Stanley, The performance of finding eigenvalues and eigenvectors of dense symmetric matrices on distributed memory computers,

in: Proceedings of the Seventh SIAM Conference on Parallel Processing for Scientific Computing, SIAM, Philadelphia, PA, 1994, pp. 528–533.
Please cite this article in press as: T. Auckenthaler et al., Parallel solution of partial symmetric eigenvalue problems from electronic
structure calculations, Parallel Comput. (2011), doi:10.1016/j.parco.2011.05.002

http://dx.doi.org/10.1016/j.parco.2011.05.002

12 T. Auckenthaler et al. / Parallel Computing xxx (2011) xxx–xxx
[50] J.J.M. Cuppen, A divide and conquer method for the symmetric tridiagonal eigenproblem, Numer. Math. 36 (1981) 177–195.
[51] M. Gu, S.C. Eisenstat, A divide-and-conquer algorithm for the symmetric tridiagonal eigenproblem, SIAM J. Matrix Anal. Appl. 16 (1) (1995) 172–191.
[52] F. Tisseur, J.J. Dongarra, A parallel divide and conquer algorithm for the symmetric eigenvalue problem on distributed memory architectures, SIAM J.

Sci. Comput. 20 (6) (1999) 2223–2236.
[53] R.A. van de Geijn, Using PLAPACK, MIT Press, Cambridge, MA, 1997.
[54] I.S. Dhillon, A new O(n2) algorithm for the symmetric tridiagonal eigenvalue/eigenvector problem, Ph.D. Thesis, University of California at Berkeley,

1997.
[55] C. Vömel, ScaLAPACK’s MRRR algorithm, ACM Trans. Math. Softw. 37 (1) (2009) 1–35.
[56] P.R. Willems, On MRRR-type algorithms for the tridiagonal symmetric eigenproblem and the bidiagonal SVD, Ph.D. Thesis, Bergische Universität

Wuppertal, Fachbereich Mathematik und Naturwissenschaften, 2010.
[57] P.R. Willems, B. Lang, A framework for the MR3 algorithm: Theory and implementation, submitted for publication.
[58] J.W. Demmel, O.A. Marques, B.N. Parlett, C. Voemel, Performance and accuracy of LAPACK’s symmetric tridiagonal eigensolvers, SIAM J. Sci. Comput. 30

(2008) 1508–1526.
Please cite this article in press as: T. Auckenthaler et al., Parallel solution of partial symmetric eigenvalue problems from electronic
structure calculations, Parallel Comput. (2011), doi:10.1016/j.parco.2011.05.002

http://dx.doi.org/10.1016/j.parco.2011.05.002

	Parallel solution of partial symmetric eigenvalue problems from electronic structure calculations
	1 Introduction
	2 Efficient tridiagonalization and back transformation
	2.1 Reduction from banded to tridiagonal form
	2.2 Tridiagonal-to-banded back transformation of eigenvectors
	2.3 Non-WY approaches for blocking Householder transformations

	3 Partial eigensystems of symmetric tridiagonal matrices
	3.1 Outline of the divide-and-conquer algorithm
	3.2 Computing a subset of the eigenvectors with D&C

	4 Conclusions
	Note added in proof
	Acknowledgements
	References

