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Abstract

Scientists, engineers, and statisticians must execute domain-specific ap-
plication programs many times on large collections of file-based data. This
activity requires complex orchestration and data management as data is
passed to, from, and among application invocations. Distributed and paral-
lel computing resources can accelerate such processing, but their use further
increases programming complexity. The Swift parallel scripting language
reduces these complexities by making file system structures accessible via
language constructs and by allowing ordinary application programs to be
composed into powerful parallel scripts that can efficiently utilize parallel
and distributed resources. We present Swift’s implicitly parallel and de-
terministic programming model, which applies external applications to file
collections using a functional style that abstracts and simplifies distributed
parallel execution.
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1. Introduction

Swift is a scripting language designed for composing application pro-
grams into parallel applications that can be executed on multicore proces-
sors, clusters, grids, clouds, and supercomputers. Unlike most other script-
ing languages, Swift focuses on the issues that arise from the concurrent
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execution, composition, and coordination of many independent (and, typi-
cally, distributed) computational tasks. Swift scripts express the execution
of programs that consume and produce file-resident datasets. Swift uses a C-
like syntax consisting of function definitions and expressions, with dataflow-
driven semantics and implicit parallelism.

Many parallel applications involve a single message-passing parallel pro-
gram: a model supported well by the Message Passing Interface (MPI). Oth-
ers, however, require the coupling or orchestration of large numbers of appli-
cation invocations: either many invocations of the same program or many in-
vocations of sequences and patterns of several programs. Scaling up requires
the distribution of such workloads among cores, processors, computers, or
clusters and, hence, the use of parallel or grid computing. Even if a single
large parallel cluster suffices, users will not always have access to the same
system (i.e., big machines may be congested or temporarily unavailable to a
user because of maintenance or allocation depletion). Thus, it is desirable to
be able to use whatever resources happen to be available or economical at the
moment when the user needs to compute—without the need to continually
reprogram or adjust execution scripts.

Swift’s primary value is that it provides a simple, minimal set of language
constructs to specify how applications are glued together and executed in
parallel at large scale. It regularizes and abstracts notions of processes and
external data for distributed parallel execution of application programs.

Swift is implicitly parallel and location-independent: the user does not
explicitly code either parallel behavior or synchronization (or mutual exclu-
sion) and does not code explicit transfer of files to and from execution sites.
In fact, no knowledge of runtime execution locations is directly specified in
a Swift script. The function model on which Swift is based ensures that exe-
cution of Swift scripts is deterministic (if the called functions are themselves
deterministic), thus simplifying the scripting process. Having the results of
a Swift script be independent of the way that its function invocations are
parallelized implies that the functions must, for the same input, produce the
same output, irrespective of the time, order, or location in which they are ex-
ecuted. However, Swift greatly simplifies the parallel scripting process even
when this condition is not met.

As a language, Swift is simpler than most scripting languages because
it does not replicate the capabilities that scripting languages such as Perl,
Python, and shells do well; instead, Swift makes it easy to call such scripts
as small applications.
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Swift can execute scripts that perform hundreds of thousands of program
invocations on highly parallel resources and handle the unreliable and dy-
namic aspects of wide-area distributed resources. Such issues are managed
by Swift’s runtime system and are not manifest in the user’s scripts. The
exact number of processing units available on such shared resources varies
with time. In order to take advantage of as many processing units as possible
during the execution of a Swift program, flexibility is essential in the way the
execution of individual processes is parallelized. Swift exploits the maximal
concurrency permitted by data dependencies within a script and by external
resource availability.

Swift enables users to specify process composition by representing pro-
cesses as functions, where input data files and process parameters become
function parameters and output data files become function return values.
Swift also provides a high-level representation of collections of data (used
as function inputs and outputs) and a specification (“mapper”) that allows
those collections to be processed by external programs. We chose to make
the Swift language purely functional (i.e., all operations have a well-defined
set of inputs and outputs, all variables are write-once, and no script-level
side effects are permitted by the language) in order to prevent the difficulties
that arise from having to track side effects to ensure determinism in complex
concurrency scenarios. Functional programming allows consistent implemen-
tations of evaluation strategies, in contrast to the more common approach
of eager evaluation. This benefit has been similarly demonstrated in lazily
evaluated languages such as Haskell [1].

In order to achieve automatic parallelization, Swift is based on the syn-
chronization construct of futures [2], which can enable large-scale parallelism.
Every Swift variable (including all members of structures and arrays) is a
future. Using a futures-based evaluation strategy allows for automatic paral-
lelization without the need for dependency analysis. This significantly sim-
plifies the Swift implementation.

We believe that the missing feature in current scripting languages is suf-
ficient specification and encapsulation of inputs to and outputs from a given
application, such that an execution environment can automatically make re-
mote execution transparent. Without this, achieving location transparency
is not feasible. Swift adds to scripting what the remote procedure call (RPC)
paradigm [3] adds to programming: by formalizing the inputs and outputs
of applications that have been declared as Swift functions, it makes the dis-
tributed remote execution of applications transparent.
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Swift has been described previously [4]; this paper goes into greater depth
in describing the parallel aspects of the language, the way its implementation
handles large-scale and distributed execution environments, and its contri-
bution to distributed and parallel programming models.

The remainder of this paper is organized as follows. Section 2 presents
the fundamental concepts and language structures of Swift. Section 3 details
the Swift implementation, including the distributed architecture that enables
applications to run on distributed resources. Section 4 describes real-world
applications using Swift on scientific projects. Section 5 provides performance
results. Section 6 relates Swift to other systems. Section 7 highlights ongoing
and future work in the Swift project. Section 8 offers concluding remarks
about Swift’s distinguishing features and its role in scientific computing.

2. The Swift language

Swift is, by design, a sparse scripting language that executes external
programs remotely and in parallel. As such, Swift has only a limited set
of data types, operators, and built-in functions. Its simple, uniform data
model comprises a few atomic types (that can be scalar values or references
to external files) and two collection types (arrays and structures).

A Swift script uses a C-like syntax to describe data, application com-
ponents, invocations of application components, and the interrelations (data
flow) among those invocations. Swift scripts are written as a set of functions,
composed upwards, starting with atomic functions that specify the execution
of external programs. Higher-level functions are then composed as pipelines
(or, more generally, graphs) of subfunctions.

Unlike most other scripting languages, Swift expresses invocations of or-
dinary programs—technically, POSIX exec() operations—in a manner that
explicitly declares the files and command-line arguments that are the in-
puts of each program invocation. Swift scripts similarly declare all output
files that result from program invocations. This approach enables Swift to
provide distributed, location-independent execution of external application
programs.

The Swift parallel execution model is based on two concepts that are
applied uniformly throughout the language. First, every Swift data element
behaves like a future. By “data element” we mean both the named variables
within a function’s environment, such as its local variables, parameters, and
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returns, and the individual elements of array and structure collections. Sec-
ond, all expressions in a Swift program are conceptually executed in parallel.
Expressions (including function evaluations) wait for input values when they
are required and then set their result values as their computation proceeds.
These fundamental concepts of pervasive implicit parallelism and transparent
location independence, along with natural manner in which Swift expresses
the processing of files by applications as if they were “in-memory” objects, are
the powerful aspects that make Swift unique among scripting tools. These
aspects are elaborated in this section.

2.1. Data model and types

Variables are used in Swift to name the local variables, arguments, and
returns of a function. The outermost function in a Swift script (akin to
“main” in C) is unique only in that the variables in its environment can
be declared “global” to make them accessible to every other function in the
script.

Each variable in a Swift script is declared to be of a specific type. The
Swift type model is simple, with no concepts of inheritance or abstraction.
There are three basic classes of data types: primitive, mapped, and collection.

The four primary primitive types are integer, float, string, and boolean
values. Common operators are defined for primitive types, such as arith-
metic, concatenation, and explicit conversion. (An additional primitive type,
“external,” is provided for manual synchronization; we do not discuss this
feature here.)

Mapped types are used to declare data elements that refer (through a
process called “mapping,” described in Section 2.5) to files external to the
Swift script. These files can then be read and written by application programs
called by Swift. The mapping process can map single variables to single files,
and structures and arrays to collections of files. The language has no built-in
mapped types. Instead, users declare type names, with no other structure
to denote any mapped type names desired (for example, type file; type

log;).
A variable that is declared to be a mapped file is associated with a map-

per, which defines (often through a dynamic lookup process) the file that is
mapped to the variable.

Mapped type and collection type variable declarations can be annotated
with a mapping descriptor that specifies the file(s) to be mapped to the Swift
data element(s).
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For example, the following lines declare image to be an mapped file type
and a variable named photo of type image. Since image is a mapped file
type, it additionally declares that the variable refers to a single file named
shane.jpeg:

type image {};

image photo <"shane.jpeg">;

The notation {} indicates that the type represents a reference to a single
opaque file, that is, a reference to an external object whose structure is opaque
to the Swift script. For convenience such type declarations typically use the
equivalent shorthand type image; (This compact notation can be confusing
at first but has become an accepted Swift idiom.)

The two collection types are structures and arrays. A structure type lists
the set of elements contained in the structure, as for example in the following
definition of the structure type snapshot:

type image;

type metadata;

type snapshot {

metadata m;

image i;

}

Members of a structure can be accessed by using the . operator:

snapshot sn;

image im;

im = sn.i;

Structure fields can be of any type, whereas arrays contain values of only
a single type. Both structures and arrays can contain members of primitive,
mapped, or collection types. In particular, arrays can be nested to provide
multidimensional indexing.

The size of a Swift array is not declared in the program but is determined
at run time, as items are added to the array. This feature proves useful
for expressing some common classes of parallel computations. For example,
we may create an array containing just those experimental configurations
that satisfy a certain criterion. An array is considered “closed” when no
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further statements that set an element of the array can be executed. This
state is recognized at run time by information obtained from compile-time
analysis of the script’s call graph. The set of elements that is thus defined
need not be contiguous; in the words, the index set may be sparse. As we
will demonstrate below, the foreach statement makes it easy to access all
elements of an array.

2.2. Built-in, application interface, and compound functions

Swift’s built-in functions are implemented by the Swift runtime system
and perform various utility functions (numeric conversion, string manipula-
tion, etc.). Built-in operators (+, *, etc.) behave similarly.

An application interface function (declared by using the app keyword)
specifies both the interface (input files and parameters; output files) of an
application program and the command-line syntax used to invoke the pro-
gram. It thus provides the information that the Swift runtime system requires
to invoke that program in a location-independent manner.

For example, the following application interface defines a Swift function
rotate that uses the common image processing utility convert [5] to rotate
an image by a specified angle. The convert executable will be located at run
time in a catalog of applications or through the PATH environment variable.)

app (image output) rotate(image input, int angle) {

convert "-rotate" angle @input @output;

}

Having defined this function, we can now build a complete Swift script
that rotates a file puppy.jpeg by 180 degrees to generate the file rotated.jpeg:

type image;

image photo <"puppy.jpeg">;

image rotated <"rotated.jpeg">;

app (image output) rotate(image input, int angle) {

convert "-rotate" angle @input @output;

}

rotated = rotate(photo, 180);
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The last line in this script looks like an ordinary function invocation.
However, thanks to the application interface function declaration and the
semantics of Swift, its execution in fact invokes the convert program, with
variables on the left of the assignment bound to the output parameters and
variables to the right of the function invocation passed as inputs.

This script can be invoked from the command line, as in the following
example, in which Swift executes a single convert command, while auto-
matically performing for the user features such as remote multisite execution
and fault tolerance, as discussed later.

$ ls *.jpeg

shane.jpeg

$ swift example.swift

...

$ ls *.jpeg

shane.jpeg rotated.jpeg

A third class of Swift functions, the compound function, invokes other
functions. For example, the following script defines a compound function
process that invokes functions first and second. (A temporary file, intermediate,
is used to connect the two functions. Since no mapping is specified, Swift
generates a unique file name.)

(file output) process (file input) {

file intermediate;

intermediate = first(input);

output = second(intermediate);

}

This function is used in the following script to process a file x.txt, with
output stored in file y.txt.

file x <"x.txt">;

file y <"y.txt">;

y = process(x);

Compound functions can also contain flow-of-control statements (described
below), while application interface functions cannot (since the latter serve to
specify the functional interface for a single application invocation).
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2.3. Arrays and parallel execution

Arrays are declared by using the [] suffix. For example, we declare here
an array containing three strings and then use the foreach construct to
apply a function analyze to each element of that array. (The arguments
fruit and index resolve to the value of an array element and that element’s
index, respectively.)

string fruits[] = {"apple", "pear", "orange"};

file tastiness[];

foreach fruit, index in fruits {

tastiness[index] = analyze(fruit);

}

The foreach construct is a principal means of expressing concurrency in
Swift. The body of the foreach is executed in parallel for every element of
the array specified by the in clause. In this example, all three invocations of
the analyze function are invoked concurrently.

2.4. Execution model: Implicit parallelism

We have now described almost all the Swift language. While Swift also
provides conditional execution through the if and switch statements and
explicit sequential iteration through the iterate statement, we don’t elab-
orate on these, as they are less relevant to our focus here on Swift’s parallel
aspects.

The Swift execution model is based on a simple, uniform model. Every
data object in Swift is built up from atomic data elements that contain three
fields: a value, a state, and a queue of function invocations that are waiting
for the value to be set.

Swift data elements (atomic variables and array elements) are single-
assignment. They can be assigned at most one value during execution, and
they behave as futures. This semantic provides the basis for Swift’s model of
parallel function evaluation and dependency chaining. While Swift collection
types (arrays and structures) are not single-assignment, each of their elements
is single-assignment.

Through the use of futures, functions become executable when their input
parameters have all been set, either from existing data or from prior function
executions. Function calls may be chained by passing an output variable of
one function as the input variable to a second function. This dataflow-driven
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model means that Swift functions are not necessarily executed in source-code
order but rather when their input data become available.

Since all variables and collection elements are single-assignment, a func-
tion or expression can be executed when all of its input parameters have been
assigned values. As a result of such execution, more variables may become
assigned, possibly allowing further parts of the script to execute. In this way,
scripts are implicitly concurrent.

For example, in the following script fragment, execution of functions p

and q can occur in parallel:

y=p(x);

z=q(x);

while in the next fragment, execution is serialized by the variable y, with
function p executing before q:

y=p(x);

z=q(y);

Note that reversing the order of these two statements in a script will not
affect the order in which they are executed.

Statements that deal with the array as a whole will wait for the array to
be closed before executing. An example of such an action is the expansion
of the array values into an app function command line. Thus, the closing
of an array is the equivalent to setting a future variable, with respect to
any statement that was waiting for the array itself to be assigned a value.
However, a foreach statement will apply its body of statements to elements
of an array in a fully concurrent, pipelined manner, as they are set to a value.
It will not wait until the array is closed. In practice this type of “pipelining”
gives Swift scripts a high degree of parallelism at run time.

The simplicity and regularity of the Swift data model make it easy to
achieve a high degree of implicit parallelism. For example, a foreach()

statement that processes an array returned by a function may begin process-
ing members of the returned array that have been already set, even before
the entire function completes and returns. The result is often programs that
are heavily pipelined with significant overlapping parallel activities.

Consider the script below:

file a[];

file b[];
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foreach v,i in a {

b[i] = p(v);

}

a[0] = r();

a[1] = s();

Initially, the foreach statement will block, with nothing to execute, since
the array a has not been assigned any values. At some point, in parallel,
the functions r and s will execute. As soon as either of them is finished, the
corresponding invocation of function p will occur. After both r and s have
completed, the array a will be regarded as closed, since no other statements
in the script make an assignment to a.

2.5. Swift mappers

Swift provides an extensible set of built-in mapping primitives (“map-
pers”) that make a given variable name refer to a filename. A mapper asso-
ciated with a structured Swift variable can represent a large, structured data
set. A representative set of built-in mappers is listed in Table 1. Collections
of files can be mapped to complex types (arrays and structures) by using a
variety of built-in mappers. For example, the following declaration

file frames[] <filesys_mapper; pattern="*.jpeg">;

foreach f,ix in frames {

output[ix] = rotate(f, 180);

}

uses the built-in filesys_mapper to map all files matching the name pattern
*.jpeg to an array–and then applies a function to each element of that array.

Swift mappers can operate on files stored on the local machine in the
directory where the swift command is executing, or they can map any files
accessible to the local machine, using absolute pathnames. Custom mappers
(and some of the built-in mappers) can also map variables to files specified
by URIs for access from remote servers via protocols such as GridFTP or
HTTP, as described in section 3. Mappers can interact with structure fields
and array elements in a simple and useful manner.

New mappers can be added to Swift either as Java classes or as simple,
external executable scripts or programs coded in any language. Mappers can
operate both as input mappers (which map files to be processed as appli-
cation inputs) and as output mappers (which specify the names of files to
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Table 1: Example of selected built-in mappers showing their syntax and semantics

Mapper Name Description Example

single_file_mapper maps single named file
file f <"data.txt">;

—
f→ data.txt

filesys_mapper maps directory contents
into an array

file f[] <filesys mapper;

prefix="data",

suffix=".txt">;

—
f[0]→ data2.txt

simple_mapper maps components of the
variable name

file f <simple mapper;

prefix="data.",

suffix=".txt">;

—
f.red→ data.red.txt

be produced by applications). It is important to understand that mapping a
variable is a different operation from setting the value of a variable. Variables
of mapped-file type are mapped (conceptually) when the variable becomes
“in scope,” but they are set when a statement assigns them a value. Mapper
invocations (and invocations of external mapper executables) are completely
synchronized with the Swift parallel execution model.

This ability to abstract the processing of files by programs as if they were
in-memory objects and to process them with an implicitly parallel program-
ming model is Swift’s most valuable and noteworthy contribution.

2.6. Swift application execution environment

A Swift app declaration describes how an application program is invoked.
In order to provide a consistent execution environment that works for virtu-
ally all application programs, the environment in which programs are exe-
cuted needs to be constrained with a set of conventions. The Swift execution
model is based on the following assumptions: a program is invoked in its own
working directory; in that working directory or one of its subdirectories, the
program can expect to find all files passed as inputs to the application block;
and on exit, it should leave all files named by that application block in the
same working directory.
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Applications should not assume that they will be executed on a partic-
ular host (to facilitate site portability), that they will run in any particular
order with respect to other application invocations in a script (except those
implied by data dependency), or that their working directories will or will
not be cleaned up after execution. In addition, applications should strive to
avoid side effects that could limit both their location independence and the
determinism (either actual or de facto) of the overall results of Swift scripts
that call them.

Consider the following app declaration for the rotate function:

app (file output) rotate(file input, int angle)

The function signature declares the inputs and outputs for this function.
As in many other programming languages, this declaration defines the type
signatures and names of parameters; this also defines which files will be placed
in the application working directory before execution and which files will be
expected there after execution. For the above declaration, the file mapped
to the input parameter will be placed in the working directory beforehand,
and the file mapped to output will be expected there after execution; since
the input parameter angle is of primitive type, no files are staged in for this
parameter.

The body of the app block defines the command line that will be executed
when the function is invoked:

convert "-rotate" angle @input @output;

The first token (in this case convert) defines a application name that is
used to locate the executable program. Subsequent expressions define the
command-line arguments for that executable: “-rotate” is a string literal;
angle specifies the value of the angle parameter; and the syntax @variable

(shorthand for the built-in function @filename()) evaluates to the filename
of the supplied variable. Thus @input and @output insert the filenames of the
corresponding parameters into the command line. We note that the filename
of output can be taken even though it is a return parameter; although the
value of that variable has not yet been computed, the filename to be used
for that value is already available from the mapper.

3. The Swift runtime environment

The Swift runtime environment comprises a set of services providing the
parallel, distributed, and reliable execution that underlie the simple Swift
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language model. A key contribution of Swift is the extent to which the lan-
guage model has been kept simple by factoring the complexity of these issues
out of the language and implementing them in the runtime environment.
Notable features of this environment include the following:

• Location-transparent execution: automatic selection of a location for
each program invocation and management of diverse execution envi-
ronments. A Swift script can be tested on a single local workstation.
The same script then can be executed on a cluster, one or more grids
of clusters, or a large-scale parallel supercomputer such as the Sun
Constellation [6] or the IBM Blue Gene/P [7].

• Automatic parallelization of application program invocations that have
no data dependencies. The pervasive implicit parallelism inherent in a
Swift script is made practical through various throttling and scheduling
semantics of the runtime environment.

• Automatic balancing of work over available resources, based on adap-
tive algorithms that account for both resource performance and relia-
bility and that throttle program invocations at a rate appropriate for
each execution location and mechanism.

• Reliability, through automated replication of application invocations,
automatic resubmission of failed invocations, and the ability to continue
execution of interrupted scripts from the point of failure.

• Formalizing of the creation and management of data objects in the
language and recording of the provenance of data objects produced by
a Swift script.

Swift is implemented by generating and executing a Karajan program [8],
which provides several benefits: a lightweight threading model, futures, re-
mote job execution, and remote file transfer and data management. Both
remote execution and data transfer and management functions are provided
through abstract interfaces called providers [8]. Data providers enable data
transfer and management to be performed through a wide variety of pro-
tocols including direct local copying, GridFTP, HTTP, WebDAV, SCP, and
FTP. Execution providers enable job execution to take place by using di-
rect POSIX process fork, Globus GRAM, Condor (and Condor-G), PBS,
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SGE, and SSH services. The Swift execution model can be flexibly extended
for novel and evolving computing environments by implementing new data
providers and/or job execution providers.

3.1. Executing on a remote site

Given Swift’s pragmatically constrained model of application invocation
and file passing, execution of a program on a remote site is straightforward.
The Swift runtime system must prepare a remote working directory for each
job with appropriate input files staged in; next it must execute the program;
and then it must stage the output files back to the submitting system. The
execution site model used by Swift is shown in Figure 1.

AWS

Karajan

Java CoG Tasks

Swift script

Local
Cluster

TeraGrid, 
OSG, ...Submit

HPC:
BG/P, etc.

Shared FS

wrapper script

 user binary

Local FS

Automated 
staging over 
GridFTP

Scheduler

Binary

POSIX I/O

app (f2) sim(f1) 
{ sim f1 f2; }

<sim><variable>f1
     <variable>f2...

grid.submit(sim...);

Multicore
Desktop

Figure 1: Swift site model (CoG = Commodity Grid [8], OSG = Open Science Grid, AWS
= Amazon Web Services, HPC = high-performance computing system, BG/P = Blue
Gene/P).

A site in Swift consists of one or more worker nodes, which will execute
programs through some execution provider, and an accessible file system,
which must be visible on the worker nodes as a POSIX-like file system and
must be accessible to the Swift client command through some file access
provider.

Two common implementations of this model are execution on the local
system and execution on one or more remote clusters in a grid managed by
Globus [9] software. In the former case, a local scratch file system (such as
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/var/tmp) may be used as the accessible file system; execution of programs
is achieved by direct POSIX fork, and access to the file system is provided
by the POSIX filesystem API. (This approach enables Swift to make efficient
use of increasingly powerful multicore computers.) In the case of a grid site, a
shared file system is commonly provided by the site and is mounted on all its
compute nodes; GRAM [10] and a local resource manager (LRM) provide an
execution mechanism, and GridFTP [11] provides access from the submitting
system to the remote file system.

Sites are defined and described in the site catalog :

<pool handle="tguc">

<gridftp

url="gsiftp://tg-gridftp.uc.teragrid.org" />

<execution provider="gt2" jobmanager="PBS"

url="tg-grid.uc.teragrid.org" />

<workdirectory>

/home/ben/swiftwork

</workdirectory>

</pool>

This file may be constructed either by hand or mechanically from some pre-
existing database (such as a grid’s resource database interface). The site
catalog is reusable and may be shared among multiple users of the same
resources. This approach separates Swift application scripts from system
configuration information and keeps the former location-independent.

The site catalog may contain definitions for multiple sites, in which case
execution will be attempted on all sites. In the presence of multiple sites, it
is necessary to choose between the available sites. To this end, the Swift site
selector maintains a score for each site that determines the load that Swift
will place on that site. As a site succeeds in executing jobs, this score is
increased; as job executions at a site fail, this score is decreased. In addition
to selecting between sites, this mechanism provides a measure of dynamic
rate limiting if sites fail because of overload [12].

This dynamically fluctuating score provides an empirically measured es-
timate of a site’s ability to bear load, distinct from and more relevant to
scheduling decisions than is static configuration information. For example,
site policies restricting job counts are often not available or accurate. In
addition, a site’s capacity or resource availability may not be properly quan-
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tified by published information, for example, because of load caused by other
users.

3.2. Reliable execution

The functional nature of Swift provides a clearly defined interface to im-
perative components, which, in addition to allowing Swift great flexibility in
where and when it runs application programs, allows those imperative com-
ponents to be treated as atomic components that can be executed multiple
times for any given Swift function invocation. This facilitates three different
reliability mechanisms that are implemented by the runtime system and that
need not be exposed at the language level: retries, restarts, and replication.

In the simplest form of error handling in Swift, if an application program
fails, Swift will attempt to rerun the program. In contrast to many other
systems, retry here is at the level of the Swift function invocation and includes
completely reattempting site selection, stage-in, execution, and stage-out.
This provides a natural way to deal both with many transient errors, such
as temporary network loss, and with many changes in site state.

Some errors are more permanent; for example, an application program
may have a bug that causes it to always fail when given a particular set of
inputs. In this case, Swift’s retry mechanism will not help; each job will be
tried a number of times, and each will fail, ultimately resulting in the entire
script failing.

In such a case, Swift provides a restart log that encapsulates which func-
tion invocations have been successfully completed. A subsequent Swift run
may be started with this restart log; this will avoid re-execution of already
executed invocations.

A different class of failure occurs when jobs are submitted to a site and
then remain enqueued for an extended time on that site. This is a “failure”
in site selection, rather than in execution. It can be either a soft failure,
where the job will eventually run on the chosen site (the site selector has
improperly chosen a heavily loaded site), or a hard failure, where the job
will never run because a site has ceased to process jobs of some class (or has
halted all processing).

To address this situation, Swift provides for job replication. After a job
has been queued on a site for too long (based on a configurable threshold),
a replica of the job will be submitted (again undergoing independent site
selection, staging, and execution); this will continue up to a defined limit.
When any one of those jobs begins executing, all other replicas of the job
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will be canceled. This replication algorithm nicely handles the “long tail” of
“straggler jobs” [13, 14] that often delays completion of a parallel workload.

3.3. Avoiding job submission penalties

In many applications, the overhead of job submission through commonly
available mechanisms, such as through GRAM into an LRM, can dominate
the execution time. The reason is that the overhead of remote job submission
may be long relative to the job length or that the job may wait in a congested
queue, or both. In these situations, it is helpful to combine a number of Swift-
level application program executions into a single GRAM/LRM submission.

Swift offers two mechanisms to address this problem: clustering and coast-
ers. Clustering aggregates multiple program executions into a single job,
thereby reducing the total number of jobs to be submitted. Coasters [15] is
a form of multilevel scheduling similar to pilot jobs [16]. It submits generic
coaster jobs to a site and binds component program executions to the coaster
jobs (and thus to worker nodes) as these coaster jobs begin remote execution.

Clustering requires little additional support on the remote site, while the
coasters framework requires an active component on the head node (in Java)
and on the worker nodes (in Perl) as well as additional network connectivity
within a site. Occasionally, the automatic deployment and execution of the
coaster components can be problematic or even impractical on a site and
may require alternative manual configuration.

However, clustering can be less efficient than using coasters. Coasters
can react much more dynamically to changing numbers of available worker
nodes. Clustering requires an estimate of available remote node count and
job duration to decide on a sensible cluster size. Incorrectly estimating this
can, in one direction, result in an insufficient number of worker nodes, with
excessive serialization, or, in the other direction, result in an excessive number
of job submissions. Coaster workers can be queued and executed before all
of the work that they will eventually execute is known; hence, the Swift
scheduler can perform more application invocations per coaster worker job
and thus achieve faster overall execution of the entire application.

With coasters, the status for an application job is reported when the job
actually starts and ends; with clustering, a job’s completion status is known
only when the entire cluster of jobs completes. This means that subsequent
activity (stage-outs and, more important, starting dependent jobs) is delayed;
in the worst case, an activity dependent on the first job in a cluster must
wait for all of the jobs to run.
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3.4. Features to support use of dynamic resources

Using Swift to submit to a large number of sites poses a number of prac-
tical challenges that are not encountered when running on a small number of
sites. These challenges are seen when comparing execution on the relatively
static TeraGrid [17] with execution on the more dynamic Open Science Grid
(OSG) [18], where the set of sites that may be used is large and changing.
It is impractical to maintain a site catalog by hand in this situation. In
collaboration with the OSG Engagement group, Swift has been interfaced to
ReSS [19], an OSG resource selection service, so that the site catalog is gen-
erated from that information system. This provides a straightforward way
to generate a large catalog of sites.

Having built a catalog, two significant problems remain: the quality of
those sites may vary wildly, and user applications may not be installed on
those sites. Individual OSG sites, for example, may exhibit extremely dif-
ferent behavior, both with respect to other sites at the same time and with
respect to themselves at other times. The load that a particular site will
bear varies over time, and sites can fail in unusual ways. Swift’s site scoring
mechanism deals well with this situation in the majority of cases. However,
discoveries of new and unusual failure modes continue to drive the imple-
mentation of increasingly robust fault tolerance mechanisms.

When running jobs on dynamically discovered sites, it is likely that com-
ponent programs are not installed on those sites. To deal with this situa-
tion, OSG Engagement has developed best practices, which are implemented
straightforwardly in Swift. Applications may be compiled statically and de-
ployed as a small number of self-contained files as part of the input for a com-
ponent program execution; in this case, the application files are described as
mapped input files in the same way as input data files and are passed as a pa-
rameter to the application executable. Swift’s existing input file management
then stages in the application files once per site per run.

4. Applications

By providing a minimal language that allows the rapid composition of
existing executable programs and scripts into a logical unit, Swift has become
a beneficial resource for small to moderate-sized scientific projects.

Swift has been used to perform computational biochemical investigations,
such as protein structure prediction [20, 21, 22], molecular dynamics simula-
tions of protein-ligand docking [23] and protein-RNA docking, and searching
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mass-spectrometry data for posttranslational protein modifications [20, 25];
modeling of the interactions of climate, energy, and economics [20, 26]; post-
processing and analysis of climate model results; explorations of the language
functions of the human brain [27, 28, 29]; creation of general statistical frame-
works for structural equation modeling [30]; and image processing for research
in image-guided planning for neurosurgery [31].

This section describes in detail two representative Swift scripts from di-
verse disciplines. The first is a tutorial example (used in a class on data-
intensive computing at the University of Chicago) that performs a simple
analysis of satellite land-use imagery. The second script is taken (with minor
formatting changes) directly from work done using Swift for an investigation
into the molecular structure of glassy materials in the field of theoretical
chemistry. In both examples, the intent is to show complete and realistic
Swift scripts, annotated to make the nature of the Swift programming model
clear and to provide a glimpse of real Swift usage.

4.1. Satellite image data processing.

The first example—Script 1 below—processes data from a large dataset of
files that categorize the Earth’s surface, derived from data from the MODIS
sensor instruments that orbit the Earth on two NASA satellites of the Earth
Observing System.

The dataset we use (for 2002, named mcd12q1) consists of 317 “tile” files
that categorize every 250-meter square of non-ocean surface of the Earth into
one of 17 “land cover” categories (for example, water, ice, forest, barren,
urban). Each pixel of these data files has a value of 0 to 16, describing
one square of the Earth’s surface at a specific point in time. Each tile file
has approximately 5 million 1-byte pixels (5.7 MB), covering 2400 x 2400
250-meter squares, based on a specific map projection.

The Swift script analyzes the dataset to select the top N files ranked
by total area of specified sets of land-cover types. It then produces a new
dataset with viewable color images of those selected data tiles. (A color-
rendering step is required, since the input datasets are not viewable images;
their pixel values are land-use codes.) A typical invocation of this script
would be “Find the top 12 urban tiles” or “Find the 16 tiles with the most
forest and grassland.” Since this script is used for tutorial purposes, the
application programs it calls are simple shell scripts that use fast, generic
image-processing applications to process the MODIS data. Thus, the exam-
ple executes quickly while serving as a realistic tutorial script for much more
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compute-intensive satellite data-processing applications.
The script is structured as follows. Lines 1–3 define three mapped file

types; MODISfile for the input images, landuse for the output of the landuse
histogram calculation, and file for any other generic file that we don’t wish
to assign a unique type to. Lines 7–32 define the Swift interface functions
for the application programs getLandUse, analyzeLandUse, colorMODIS,
assemble, and markMap.

Lines 36–41 use the built-in function @arg() to extract a set of science
parameters from the swift command-line arguments with which the user
invokes the script. (This is a keyword-based analog of C’s argv[] conven-
tion.) These parameters indicate the number of files of the input set to select
(to process the first M of N files), the set of land cover types to select, the
number of “top” tiles to select, and the input and output directories.

Lines 47–48 invoke an “external” mapper script modis.mapper to map
the first nFiles MODIS data files in the directory contained in the script
argument MODISdir to the array geos. An external mapper script is written
by the Swift programmer (in any language desired, but often mappers are
simple shell scripts). External mappers are usually colocated with the Swift
script and are invoked when Swift instantiates the associated variable. They
return a two-field list of the the form SwiftExpression, filename, where Swif-
tExpression is relative to the variable name being mapped. For example, if
this mapper invocation were called from the Swift script at lines 47–48:

$ ./modis.mapper -location /home/wilde/modis/2002/ -suffix .tif -n 5

[0] /home/wilde/modis/2002/h00v08.tif

[1] /home/wilde/modis/2002/h00v09.tif

[2] /home/wilde/modis/2002/h00v10.tif

[3] /home/wilde/modis/2002/h01v07.tif

[4] /home/wilde/modis/2002/h01v08.tif

it would cause the first five elements of the array geos to be mapped to
the first five files of the modis dataset in the specified directory.

At lines 52–53, the script declares the array land, which will contain the
output of the getlanduse application. This declaration uses the built-in
“structured regular expression mapper,” which will determine the names of
the output files that the array will refer to once they are computed. Swift
knows from context that this is an output mapping. The mapper will use
regular expressions to base the names of the output files on the filenames of
the corresponding elements of the input array geos given by the source=

argument to the mapper. The declaration for land[] maps, for example,
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a file h07v08.landuse.byfreq to an element of the land[] array for a file
h07v08.tif in the geos[] array.

At lines 55–57 the script performs its first computation using a foreach

loop to invoke getLandUse in parallel on each file mapped to the elements of
geos[]. Since 317 files were mapped (in lines 47–48), the loop will submit
317 instances of the application in parallel to the execution provider. These
will execute with a degree of parallelism subject to available resources. At
lines 52–53 the result of each computation is placed in a file mapped to the
array land and named by the regular expression translation based on the file
names mapped to geos[]. Thus the landuse histogram for file h00v08.tif

would be written into file h00v08.landuse.freq and would be considered
by Swift to be of type landuse.

Once all the land usage histograms have been computed, the script ex-
ecutes analyzeLandUse at line 63 to find the N tile files with the highest
values of the requested land cover combination. Swift uses futures to ensure
that this analysis function is not invoked until all of its input files have com-
puted and transported to the computation site chosen to run the analysis
program. All these steps take place automatically, using the relatively sim-
ple and location-independent Swift expressions shown. The output files to
be used for the result are specified in the declarations at lines 61–62.

To visualize the results, the application function markMap invoked at line
68 will generate an image of a world map using the MODIS projection system
and indicate the selected tiles matching the analysis criteria. Since this
statement depends on the output of the analysis (topSelected), it will wait
for the statement at line 63 to complete before commencing.

For additional visualization, the script assembles a full map of all the
input tiles, placed in their proper grid location on the MODIS world map
projection, and with the selected tiles marked. Since this operation needs
true-color images of every input tiles, these are computed—again in parallel—
with 317 jobs generated by the foreach statement at lines 76–78. The power
of Swift’s implicit parallelization is shown vividly here: since the colorMODIS
call at line 77 depends only on the input array geos, these 317 application
invocations are submitted in parallel with the initial 317 parallel executions
of the getLandUse application at line 56. The script concludes at line 83 by
assembling a montage of all the colored tiles and writing this image file to a
web-accessible directory for viewing.
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Swift example 1: MODIS satellite image processing script

1 type file;

2 type MODIS; type image;

3 type landuse;

4

5 # Define application program interfaces

6

7 app (landuse output) getLandUse (imagefile input, int sortfield)

8 {

9 getlanduse @input sortfield stdout=@output;

10 }

11

12 app (file output, file tilelist) analyzeLandUse

13 (MODIS input[], string usetype, int maxnum)

14 {

15 analyzelanduse @output @tilelist usetype maxnum @filenames(input);

16 }

17

18 app (image output) colorMODIS (MODIS input)

19 {

20 colormodis @input @output;

21 }

22

23 app (image output) assemble

24 (file selected, image img[], string webdir)

25 {

26 assemble @output @selected @filename(img[0]) webdir;

27 }

28

29 app (image grid) markMap (file tilelist)

30 {

31 markmap @tilelist @grid;

32 }

33

34 # Constants and command line arguments

35

36 int nFiles = @toint(@arg("nfiles","1000"));

37 int nSelect = @toint(@arg("nselect","12"));

38 string landType = @arg("landtype","urban");

39 string runID = @arg("runid","modis-run");

40 string MODISdir= @arg("modisdir","/home/wilde/bigdata/data/modis/2002");

41 string webDir = @arg("webdir","/home/wilde/public_html/geo/");

42

43

44

45 # Input Dataset

46

47 image geos[] <ext; exec="modis.mapper",

48 location=MODISdir, suffix=".tif", n=nFiles >;

49

50 # Compute the land use summary of each MODIS tile

51

52 landuse land[] <structured_regexp_mapper; source=geos, match="(h..v..)",

53 transform=@strcat(runID,"/\\1.landuse.byfreq")>;
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54

55 foreach g,i in geos {

56 land[i] = getLandUse(g,1);

57 }

58

59 # Find the top N tiles (by total area of selected landuse types)

60

61 file topSelected <"topselected.txt">;

62 file selectedTiles <"selectedtiles.txt">;

63 (topSelected, selectedTiles) = analyzeLandUse(land, landType, nSelect);

64

65 # Mark the top N tiles on a sinusoidal gridded map

66

67 image gridMap <"markedGrid.gif">;

68 gridMap = markMap(topSelected);

69

70 # Create multi-color images for all tiles

71

72 image colorImage[] <structured_regexp_mapper;

73 source=geos, match="(h..v..)",

74 transform="landuse/\\1.color.png">;

75

76 foreach g, i in geos {

77 colorImage[i] = colorMODIS(g);

78 }

79

80 # Assemble a montage of the top selected areas

81

82 image montage <single_file_mapper; file=@strcat(runID,"/","map.png") >; # @arg

83 montage = assemble(selectedTiles,colorImage,webDir);

4.2. Simulation of glass cavity dynamics and thermodynamics

Many recent theoretical chemistry studies of the glass transition in model
systems have focused on calculating from theory or simulation what is known
as the mosaic length. Glen Hocky of the Reichman Group at Columbia is
evaluating a new cavity method [32] for measuring this length scale, where
particles are simulated by molecular dynamics or Monte Carlo methods
within cavities having amorphous boundary conditions.

In this method, various correlation functions are calculated at the interior
of cavities of varying sizes and averaged over many independent simulations
to determine a thermodynamic length. Hocky is using simulations of this
method to investigate the differences between three glass systems that all
have the same structure but differ in subtle ways; the aim is to determine
whether this thermodynamic length causes the variations among the three
systems.

The glass cavity simulation code performs 100,000 Monte Carlo steps in
1–2 hours. Jobs of this length are run in succession and strung together to
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make longer simulations tractable across a wide variety of parallel computing
systems. The input data to each simulation is a file of about 150 KB repre-
senting initial glass structures and a 4 KB file describing which particles are
in the cavity. Each simulation returns three new structures of 150 KB each,
a 50 KB log file, and the same 4 KB file describing which particles are in the
cavity.

Each script run covers a simulation space of 7 radii by 27 centers by 10
models, requiring 1,890 jobs per run. Three model systems are investigated
for a total of 90 runs. Swift mappers enable metadata describing these as-
pects to be encoded in the data files of the simulation campaigns to assist in
managing the large volume of file data.

Hocky used four Swift scripts in his simulation campaign. The first,
glassCreate, takes no input structure and generates an equilibrated config-
uration at some temperature; glassAnneal takes those structures and lowers
the temperature to some specified temperature; glassEquil freezes particles
outside a spherical cavity and runs short simulations for particles inside; and
the script glassRun, described below, is the same but starts from equilibrated
cavities.

Example 2 shows a slightly reformatted version of the glass simulation
script that was in use in December 2010. Its key aspects are as follows. Lines
1–5 define the mapped file types; these files are used to compose input and
output structures at lines 7–19. These structures reflect the fact that the
simulation is restartable in one- to two-hour increments and that it works
together with the Swift script to create a simple but powerful mechanism for
managing checkpoint/restart across a long-running, large-scale simulation
campaign.

The single application called by this script is the glassRun program
wrapped in the app function at lines 21–29. Note that rather than defin-
ing main program logic in “open” (top-level) code, the script places all the
program logic in the function GlassRun, invoked by the single statement at
line 80. This approach enables the simulation script to be defined in a library
that can be imported into other Swift scripts to perform entire campaigns or
campaign subsets.

The GlassRun function starts by extracting a large set of science param-
eters from the Swift command line at lines 33–48 using the @arg() function.
It uses the built-in function readData at lines 42–43 to read prepared lists
of molecular radii and centroids from parameter files to define the primary
physical dimensions of the simulation space. A selectable energy function to
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be used by the simulation application is specified as a parameter at line 48.
At lines 57 and 61, the script leverages Swift flexible dynamic arrays to

create a 3D array for input and a 4D array of structures for outputs. These
data structures, whose leaf elements consist entirely of mapped files, are set
by using the external mappers specified for the input array at lines 57–59
and for the output array of structures at lines 61–63. Note that many of the
science parameters are passed to the mappers, which in turn are used by the
input mapper to locate files within the large, multilevel directory structure
of the campaign and by the output mapper to create new directory and
file naming conventions for the campaign outputs. The mappers apply the
common, useful practice of using scientific metadata to determine directory
and file names.

The entire body of the GlassRun is a four-level nesting of foreach state-
ments at lines 65–77. These loops perform a parallel parameter sweep over all
combinations of radius, centroid, model, and job number within the simula-
tion space. A single run of the script immediately expands to an independent
parallel invocation of the simulation application for each point in the space:
1,890 jobs for the minimum case of a 7 x 27 x 10 x 1 space. Note that the
if statement at line 69 causes the simulation execution to be skipped if it
has already been performed, as determined by a “NULL” file name returned
by the mapper for the output of a given job in the simulation space. In
the current campaign the fourth dimension (nsub) of the simulation space is
fixed at one. This value could be increased to define subconfigurations that
would perform better Monte Carlo averaging, with a multiplicative increase
in the number of jobs. This is currently set to one because there are ample
starting configurations, but if this was not the case (as in earlier campaigns)
the script could run repeated simulations with different random seeds.

The advantages of managing a simulation campaign in this manner are
borne out well by Hocky’s experience: the expression of the campaign is a
well-structured, high-level script, devoid of details about file naming, syn-
chronization of parallel tasks, location and state of remote computing re-
sources, or explicit data transfer. Hocky was able to leverage local cluster
resources on many occasions, but at any time he could count on his script’s
acquiring on the order of 1,000 compute cores from 6 to 18 sites of the Open
Science Grid. When executing on the OSG, he leveraged Swift’s capability
to replicate jobs that were waiting in queues at more congested sites, and
automatically sent them to sites where resources were available and jobs were
being processed at better rates. All these actions would have represented a
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huge distraction from his primary scientific simulation campaign if he had
been required to use or to script lower-level abstractions where parallelism
and remote distribution were the manual responsibility of the programmer.

Investigations of more advanced glass simulation techniques are under
way, and the fact that the entire campaign can be driven by location-independent
Swift scripts will enable Hocky to reliably re-execute the entire campaign with
relative ease. He reports that Swift has made the project much easier to or-
ganize and execute. The project would be unwieldy without using Swift, and
the distraction and scripting/programming effort level of leveraging multiple
computing resources would be prohibitive.

Swift example 2: Monte-Carlo simulation of glass cavity dynamics

1 type Text;

2 type Arc;

3 type Restart;

4 type Log;

5 type Active;

6

7 type GlassIn{

8 Restart startfile;

9 Active activefile;

10 }

11

12 type GlassOut{

13 Arc arcfile;

14 Active activefile;

15 Restart restartfile;

16 Restart startfile;

17 Restart final;

18 Log logfile;

19 }

20

21 app (GlassOut o) glassCavityRun

22 (GlassIn i, string rad, string temp, string steps, string volume, string fraca,

23 string energyfunction, string centerstring, string arctimestring)

24 { glassRun

25 "-a" @filename(o.final) "--lf" @filename(i.startfile) stdout=@filename(o.logfile)

26 "--temp" temp "--stepsperparticle" steps "--energy_function" energyfunction

27 "--volume" volume "--fraca" fraca

28 "--cradius" rad "--ccoord" centerstring arctimestring;

29 }

30

31 GlassRun()

32 {

33 string temp=@arg("temp","2.0");

34 string steps=@arg("steps","10");

35 string esteps=@arg("esteps","100");

36 string ceqsteps=@arg("ceqsteps","100");

37 string natoms=@arg("natoms","200");

38 string volume=@arg("volume","200");

39 string rlist=@arg("rlist","rlist");

40 string clist=@arg("clist","clist");
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41 string fraca=@arg("fraca","0.5");

42 string radii[] = readData(rlist);

43 string centers[] = readData(clist);

44 int nmodels=@toint( @arg("n","1") );

45 int nsub=@toint( @arg("nsub","1") );

46 string savearc=@arg("savearc","FALSE");

47 string arctimestring;

48 string energyfunction=@arg("energyfunction","softsphereratiosmooth");

49

50 if(savearc=="FALSE") {

51 arctimestring="--arc_time=10000000";

52 }

53 else{

54 arctimestring="";

55 }

56

57 GlassIn modelIn[][][] <ext; exec="GlassCavityOutArray.map",

58 rlist=rlist, clist=clist, steps=ceqsteps, n=nmodels, esteps=esteps, temp=temp,

59 volume=volume, e=energyfunction, natoms=natoms, i="true">;

60

61 GlassOut modelOut[][][][] <ext; exec="GlassCavityContinueOutArray.map",

62 n=nmodels, nsub=nsub, rlist=rlist, clist=clist, ceqsteps=ceqsteps, esteps=esteps,

63 steps=steps, temp=temp, volume=volume, e=energyfunction, natoms=natoms>;

64

65 foreach rad,rindex in radii {

66 foreach centerstring,cindex in centers {

67 foreach model in [0:nmodels-1] {

68 foreach job in [0:nsub-1] {

69 if( !(@filename(modelOut[rindex][cindex][model][job].final)=="NULL") ) {

70 modelOut[rindex][cindex][model][job] = glassCavityRun(

71 modelIn[rindex][cindex][model], rad, temp, steps, volume, fraca,

72 energyfunction, centerstring, arctimestring);

73 }

74 }

75 }

76 }

77 }

78 }

79

80 GlassRun();

5. Performance characteristics

We present here a few additional measurements of Swift performance and
highlight a few previously published results.

5.1. Synthetic benchmark results

First, we measured the ability of Swift to support many user tasks on a
single local system. We used Swift to submit up to 2,000 tasks to a 16-core
x86-based Linux compute server at Argonne National Laboratory. Each job
in the batch was an identical, simple single-processor job that executed for the

28



Test A. Application CPU utilization for 3 task
durations (in seconds) with up to 200 concur-
rent processes on an 16-core local host.

Test B. Application CPU utilization for 3 task
durations (in seconds) at up to 2,048 nodes of
the Blue Gene/P. at varying system size.

Figure 2: Swift performance figures

given duration and performed application input and output at 1 byte each.
The total execution time was measured and compared with the total core time
consumed; this utilization ratio is plotted in Figure 2, Test A. We observe
that for tasks of only 5 seconds, Swift can sustain 100 concurrent application
executions at a CPU utilization of 90%, and 200 concurrent executions at a
utilization of 85%.

Second, we measured the ability of Swift to support many tasks on a large,
distributed-memory system without considering the effect on the underlying
file services. We used Swift coasters to submit up to 20,480 tasks to Intrepid,
the 40,000-node IBM Blue Gene/P system at Argonne. Each job in the
batch was an identical, simple single-processor job that executed for the given
duration and performed no I/O. Each node was limited to one concurrent
job. Thus, the user task had four cores at its disposal. The total execution
time was measured and compared with the total node time consumed; the
utilization ratio is plotted in Figure 2, Test B. We observe that for tasks of
100 seconds, Swift achieves a 95% CPU utilization of 2,048 compute nodes.
Even for 30-second tasks, it can sustain an 80% utilization at this level of
concurrency.

29



5.2. Application performance measurements

Previously published measurements of Swift performance on several scien-
tific applications provide evidence that its parallel distributed programming
model can be implemented with sufficient scalability and efficiency to make
it a practical tool for large-scale parallel application scripting.

The performance of Swift submitting jobs over the wide-area network
from the University of Chicago to the TeraGrid Ranger cluster at TACC
is shown in Figure 3 (from [29]). The figure plots a structural equation
modeling (SEM) workload of 131,072 jobs for four brain regions and two
experimental conditions. This workflow completed in approximately 3 hours.
The logs from the swift plot log utility show the high degree of concurrent
overlap between job execution and input and output file staging to remote
computing resources. The workflows were developed on and submitted (to
Ranger) from a single-core Linux workstation at the University of Chicago
running an Intel Xeon 3.20 GHz CPU. Data staging was performed by using
the Globus GridFTP protocol, and job execution was performed over the
Globus GRAM 2 protocol. During the third hour of the workflow, Swift
achieved very high utilization of the 2,048 allocated processor cores and a
steady rate of input and output transfers. The first two hours of the run
were more bursty, because of fluctuating grid conditions and data server
loads.

Prior work also attested to Swift’s ability to achieve ample task rates
for local and remote submission to high-performance clusters. These prior
results are shown in Figure 4 (from [20]).

The top plot in Figure 4-A shows the PTMap application running the
stage 1 processing of the E. coli K12 genome (4,127 sequences) on 2,048
Intrepid cores. The lower plot shows processor utilization as time progresses;
overall, the average per task execution time was 64 seconds, with a standard
deviation of 14 seconds. These 4,127 tasks consumed a total of 73 CPU-hours,
in a span of 161 seconds on 2,048 processor cores, achieving 80% utilization.

The top plot in Figure 4-B shows the performance of Swift running a
structural equation modeling problem at large scale, using the Ranger Con-
stellation to model neural pathway connectivity from experimental fMRI
data [29]. The lower plot shows the active jobs for a larger version of the
problem type shown in Figure 3. This shows a Swift script executing 418,000
structural equation modeling jobs over a 40-hour period.
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Figure 3: 128K-job SEM fMRI application execution on the Ranger Constellation (from
[29]). Red=active compute jobs, blue=data stage in, green=stage out.

0 

20 

40 

60 

80 

100 

120 

140 

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

4000 

4500 

0 50
 

10
0 

15
0 

Th
ro

ug
hp

ut
 (t

as
ks

/s
ec

) 

Ta
sk

s 
C

om
pl

et
ed

 

Time (sec) 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

0 

50000 

100000 

150000 

200000 

250000 

300000 

350000 

400000 

450000 

0 

14
40

0 

28
80

0 

43
20

0 

57
60

0 

72
00

0 

86
40

0 

10
08

00
 

11
52

00
 

12
96

00
 

14
40

00
 

Th
ro

ug
hp

ut
 (t

as
ks

/s
ec

) 

Ta
sk

s 
C

om
pl

et
ed

 

Time (sec) 

0 

400 

800 

1200 

1600 

2000 

2400 

A
ct

iv
e 

Ta
sk

s 

Pr
oc

es
so

rs
 

0 

200 

400 

600 

800 

1000 

1200 

A
ct

iv
e 

Ta
sk

s 

Pr
oc

es
so

rs
 

A. PTMap application on 2,048 nodes of the
Blue Gene/P

B. SEM application on varying-size processing
allocations on Ranger

Figure 4: Swift task rates for PTMap and SEM applications on the Blue Gene/P and
Ranger (from [20])

31



6. Related Work

The rationale and motivation for scripting languages, the difference be-
tween programming and scripting, and the place of each in the scheme of
applying computers to solving problems have previously been presented [33].

Coordination languages such as Linda [34], Strand [35], and PCN [36]
support the composition of implicitly parallel functions programmed in spe-
cific languages and linked with the systems. In contrast, Swift coordinates
the execution of distributed functions which are typically legacy applications
which are coded in various programming languages, and can be executed on
heterogeneous platforms. Linda defines primitives for concurrent manipula-
tion of tuples ia a shared “tuple space”. Strand and PCN, like Swift, use
single-assignment variables as their coordination mechanism. Linda, Strand,
PCN and Swift are all data-flow-driven in the sense that processes execute
only when data are available.

MapReduce [13] also provides a programming model and a runtime sys-
tem to support the processing of large-scale datasets. The two key functions
map and reduce are borrowed from functional languages: a map function
iterates over a set of items, performs a specific operation on each of them,
and produces a new set of items; a reduce function performs aggregation on
a set of items. The runtime system automatically partitions the input data
and schedules the execution of programs in a large cluster of commodity
machines. The system is made fault tolerant by checking worker nodes peri-
odically and reassigning failed jobs to other worker nodes. Sawzall [37] is an
interpreted language that builds on MapReduce and separates the filtering
and aggregation phases for more concise program specification and better
parallelization.

Swift and MapReduce/Sawzall share the same goals of providing a pro-
gramming tool for the specification and execution of large parallel computa-
tions on large quantities of data and facilitating the utilization of large dis-
tributed resources. However, the two differ in many aspects. The MapReduce
programming model supports key-value pairs as input or output datasets and
two types of computation functions, map and reduce; Swift provides a type
system and allows the definition of complex data structures and arbitrary
computational procedures. In MapReduce, input and output data can be of
several different formats, and new data sources can be defined; Swift provides
a more flexible mapping mechanism to map between logical data structures
and various physical representations. Swift does not automatically parti-
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tion input datasets as MapReduce does; Swift datasets can be organized in
structures, and individual items in a dataset can be transferred accordingly
along with computations. MapReduce schedules computations within a clus-
ter with a shared Google File System; Swift schedules across distributed grid
sites that may span multiple administrative domains and deals with security
and resource usage policy issues.

FlumeJava [38] is similar to Swift in concept, since it is intended to run
data-processing pipelines over collections (of files). It is different in that it
builds on top of MapReduce primitives, rather than more abstract graphs as
in Swift.

BPEL [39] is a Web service-based standard that specifies how a set of
Web services interact to form a larger, composite Web service. It has seen
limited application in scientific contexts. While BPEL can transfer data
as XML messages, for large datasets data exchange must be handled via
separate mechanisms. The BPEL 1.0 specification provides no support for
dataset iterations. An application with repetitive patterns on a collection of
datasets could result in large, repetitive BPEL documents [40], and BPEL is
cumbersome if not impossible for computational scientists to write. Although
BPEL can use an XML Schema to describe data types, it does not provide
support for mapping between a logical XML view and arbitrary physical
representations.

DAGMan [41] provides a workflow engine that manages Condor jobs or-
ganized as directed acyclic graphs (DAGs) in which each edge corresponds
to an explicit task precedence. It has no knowledge of data flow, and in
a distributed environment it works best with a higher-level, data-cognizant
layer. It is based on static workflow graphs and lacks dynamic features such
as iteration or conditional execution, although these features are being re-
searched.

Pegasus [42] is primarily a set of DAG transformers. Pegasus planners
translate a workflow graph into a location-specific DAGMan input file, adding
stages for data staging, intersite transfer, and data registration. They can
prune tasks for existing files, select sites for jobs, and cluster jobs based on
various criteria. Pegasus performs graph transformation with the knowledge
of the whole workflow graph, while in Swift the structure of a workflow is
constructed and expanded dynamically.

Dryad [43] is an infrastructure for running data-parallel programs on a
parallel or distributed system. In addition to allowing files to be used for pass-
ing data between tasks (like Swift), it allows TCP pipes and shared-memory
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FIFOs to be used. Dryad tasks are written in C++, whereas Swift tasks can
be written in any language. Dryad graphs are explicitly developed by the
programmer; Swift graphs are implicit, and the programmer doesn’t have to
worry about them. A scripting language called Nebula was originally devel-
oped above Dryad, but it doesn’t seem to be in current use. Dryad appears
to be used primarily for clusters and well-connected groups of clusters in sin-
gle administrative domains and in Microsoft’s cloud, whereas Swift supports
a wider variety of platforms. Scripting-level use of Dryad is now supported
primarily by DryadLINQ [44], which generates Dryad computations from the
LINQ extensions to C#.

GEL [45] is somewhat similar to Swift. It defines programs to be run,
then uses a script to express the order in which they should be run, handling
the needed data movement and job execution for the user. The user must
explicitly state what is parallel and what is not, whereas Swift determines
this information based on data dependencies. GEL also lacks the runtime
sophistication and platform support that has been developed for Swift.

Walker et al. [46] have recently developed extensions to BASH that allow
a user to define a dataflow graph, including the concepts of fork, join, cycles,
and key-value aggregation, but which execute on single parallel systems or
clusters.

A few groups have been working on parallel and distributed versions of
make [47, 48]. These tools use the concept of “virtual data,” where the
user defines the processing by which data is created and then calls for the
final data product. The make-like tools determine what processing is needed
to get from the existing files to the final product, which includes running
processing tasks. If this is run on a distributed system, data movement also
must be handled by the tools. In comparison, Swift is a language, which may
be slightly less compact for describing applications that can be represented
as static DAGs but allows easy programming of applications that have cycles
and runtime decisions, such as in optimization problems. Moreover, Swift’s
functional syntax is a more natural companion for enabling the scientific user
to specify the higher-level logic of large execution campaigns.

Swift integrates with the Karajan workflow engine [8]. Karajan provides
the libraries and primitives for job scheduling, data transfer, and grid job
submission. Swift adds to Karajan a higher-level abstract specification of
large parallel computations and the typed data model abstractions of map-
ping disk-resident file structures to in-memory variables and data structures.
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7. Future work

Swift is under active development. Current directions focus on improve-
ments for short-running tasks, massively parallel resources, data access mech-
anisms, site management, and provenance.

7.1. Scripting on thousands to millions of cores

Systems such as the Sun Constellation [6] or IBM Blue Gene/P [7] have
hundreds of thousands of cores, and systems with millions of cores are planned.
Scheduling and managing tasks running at this scale are challenging prob-
lems and rely on the rapid submission of tasks. Swift applications currently
run on these systems by scheduling Coasters workers using the standard job
submission techniques and employing an internal IP network.

To achieve automatic parallelization in Swift, we ubiquitously use futures
and lightweight threads, which result in eager and massive parallelism but
which have a large cost in terms of space and internal object management.
We are exploring several options to optimize this tradeoff and increase Swift
scalability to ever larger task graphs. The solution space here includes “lazy
futures” (whose computation is delayed until a value is first needed) and
distributed task graphs with multiple, distributed evaluation engines running
on separate compute nodes.

7.2. Filesystem access optimizations

Similarly, some applications deal with files that are uncomfortably small
for GridFTP (on the order of tens of bytes). In this situation, a lightweight
file access mechanism provided by Coasters can be substituted for GridFTP.
When running on HPC resources, the thousands of small accesses to the
filesystem may create a bottleneck. To mitigate this problem, we have inves-
tigated application needs and are developing a set of collective data manage-
ment primitives [49].

7.3. Provenance

Swift produces log information regarding the provenance of its output
files. In an existing development module, this information can be imported
into relational and XML databases for later querying. Providing an efficient
query mechanism for such provenance data is an area of ongoing research;
while many queries can be easily and efficiently answered by a suitably in-
dexed relational or XML database, the lack of support for efficient transitive
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queries can make some common queries involving either transitivity over time
(such as “Find all data derived from input file X”) or over dataset contain-
ment (such as “Find all functions that took an input containing the file F”)
expensive to evaluate and awkward to express.

8. Conclusion

Our experience reinforces the belief that Swift plays an important role in
the family of programming languages. Ordinary scripting languages provide
the constructs for manipulating files and typically contain rich operators,
primitives, and libraries for large classes of useful operations such as string,
math, internet, and file operations. In contrast, Swift scripts typically con-
tain little code that manipulates data directly. They contain instead the
“data flow recipes” and input/output specifications of each program invo-
cation such that the location and environment transparency goals can be
implemented automatically by the Swift environment. This simple model
has demonstrated many successes as a tool for scientific computing.

Swift is an open source project with documentation, source code, and
downloads available at http://www.ci.uchicago.edu/swift.
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