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Abstract

We propose Chunks and Tasks, a parallel programming model built on ab-
stractions for both data and work. The application programmer specifies how
data and work can be split into smaller pieces, chunks and tasks, respectively.
The Chunks and Tasks library maps the chunks and tasks to physical resources.
In this way we seek to combine user friendliness with high performance. An
application programmer can express a parallel algorithm using a few simple
building blocks, defining data and work objects and their relationships. No ex-
plicit communication calls are needed; the distribution of both work and data is
handled by the Chunks and Tasks library. This makes efficient implementation
of complex applications that require dynamic distribution of work and data eas-
ier. At the same time, Chunks and Tasks imposes restrictions on data access and
task dependencies that facilitates the development of high performance parallel
back ends. We discuss the fundamental abstractions underlying the program-
ming model, as well as performance and fault resilience considerations. We also
present a pilot C++ library implementation for clusters of multicore machines
and demonstrate its performance for sparse blocked matrix-matrix multiplica-
tion.
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1. Introduction

Parallel computing can be difficult. In order to have a functioning parallel
program, one first needs to find algorithms that can be executed in parallel.
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Then, the algorithms must be expressed in such a way that the parallelism is
exposed so that separate, independent parts can be identified. Furthermore,
the work must be distributed among the available processors/nodes and data
required by each processor must be communicated as needed. We present in this
article a parallel programming model intended to facilitate the above process of
developing parallel programs.

Our aim is to achieve scalability up to any number of processors, on dis-
tributed memory machines and possibly on heterogeneous computers, to handle
not only algorithms with static distribution of work and data but also hierar-
chic, recursive algorithms where communication patterns are not known before-
hand, and may change dynamically. Fault tolerance is also important, especially
considering the trends in modern supercomputers, where hardware errors are
unavoidable in any large parallel calculation.

1.1. Parallel programming models

Much research has been devoted to parallel programming models. To give
some background to the design choices made while developing our new interface,
we below mention some of the more well-known previous models. A program-
ming model usually exists in the form of a tool, e.g. a library or language, that
supports program development within the model. A crucial point here is the
interface separating the concerns of the application programmer from the inner
workings of the library or language.

In message passing programming models (e.g. MPI and PVM) the appli-
cation programmer has to decide how the data should be distributed and use
explicit communication to make sure that the needed data is available whenever
a task is to be performed. This gives the programmer control, but a drawback
is that implementation of complex algorithms, for example requiring dynamical
load balancing, is difficult.

An alternative that makes it easier to implement complex algorithms is to use
some programming model where data is shared via a distributed shared memory.
The Linda programming model is built on an associative logically shared mem-
ory called a tuple space. In implementations of Linda for distributed memory
each processor manages a portion of the tuple space. There is in principle no
way for the Linda implementation to know in advance which processes that will
access a particular tuple. However, efficient implementations attempt to opti-
mize the distribution of data based on observation of the tuple traffic between
processes [1]. In case of static traffic patterns the run-time system can then
quickly set up efficient communication channels. However, in cases of dynamic
algorithms with a varying communication pattern, it is not of much help.

Languages based on a Partitioned Global Address Space (PGAS) such as
Unified Parallel C (UPC) [2] and CoArray Fortran give the programmer more
control of the distribution of data. Using PGAS approaches, a skilled program-
mer can avoid extensive communication by distributing and accessing data in a
good manner. On the downside, moving more responsibilities to the application
programmer reduces the possibilities for the library/language to help.
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In recent years there has been a growing interest in task-based programming
models. A multitude of tools have been developed including Cilk [3], SMPSs [4]
and OmpSs [5], StarPU [6], and SuperGlue [7]. Most of them have initially been
developed for multicore architectures, in some cases with support for accelera-
tors. However, there has also been some efforts to apply task-based approaches
to clusters of computers. Cilk-NOW is a variant of Cilk for networks of work-
stations [8], StarPU-MPI is an extension of StarPU for clusters of accelerator-
enhanced machines [9], and OmpSs has been implemented for clusters of GPUs
as well [5]. The DAGuE framework [10] is an example of a task-based approach
that achieves high performance in dense linear algebra operations.

In task-based programming models, the programmer writes the program in
terms of tasks, usually specifying dependencies in one way or another, and a
runtime engine schedules the tasks on the available resources. The programmer
is responsible for exposing parallelism, and the task scheduler is responsible for
mapping the work to physical resources. However, typically, either all data is
managed by one “master” node or the application programmer has to supply
the distribution of data.

1.2. The present work

As stated above, a key issue is the division of labor between the applica-
tion programmer and the inner workings of the parallel library/language. In
the present work we adopt a task-based approach for the distribution of work.
However, we also provide abstractions to handle data. The idea is that the
application programmer should be responsible for dividing data into smaller
pieces to allow for data distribution, but not for the mapping of this data to
physical resources. The application programmer (the user) defines task types
and registers tasks for execution. Similarly, the user defines chunk types and
registers chunks for storage.

Thus, a key feature of the present work is that the application programmer
is relieved from the burden of providing the data distribution. This makes par-
allel programming a lot easier, especially for applications where dynamic data
structures play an important role. Examples of such applications include sparse
matrix operations where the nonzero pattern is unknown beforehand and adap-
tive mesh refinement. For this type of applications, it is often beneficial to use
hierarchic data structures coupled to recursive algorithms. One notable exam-
ple is large scale electronic structure calculations where dynamic hierarchic data
structures and algorithms are used with success [11]. Although our abstractions
do not impose a particular layout of work or data, we have had and have a view
to make them work well for dynamic hierarchic algorithms and data structures.

We refer to our parallel programming model as the “Chunks and Tasks”
programming model [12] and it is presented here in the form of a C++ ap-
plication programming interface. A Chunks and Tasks library implementation
is essentially composed of two parts, a chunk management system and a task
scheduler, that are responsible for mapping data and work, respectively, to
physical resources.
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The main focus of the work presented here has been on establishing the
application programming interface. In our view, defining the interface is most
important since it in some sense is an answer to the question of how to draw
the line between the concerns of the application programmer and the concerns
of the parallel library. Furthermore, once the interface is fixed, application
programmers can work on implementing parallel algorithms independently of
any improvements in internal Chunks and Tasks library implementations. Also,
there may be several different Chunks and Tasks library implementations that
an application programmer can switch between without need for any changes
in the application program source code. To further enforce a clean interface
with the possibility to switch between different libraries we currently have two
different library implementations of Chunks and Tasks, a serial and a parallel
implementation.

The Chunks and Tasks interface is described in Section 2. In Section 3,
we describe a pilot library implementation based on MPI and POSIX threads
and present a few benchmark calculations. Section 4 contains some discussion
including performance and fault resilience considerations. Finally, a brief sum-
mary and outlook is given in Section 5.

2. The Chunks and Tasks interface

Chunks and Tasks is a parallel programming model, presented in this article
in the form of a C++ application programming interface. The interface is
intended to make it easier to parallelize any method that can be formulated as
a dynamic hierarchic algorithm. Being evident from the name, the interface is
built around two central concepts: chunks and tasks.

The user defines chunk classes describing objects encapsulating pieces of
data. A chunk is registered by passing the control of the chunk object to the
Chunks and Tasks library. In return the user receives a chunk identifier that
later can be used to specify data dependencies. The user also defines task classes
describing work to be performed. A task type is defined by a number of input
chunk types, the work to be performed and a single output chunk type. The
relationships between the Chunk and Task base classes and user defined classes
are shown in Figure 1.

In this section, we describe the abstractions that are the basis of the Chunks
and Tasks interface. In Appendix A we provide a concrete example program
that uses Chunks and Tasks to compute a Fibonacci number.

2.1. The chunk abstraction

To define a chunk type you need to inherit from the Chunk base class and
define a few member functions. Functions to pack/unpack the chunk to/from
a given buffer are mandatory. Those functions may for example be used by a
Chunks and Tasks library when chunks need to be sent to other processes over
a network or to write chunks to secondary storage.
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Figure 1: The Chunks and Tasks interface consists of two base classes, Chunk and Task, from
which the programmer derives data and task types for the application.

After the point where the chunk has been registered and the user has gotten
hold of the chunk identifier (cht::ChunkID) for that particular chunk, modi-
fication of the chunk is not allowed. Although any data or information may
be stored in a chunk object, one anticipated use is to store identifiers to other
chunks which in turn store chunk identifiers and so on giving rise to a hierarchic
data structure.

To make it possible for the library to take responsibility for managing such
chunk hierarchies, the user should in such cases implement a function getChildChunks

that returns a list of all chunk identifiers stored in that chunk. The list of child
chunks can be used by a library implementation in different ways, for example
to destruct chunk hierarchies, to prefetch child chunks, or to send child chunks
together with a chunk.

2.2. The task abstraction

Task types are derived from the Task base class. The programmer has to
specify the input chunk types and an output chunk type. The work to be per-
formed is specified by supplying an execute function which takes read-only
chunks as input and returns a chunk or task identifier. The work to be per-
formed often includes registration of new tasks. In a task registration the task
type and input identifiers are specified and a task identifier (cht::TaskID) is
returned. This task identifier may be used as input to subsequent task registra-
tions, thereby specifying dependencies between tasks. Since each task produces
a single output chunk, input for new tasks can be specified using either chunk
or task identifiers.
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In our design, we have been careful to ensure that the task execution can
be performed without interruption, that is without waiting for other tasks to
finish or for communication. Access to chunks is only allowed as input to tasks.
This means that it is not possible for the Chunks and Tasks library to per-
form a task prior to having the data needed for execution available. Besides
the registerTask function, user defined task types inherit the registerChunk,
copyChunk, and getInputChunkID functions from the Task base class, see Fig-
ure 1. All these functions should be non-blocking. Note that chunk registration
and copy may trigger communication with remote processes. However, the call-
ing thread does not need to wait for this communication, as will be explained
in Section 3.2.

Task identifiers of any previously registered tasks may be specified as input
to a task. Similarly to [13], it is thus possible to structure an algorithm both
in a recursive divide and conquer style and with dependencies on any ancestor.
However, contrary to [13], since chunks are read-only, neither the library de-
veloper nor the application programmer need to worry about races for shared
data access. It is also impossible to end up in a dead-lock due to mistakes in
application code since all tasks directly or indirectly only depend on read-only
data.

2.3. The main program

A calculation performed using Chunks and Tasks is started from a standard
serial C++ main program written by the application programmer. In a similar
way as in a task execution, the user constructs chunks to be used as input to
tasks and registers tasks to be executed by the Chunks and Tasks library.

Often, there is a working serial implementation for a particular application.
It is then desirable to be able to parallelize the most time consuming part(s)
without rewriting the whole code. We allow the main program to remain a serial
code with the Chunks and Tasks parallelization employed only for selected parts.

3. A pilot library implementation

Unlike most MPI and PGAS programs our pilot Chunks and Tasks library
implementation does not use a Single Program Multiple Data (SPMD) style.
Instead, the program starts as a serial program and at the Chunks and Tasks
start-up the worker processes are spawned. These processes execute a worker
program provided by the Chunks and Tasks library. Each worker starts a set
of services, including a chunk service and a task scheduler service. Each service
uses its own MPI communicators.

Our present library implementation uses the MPI_Comm_spawn function in
the MPI 2 standard. If a fully compliant MPI 2 library is not available, all
processes can be started simultaneously and then assume the roles of parent
and workers. However, we believe that the spawn functionality is valuable since
it provides the possibility of dynamically adapting the amount of resources used
by a calculation.
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3.1. Chunk service

When the chunk service starts, on each worker a thread is created that is
responsible for listening for MPI messages from other workers issued by the
chunk service on those workers. Other workers may request to get, delete, or
copy a chunk.

When a chunk is registered, the size of the chunk is known, and it is therefore
possible to store the size of the chunk in the chunk identifier. Besides obvious
practical benefits for chunk communication, this information may for example
be used in parametric models to estimate task execution times. The chunk
identifier also contains the MPI rank of the worker where the chunk is stored,
so when a chunk needs to be fetched we directly know to which worker the
request should be sent. New chunks are by default assigned to the local worker,
so that no communication is needed to register new chunks.

In the chunk identifier is also stored a chunk type identifier. Given a chunk
type identifier and the serialized chunk data, a chunk object can be reconstructed
on another worker. A chunk factory constructs a chunk object of correct type
given the chunk type identifier, and a call to the assignFromBuffer function
completes the reconstruction.

The chunk service also implements chunk cache functionality: when a remote
chunk has been fetched over the network, it is kept in memory so that we do not
need to fetch it again if the chunk is requested multiple times. Cached chunks
are purged from memory in a least recently used fashion.

3.2. Task scheduler service

Our task scheduler is based on work stealing. The calculation is initiated by
the parent process sending the mother task to one of the workers. This worker
begins to execute tasks in a depth first fashion, working its way down in the
task hierarchy. Whenever a worker is out of work, it attempts to steal work
from another worker chosen at random. In order to achieve as much parallelism
as possible, tasks are always stolen as high up in the task hierarchy as possible.

When a task is stolen, the stealing worker has to reconstruct the task. As in
the chunk reconstruction, the task identifier includes a task type identifier that
is used in a call to a task factory which constructs a task object of the correct
type.

When the task scheduler service starts, several threads are created on each
worker process. As for the chunk service, one thread is responsible for listening
for MPI messages from the task scheduler service running on other processes.
These messages can include task steal attempts or task information. Another
thread is fetching data for tasks pending for execution, to achieve overlap of
communication and computation. A number of threads execute tasks.

3.2.1. The task transaction

The outcome of a task execution consists of the output chunk or task identi-
fier and the effect of calls to registerChunk, copyChunk, and registerTask. It
is possible to implement the effect of these operations immediately. However, in
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our pilot implementation, the aggregate effect of a task execution is performed
in a single transaction at some point after the execution of the task has finished,
in a way similar to the return transaction technique proposed by Blumofe and
Lisiecki [8]. This is accomplished by accumulating all the information needed
for the transaction during the task execution.

In this way, the task execution can be performed without interruption, even if
a call to for example copyChunk would result in communication with a remote
process. Other benefits include the possibility to do speculative execution of
tasks.

3.2.2. Speculative task execution

On each worker, several threads execute tasks. In order to have efficient
task stealing between workers, we need to avoid unrolling additional branches
of a task hierarchy when there is a lot of work in a branch that is already about
to be unrolled. This could be achieved by only allowing one thread at a time
to execute non-leaf tasks, i.e. tasks that register child tasks. The problem is
that, in principle, the only way to know if a task is a leaf task or not is to
run execute for that task. To circumvent this problem we use what we refer
to as speculative task execution. Tasks are executed speculatively in the sense
that it is not known, at the time of execution, if the task transaction will be
performed. For tasks that turn out to be leaf tasks, the task transaction is
performed immediately. For non-leaf tasks, task transactions are only allowed
one at a time. In this way we avoid undesired unrolling of several branches of
a task hierarchy at the same time. An executed task for which the transaction
has not been performed, can still be stolen, ensuring that stealing still occurs
as high as possible in the task hierarchy.

3.2.3. Side effects of task execution

All effects of a task are collected in the transaction for that task. If the
transaction is considered as the outcome of a task, then the task is completely
free from side effects. However, if the output chunk or task identifier is con-
sidered as the outcome of the task, then the effect of calls to registerChunk,
copyChunk, and registerTask during task execution should strictly speaking
be considered as side effects. However, the ultimate effect of such calls is the
creation of chunks whose identifiers from user code can only be reached through
the output identifier. This means that dropping the output identifier without
further notice would only result in a chunk leak. This has important implica-
tions for fault resilience as will be discussed in Section 4.3.

3.3. Test calculations

To test our pilot implementation we have written a test program that imple-
ments matrix-matrix multiplication for hierarchic block-sparse matrices using
the Chunks and Tasks programming model. The matrices are represented by
quad-trees of chunk identifiers. At the lowest level, each nonzero submatrix is
represented by a regular full matrix. At higher levels, four chunk identifiers are
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stored referring to submatrices at the next lower level. If a submatrix is zero
it is represented by the special chunk identifier cht::CHUNK_ID_NULL. This im-
plementation corresponds to the hierarchic block-sparse matrix data structure
in [14] now expressed using the Chunks and Tasks interface.

The matrix-matrix multiplication is implemented using three task types;
one for matrix-matrix multiplication, one for matrix-matrix addition, and one
to construct a matrix from the chunk identifiers of the four submatrices. Spar-
sity is handled by checking for cht::CHUNK_ID_NULL. The same matrix-matrix
multiplication implementation was used for all test calculations discussed below,
for both dense and block-sparse cases.

We performed test calculations on the Tintin cluster at the UPPMAX com-
puter center. Each compute node is a dual AMD Bulldozer compute server
with two 8-core Opteron 6220 processors running at 3.0 GHz, with 64 GB of
memory per node. The nodes are interconnected with a 2:1 oversubscribed
QDR InfiniBand fabric. Since the 16 cores on each node share 8 256-bit fused
multiply-add (FMA) units, each node can at best perform 8*4 double precision
multiply-add operations per cycle. Given the clock speed of 3.0 GHz, this gives
a theoretical peak performance of 96 GFlop/s per node. However, one cannot
expect to reach the theoretical peak performance in practice. Since we used
the AMD Core Math Library (ACML) for matrix-matrix products at the lowest
level, the ACML performance for large dense matrices can be seen as a practical
peak performance limit. We refer to this as “ACML peak”, which we computed
from dense matrix-matrix multiplication with ACML for matrix size 12000 ×
12000 using all cores on the node. This gave an “ACML peak” value of 80.171
GFlop/s per node.

In our test calculations the Chunks and Tasks library used one MPI process
per node, with 15 worker threads per process. Figure 2 shows strong scaling
behavior for dense matrix-matrix multiplication for matrix size 60000 × 60000
when increasing the number of nodes from 15 to 60. Figure 3 shows the perfor-
mance when increasing the problem size for dense matrix-matrix multiplication
when running on 60 nodes. The submatrix size at the lowest level was 1000 ×
1000.

Figure 4 shows results of matrix-matrix multiplication for block-sparse ma-
trices with random sparsity patterns of varying fill factor. Given the specified
fill factor the nonzero submatrices were uniformly randomly distributed over
the matrix. The figure shows how the wall time for the matrix square operation
decreases with increasing sparsity.

As an initial test of the usefulness of the Chunks and Tasks programming
model for a specific application, linear scaling electronic structure calculations,
we have parallelized the overlap matrix computation in the Ergo quantum chem-
istry program[15] using Chunks and Tasks.

The Ergo program performs electronic structure calculations using Gaussian
basis sets, where typically a number of basis functions are centered on each atom.
A necessary first step in such a computation is to compute the overlap matrix
S. To parallelize this procedure we have used a hierarchic representation of the
basis set, where each part of the hierarchy contains basis functions located in a
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Figure 2: Strong scaling for dense matrix-matrix multiplication for matrix size 60000 × 60000
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Figure 3: Dense matrix-matrix multiplication performance when running on 60 nodes (960
cores), for varying matrix size.
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Figure 4: Results from block-sparse matrix-matrix multiplication test runs with matrix size
128000 × 128000 and varying sparsity, running on 60 nodes (960 cores) on the Tintin cluster.
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Figure 5: Timings for computation of the square of the overlap matrix for water clusters
of varying size, running on 60 nodes (960 cores) on the Tintin cluster. The Gaussian ba-
sis set STO-3G was used. The largest water cluster consisted of 123457 water molecules,
corresponding to 864199 basis functions.
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particular part of space. In the same way as for the sparse matrix representation,
higher levels in the hierarchy contain chunk identifiers referring to basis set
descriptions at lower levels. Using such a hierarchic basis set description, it is
straightforward to implement tasks to compute the overlap matrix.

One of the most performance-critical parts in linear scaling electronic struc-
ture calculations is matrix-matrix multiplication; in particular, methods for
computation of the density matrix usually rely on repeated sparse matrix-matrix
multiplication. We have tested the performance of our matrix-matrix multipli-
cation implementation based on Chunks and Tasks by computing the square
of the overlap matrix for water clusters of varying size. Figure 5 shows tim-
ings for the computation of S2 when running on 60 nodes. As expected, the
computational time scales roughly linearly with the water cluster size.

The calculations shown in Figure 5 were done for water clusters of up to
123457 water molecules, corresponding to 864199 Gaussian basis functions using
the STO-3G basis set. A submatrix size of 500 × 500 was used at the lowest
level. The overlap matrix was truncated so that the Frobenius norm of the error
matrix was smaller than 10−5. For the largest water cluster, the overlap matrix
then contained 1.20 % nonzero elements, and the product S2 contained 5.34 %
nonzero elements. This corresponds to a total memory requirement of about
391 GB to store S and S2.

4. Discussion

4.1. Responsibility for data distribution

The Chunks and Tasks interface allows the application programmer to define
distributed data objects by creating chunks that refer to other chunks through
their chunk identifiers. The programmer does not need to specify where the
chunks should be stored. This gives great flexibility, especially when implement-
ing dynamic hierarchic algorithms where the structure of data to be created is
not known beforehand.

Thus, compared to other parallelization approaches where the data distribu-
tion is explicitly specified by the programmer, the Chunks and Tasks approach
moves more responsibility to the library, letting the programmer focus on al-
gorithm development and to exposing parallelism by making sure distributed
objects are represented by trees of chunks.

Relieving the programmer of the responsibility for data distribution means
additional challenges when implementing a Chunks and Tasks library. However,
as demonstrated in Section 3, high performance can still be achieved. Chunks
and Tasks library implementations have great freedom in how data is managed
and where tasks are run depending on the required input data. Our pilot imple-
mentation demonstrates one possible way to manage data, but many others are
certainly possible. Importantly, application programs implemented using the
Chunks and Tasks interface can remain unchanged and still benefit from any
future improved library implementations.
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4.2. Restrictions and performance

The Chunks and Tasks programming model implicitly imposes certain re-
strictions on how work and data is handled in an application program. Chunks
are read-only. Chunks and tasks are identified by their identifiers provided by
the Chunks and Tasks library upon registration. It is therefore not possible to
register tasks with dependencies on tasks that have not yet been registered. It
is also not possible to create task hierarchies with dependencies across branches.

This stands in contrast to the Linda programming model [1] where tuples
are accessed associatively, with none of the above restrictions. However, the
restrictions imposed by Chunks and Tasks make implementation of efficient
parallel Chunks and Tasks libraries feasible. Chunk cache coherence is not an
issue. There is no need to resolve dependencies on remote tasks. Furthermore,
an efficient library can make use of the chunk identifiers to make data available
efficiently, or choose to run tasks where the data is located.

Another feature made possible due to the restrictions imposed by the in-
terface is efficient implementation of the copyChunk function. From a user
perspective, copyChunk takes a chunk identifier, copies the chunk, and returns
an identifier for the new chunk (the copy).

However, a library implementation of copyChunk can take advantage of that
chunks are read-only. A copy is then performed by creating a new chunk iden-
tifier that refers to the same chunk. The library counts all chunk identifiers
that refer to the same chunk and delete the whole chunk hierarchy represented
by that chunk only when the last copy of the chunk is being deleted. Thus,
although the copy is actually a shallow copy, from a user perspective it should
be considered as a deep copy.

So what are the practical implications of this? Consider, for example, an
adaptive mesh refinement algorithm where the mesh is represented by a chunk
hierarchy and say that we want to refine a local portion of the mesh. Since
chunks are read-only one might think that such a local refinement would incur a
replication of the entire mesh. However, thanks to the copy chunk functionality,
only the refined region needs to be reconstructed.

4.3. Fault-resilience

A fault-resilient program is able to continue executing in case of a failure,
e.g. a worker crash. Communication systems such as MPI are not able to single-
handedly, without intervention by the application program, handle faults [16].
The reason is that, in this programming model, the distribution of data and
the program to be executed by each process is the concern of the application
programmer and not the MPI library. The best thing the communication system
can do is to gracefully report failures to the application program which then may
take appropriate measures [17].

One approach to achieve fault-tolerance at the application level is to main-
tain a shadow copy of all data that is needed to recover in case of a process
failure [18]. Global Arrays includes functionality to control the mapping of a
global array onto the processes. This makes it it possible for the user to make
sure that primary and shadow copies do not overlap [19].
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Similarly to [8], it should with Chunks and Tasks be possible to achieve
resilience to faults at the Chunks and Tasks library level. Provided that a fault-
resilient Chunks and Tasks library is used, a conforming Chunks and Tasks
application will automatically be fault-resilient. This can be seen as a conse-
quence of the Chunks and Tasks not being a SPMD programming model; worker
processes are run by the library rather than by the application.

In order for the Chunks and Tasks library to be resilient, it has to include
mechanisms for chunk backup and re-execution of failed tasks. Since tasks in
Chunks and Tasks do not have critical side effects, a fail-safe library does not
need to deal with failed tasks that have produced partial output, as in for
example [20]. If a task fails, one can simply re-execute it. Recovery of chunks
lost due to a process failure can be achieved by storing a shadow copy on another
process as described above.

5. Concluding remarks

We have presented the Chunks and Tasks programming model, our answer
to the question of how to draw the line between the concerns of an application
programmer and the concerns of a parallel library or language. Our philosophy
is that application programmers should focus on parallel algorithm development
and on exposing parallelism in both data and work.

This makes the development of parallel programs easier, in particular for
applications that require dynamic distribution of both work and data. At the
same time, Chunks and Tasks imposes restrictions on data access and task
dependencies that make it possible to implement Chunks and Tasks libraries
with high performance. Furthermore, it is possible to achieve fault resilience at
the Chunks and Tasks library level, which derives from the fact that the library
is responsible for mapping of both work and data to physical resources.

We see before us that parallelization tools building on the Chunks and Tasks
programming model will expand the applicability of high performance parallel
computing to an important class of applications that require dynamic handling
of work and data.
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Appendix A. Example usage

Listing 1: Main program

1 #include <iostream >

2 #include "chunks_and_tasks.h"

3 #include "Fibonacci.h"

4 int main() {

5 int n = 13;

6 cht:: start ();

7 cht:: ChunkID cid_n = cht:: registerChunk(new CInt(n));

8 cht:: ChunkID cid_result =

9 cht:: executeMotherTask <Fibonacci >( cid_n);

10 // Get result.

11 cht:: shared_ptr <CInt const > result;

12 cht:: getChunk(cid_result , result );

13 // Delete chunks.

14 cht:: deleteChunk(cid_n);

15 cht:: deleteChunk(cid_result );

16 // Stop cht services

17 cht::stop ();

18 std::cout << "The thirteenth Fibonacci number is "

19 << *result << std::endl;

20 return 0;

21 }

Listing 2: CInt.h

1 #include "chunks_and_tasks.h"

2 struct CInt: public cht::Chunk {

3 // Functions required for a Chunk

4 void writeToBuffer(char * dataBuffer ,

5 size_t const bufferSize) const;

6 size_t getSize () const;

7 void assignFromBuffer(char const * dataBuffer ,

8 size_t const bufferSize );

9 size_t memoryUsage () const;

10 // CInt specific functionality

11 CInt(int x_) : x(x_) { }

12 CInt() { }

13 operator int() const { return x; }

14 private:

15 int x; // The number itself

16 CHT_CHUNK_TYPE_DECLARATION;

17 };

Listing 3: CInt.cc

1 #include <cstring >

2 #include "CInt.h"
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3

4 CHT_CHUNK_TYPE_IMPLEMENTATION ((CInt ));

5 void CInt:: writeToBuffer(char * dataBuffer ,

6 size_t const bufferSize) const {

7 if (bufferSize != getSize ())

8 throw std:: runtime_error("Wrong buffer size to "

9 "CInt:: writeToBuffer.");

10 memcpy(dataBuffer , &x, sizeof(int ));

11 }

12 size_t CInt:: getSize () const {

13 return sizeof(int);

14 }

15 void CInt:: assignFromBuffer(char const * dataBuffer ,

16 size_t const bufferSize) {

17 if (bufferSize != getSize ())

18 throw std:: runtime_error("Wrong buffer size to "

19 "CInt:: assign_from_buffer.");

20 memcpy (&x, dataBuffer , sizeof(int ));

21 }

22 size_t CInt:: memoryUsage () const {

23 return getSize ();

24 }

Listing 4: Fibonacci.h

1 #include "chunks_and_tasks.h"

2 #include "CInt.h"

3

4 struct Fibonacci: public cht::Task {

5 cht::ID execute(CInt const &);

6 CHT_TASK_INPUT ((CInt ));

7 CHT_TASK_OUTPUT ((CInt ));

8 CHT_TASK_TYPE_DECLARATION;

9 };

Listing 5: Fibonacci.cc

1 #include "Fibonacci.h"

2

3 struct Add: public cht::Task {

4 cht::ID execute(CInt const & n1 , CInt const & n2);

5 CHT_TASK_INPUT ((CInt , CInt ));

6 CHT_TASK_OUTPUT ((CInt ));

7 CHT_TASK_TYPE_DECLARATION;

8 };

9

10 CHT_TASK_TYPE_IMPLEMENTATION ((Add));

11 cht::ID Add:: execute(CInt const & n1 , CInt const & n2) {

12 CInt result_chunk = n1+n2;

13 cht:: ChunkID cid_result =
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14 registerChunk(new CInt(result_chunk), cht:: persistent );

15 return cid_result;

16 }

17

18 CHT_TASK_TYPE_IMPLEMENTATION (( Fibonacci ));

19 cht::ID Fibonacci :: execute(CInt const & n) {

20 if(n < 2)

21 return copyChunk( getInputChunkID(n) );

22 cht:: ChunkID c1 = registerChunk( new CInt(n-1) );

23 cht::ID t1 = registerTask <Fibonacci >( c1 );

24 cht:: ChunkID c2 = registerChunk( new CInt(n-2) );

25 cht::ID t2 = registerTask <Fibonacci >( c2 );

26 return registerTask <Add >(t1, t2, cht:: persistent );

27 } // end execute
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ators, in: J. L. Träff, S. Benkner, J. J. Dongarra (Eds.), Recent Advances
in the Message Passing Interface, Vol. 7490 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, 2012, pp. 298–299.

[10] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier, J. Don-
garra, Dague: A generic distributed dag engine for high performance com-
puting, Parallel Computing 38 (12) (2012) 37–51.

[11] D. R. Bowler, T. Miyazaki, O(N) methods in electronic structure calcula-
tions, Rep. Prog. Phys. 75 (3) (2012) 036503.

[12] E. H. Rubensson, E. Rudberg, Chunks and Tasks, a parallel programming
model for parallelization of dynamic algorithms (2012).
URL http://www.chunks-and-tasks.org

[13] H. Vandierendonck, G. Tzenakis, D. S. Nikolopoulos, A unified scheduler
for recursive and task dataflow parallelism, in: L. Rauchwerger, V. Sarkar
(Eds.), PACT, IEEE Computer Society, 2011, pp. 1–11.

[14] E. H. Rubensson, E. Rudberg, P. Sa lek, A hierarchic sparse matrix data
structure for large-scale Hartree–Fock/Kohn–Sham calculations, J. Com-
put. Chem. 28 (2007) 2531–2537.

[15] E. Rudberg, E. H. Rubensson, P. Sa lek, Ergo (version 3.51); a quantum
chemistry program for large scale self–consistent field calculations (2012).
URL http://www.ergoscf.org

[16] W. Gropp, E. Lusk, Fault tolerance in message passing interface programs,
Int. J. High Perform. C. 18 (3) (Fall 2004) 363–372.

[17] G. E. Fagg, J. J. Dongarra, FT-MPI: Fault tolerant MPI, supporting dy-
namic applications in a dynamic world, in: J. Dongarra, P. Kacsuk, N. Pod-
horszki (Eds.), Recent Advances in Parallel Virtual Machine and Message
Passing Interface, Vol. 1908 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, 2000, pp. 346–353.

[18] A. Vishnu, H. V. Dam, W. D. Jong, P. Balaji, S. Song, Fault-tolerant
communication runtime support for data-centric programming models., in:
HiPC, IEEE, 2010, pp. 1–9.

[19] N. Ali, S. Krishnamoorthy, N. Govind, B. Palmer, A redundant communi-
cation approach to scalable fault tolerance in PGAS programming models,
in: Parallel, Distributed and Network-Based Processing (PDP), 2011 19th
Euromicro International Conference on, 2011, pp. 24–31.

[20] J. Dinan, A. Singri, P. Sadayappan, S. Krishnamoorthy, Selective recovery
from failures in a task parallel programming model, in: Proceedings of
the 2010 10th IEEE/ACM International Conference on Cluster, Cloud and

18

http://www.chunks-and-tasks.org
http://www.chunks-and-tasks.org
http://www.chunks-and-tasks.org
http://www.ergoscf.org
http://www.ergoscf.org
http://www.ergoscf.org


Grid Computing, CCGRID ’10, IEEE Computer Society, Washington, DC,
USA, 2010, pp. 709–714.

19


	1 Introduction
	1.1 Parallel programming models
	1.2 The present work

	2 The Chunks and Tasks interface
	2.1 The chunk abstraction
	2.2 The task abstraction
	2.3 The main program

	3 A pilot library implementation
	3.1 Chunk service
	3.2 Task scheduler service
	3.2.1 The task transaction
	3.2.2 Speculative task execution
	3.2.3 Side effects of task execution

	3.3 Test calculations

	4 Discussion
	4.1 Responsibility for data distribution
	4.2 Restrictions and performance
	4.3 Fault-resilience

	5 Concluding remarks
	Appendix  A Example usage

