
Parallel Computing 39 (2013) 709–736
Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier .com/ locate/parco
Review
A survey on resource allocation in high performance distributed
computing systems
0167-8191/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.parco.2013.09.009

⇑ Corresponding author. Address: Department of Electrical and Computer Engineering, North Dakota State University, Fargo, ND 58108-6050, U
+1 701 231 7615; fax: +1 701 231 8677.

E-mail addresses: ham.hamdard@gmail.com (H. Hussain), saif.rehmanmalik@ndsu.edu (S.U.R. Malik), abdul.hameed@ndsu.edu (A. H
samee.khan@ndsu.edu (S.U. Khan), gage.n.bickler@ndsu.edu (G. Bickler), nasar@comsats.edu.pk (N. Min-Allah), muhdbilal.qureshi@g
(M.B. Qureshi), limin.zhang@ndsu.edu (L. Zhang), ywang@itechs.iscas.ac.cn (W. Yongji), nghani@usf.edu (N. Ghani), jkolodziej@uck.pk.edu.pl (J. K
albert.zomaya@sydney.edu.au (A.Y. Zomaya), czxu@wayne.edu (C.-Z. Xu), balaji@mcs.anl.gov (P. Balaji), abhinav.vishnu@pnl.gov (A. Vishnu)
pinel@uni.lu (F. Pinel), johnatan.pecero@uni.lu (J.E. Pecero), dzmitry.kliazovich@uni.lu (D. Kliazovich), pascal.bouvry@uni.lu (P. Bouvry), h.li@louis
(H. Li), lzwang@ceode.ac.cn (L. Wang), chendan@pmail.ntu.edu.sg (D. Chen), rayes@cisco.com (A. Rayes).
Hameed Hussain a, Saif Ur Rehman Malik b, Abdul Hameed b, Samee Ullah Khan b,⇑
Gage Bickler b, Nasro Min-Allah a, Muhammad Bilal Qureshi a, Limin Zhang b, Wang Yongji c

Nasir Ghani d, Joanna Kolodziej e, Albert Y. Zomaya f, Cheng-Zhong Xu g, Pavan Balaji h

Abhinav Vishnu i, Fredric Pinel j, Johnatan E. Pecero j, Dzmitry Kliazovich j, Pascal Bouvry j,
Hongxiang Li k, Lizhe Wang l, Dan Chen m, Ammar Rayes n

a COMSATS Institute of Information Technology, Islamabad 44000, Pakistan
b North Dakota State University, Fargo, ND, USA
c Institute of Software, Chinese Academy of Sciences, Beijing, China
d University of South Florida, Tampa, Florida 33620-5399, USA
e Cracow University of Technology, Cracow, Poland
f University of Sydney, Sydney, NSW, Australia
g Wayne State University, Detroit, MI, USA
h Argonne National Laboratory, Argonne, IL, USA
i Pacific Northwest National Laboratory, Richland, WA, USA
j University of Luxembourg, Coudenhove-Kalergi, L1359, Luxembourg
k University of Louisville, Louisville, KY, USA
l Center for Earth Observation and Digital Earth, Chinese Academy of Sciences, Beijing, China
m China University of Geosciences, Wuhan, China
n CISCO Systems, San Jose, CA, USA

a r t i c l e i n f o
Article history:
Received 24 September 2011
Received in revised form 10 September
2013
Accepted 16 September 2013
Available online 14 October 2013

Keywords:
Scheduling
Resource allocation
Resource management
a b s t r a c t

An efficient resource allocation is a fundamental requirement in high performance
computing (HPC) systems. Many projects are dedicated to large-scale distributed comput-
ing systems that have designed and developed resource allocation mechanisms with a
variety of architectures and services. In our study, through analysis, a comprehensive
survey for describing resource allocation in various HPCs is reported. The aim of the work
is to aggregate under a joint framework, the existing solutions for HPC to provide a thor-
ough analysis and characteristics of the resource management and allocation strategies.
Resource allocation mechanisms and strategies play a vital role towards the performance
improvement of all the HPCs classifications. Therefore, a comprehensive discussion of
widely used resource allocation strategies deployed in HPC environment is required, which
is one of the motivations of this survey. Moreover, we have classified the HPC systems into
three broad categories, namely: (a) cluster, (b) grid, and (c) cloud systems and define the
characteristics of each class by extracting sets of common attributes. All of the
SA. Tel.:

ameed),
mail.com
olodziej),
, fredric.
ville.edu

http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2013.09.009&domain=pdf
http://dx.doi.org/10.1016/j.parco.2013.09.009
mailto:ham.hamdard@gmail.com
mailto:saif.rehmanmalik@ndsu.edu
mailto:abdul.hameed@ndsu.edu
mailto:samee.khan@ndsu.edu
mailto:gage.n.bickler@ndsu.edu
mailto:nasar@comsats.edu.pk
mailto:muhdbilal.qureshi@gmail.com
mailto:limin.zhang@ndsu.edu
mailto:ywang@itechs.iscas.ac.cn
mailto:nghani@usf.edu
mailto:jkolodziej@uck.pk.edu.pl
mailto:albert.zomaya@sydney.edu.au
mailto:czxu@wayne.edu
mailto:balaji@mcs.anl.gov
mailto:abhinav.vishnu@pnl.gov
mailto:fredric. pinel@uni.lu
mailto:fredric. pinel@uni.lu
mailto:johnatan.pecero@uni.lu
mailto:dzmitry.kliazovich@uni.lu
mailto:pascal.bouvry@uni.lu
mailto:h.li@louisville.edu
mailto:lzwang@ceode.ac.cn
mailto:chendan@pmail.ntu.edu.sg
mailto:rayes@cisco.com
http://dx.doi.org/10.1016/j.parco.2013.09.009
http://www.sciencedirect.com/science/journal/01678191
http://www.elsevier.com/locate/parco

710 H. Hussain et al. / Parallel Computing 39 (2013) 709–736
aforementioned systems are cataloged into pure software and hybrid/hardware solutions.
The system classification is used to identify approaches followed by the implementation of
existing resource allocation strategies that are widely presented in the literature.

� 2013 Elsevier B.V. All rights reserved.
Contents

1. Introduction . 711

1.1. Motivation . 712
2. Overview of HPC systems . 712

2.1. HPC systems classes . 713
2.1.1. Cluster computing systems . 713
2.1.2. Grid computing systems . 714
2.1.3. Cloud computing systems . 715
2.2. Computer clusters: features and requirements . 716

2.2.1. Job processing type. 716
2.2.2. QoS attributes . 716
2.2.3. Job composition . 716
2.2.4. Resource allocation control . 717
2.2.5. Platform support. 717
2.2.6. Evaluation method . 717
2.2.7. Process migration . 718
2.2.8. Correlation of cluster features and resource allocation . 718
2.3. Grid computer systems: features and requirements. 718

2.3.1. System type . 718
2.3.2. Scheduling organization . 718
2.3.3. Resource description . 719
2.3.4. Resource allocation policies . 719
2.3.5. Breadth of scope . 719
2.3.6. Triggering information . 719
2.3.7. System functionality. 720
2.3.8. Correlation of grid features and resource allocation . 720
2.4. Cloud computing systems: features and requirements. 720

2.4.1. System focus . 720
2.4.2. Services . 720
2.4.3. Virtualization . 720
2.4.4. Dynamic QoS negotiation. 720
2.4.5. User access interface . 721
2.4.6. Web APIs . 721
2.4.7. Value added services . 721
2.4.8. Implementation structure . 721
2.4.9. VM migration . 721
2.4.10. Pricing model in cloud . 721
2.4.11. Correlation of cloud features and resource allocation . 721

3. Mapping the hpc systems classification to various cluster, grid and cloud systems: comparison and survey of the existing HPC
solutions . 722
3.1. Cluster computing system . 722

3.1.1. Enhanced MOSIX . 722
3.1.2. Gluster. 722
3.1.3. Faucets . 722
3.1.4. Distributed Queuing System (DQS) . 723
3.1.5. Tycoon. 724
3.1.6. Cluster on demand . 724
3.1.7. Kerrighed. 724
3.1.8. Open Single System Image (OpenSSI) . 724
3.1.9. Libra . 724
3.1.10. Parallel Virtual Machine (PVM) . 724
3.1.11. Rexec . 725
3.1.12. Generic Network Queuing System (GNQS) . 725
3.1.13. Load Leveler . 725
3.1.14. Load Sharing Facility (LSF) . 725
3.1.15. Simple Linux Utility for Resource Management (SLURM) . 725
3.1.16. Portable Batch System (PBS) . 725
3.1.17. Condor (HTCondor). 725

H. Hussain et al. / Parallel Computing 39 (2013) 709–736 711
3.2. Grid computing system. 725

3.2.1. Grid Architecture for Computational Economy (GRACE) . 727
3.2.2. Network infrastructure (Ninf) . 727
3.2.3. Grid-Quality of Services Management (G-QoSM) . 727
3.2.4. Javelin . 727
3.2.5. Network weather service (NWS) . 727
3.2.6. Grid harvest service (GHS) . 728
3.2.7. Stanford Peers Initiative . 728
3.2.8. 2k. 728
3.2.9. AppLeS. 728
3.2.10. Darwin. 728
3.2.11. Cactus Worm . 728
3.2.12. Punch . 729
3.2.13. Nimrod/G . 729
3.2.14. NetSolve . 730
3.2.15. Meta Computing Online (MOL) . 730
3.2.16. Legion . 730
3.2.17. Wren . 730
3.2.18. Globus . 730
3.3. Cloud computing systems. 730

3.3.1. Amazon Elastic Compute Cloud (EC2) . 731
3.3.2. Eucalyptus. 731
3.3.3. Google Application Engine (GAE). 731
3.3.4. Global Environment for Network Innovations (GENI) . 731
3.3.5. Microsoft Live Mesh . 731
3.3.6. Sun Network.Com (Sun Grid). 732
3.3.7. E-learning ecosystem . 732
3.3.8. Grids Lab Aneka . 732
3.3.9. OpenStack . 732

4. Classification of systems . 732

4.1. Software only solutions . 732
4.2. Hardware/hybrid only solutions. 733
5. Conclusions. 733
Acknowledgments . 733
References . 733
1. Introduction

The distributed computing paradigm endeavors to tie together the power of large number of resources distributed across
a network. Each user has the requirements that are shared in the network architecture through a proper communication
channel [1]. Distributed computing paradigm is used for three major reasons. First, the nature of distributed applications
suggests the use of a communication network that connects several computers. Such networks are necessary for producing
data that are required for the execution of tasks on remote resources. Second, most of the parallel applications have multiple
processes that run concurrently on many nodes communicating over a high-speed interconnect. The use of high performance
distributed systems for parallel applications is beneficial as compared to a single Central Processing Unit (CPU) machine for
practical reasons. The ability of services distributed in a wide network is low-cost and makes the whole system scalable and
adapted to achieve the desired level of the performance efficiency [2]. Third, the reliability of the distributed system is higher
than a monolithic single processor machine. A single failure of one network node in a distributed environment does not stop
the whole process as compared to a single CPU resource. Some techniques for achieving reliability on a distributed environ-
ment are check pointing and replication [2]. Scalability, reliability, information sharing, and information exchange from re-
mote sources are the main motivations for the users of distributed systems [2].

The resource management mechanism determines the efficiency of the used resources and guarantees the Quality of
Service (QoS) provided to the users. Therefore, the resource allocation mechanisms are considered a central theme in HPCs
[85]. Some applications require strict delay, computational power, and best effort services. Moreover, if the desired perfor-
mance is not achieved, then the users feel reluctant to pay. Therefore, a growing need for QoS resource management and
scheduling algorithms is observed [85]. QoS resource management aims at providing guaranteed deterministic services to
Service Level Agreement (SLA) [39] based premium users and fair services to the best users. The users that do not require
performance bounds are known as best users [85]. QoS resource management and scheduling algorithms are capable of
optimally assigning resources in ideal situation or near-optimally assigning resources in actual situation, taking into account
the task characteristics and QoS requirements [77,86].

712 H. Hussain et al. / Parallel Computing 39 (2013) 709–736
Scheduling is the method by which system resources are allocated to the jobs, such as processor time and bandwidth,
to balance the load effectively and to achieve a targeted QoS [137]. The need for a scheduling algorithm arises from the
requirement for most modern systems to perform multitasking (execute more than one process at a time) and multiplex-
ing (transmit multiple flows simultaneously). Therefore, we must consider job scheduling as a resource management
technique.
1.1. Motivation

The purpose of this survey is to analyze the resource allocation mechanism of three broad classes of HPC: (a) cluster, (b)
grid, and (c) cloud. Besides other factors, the performances of the aforementioned classes are directly related to the resource
allocation mechanisms used in the system. Therefore, in the said perspective, a complete analysis of resource allocation
mechanism used in HPCs classes is required. In this survey, we present a thorough analysis and characteristics of the re-
source management and allocation strategies used in academic, industrial, and commercial system.

The features of the HPC categories (cluster, grid, and cloud) are conceptually similar [112]. Therefore, an effort has been
made to distinguish each of the categories by selecting relevant distinct features for all. The features are selected based on
the information present in the resource allocation domain, acquired from a plethora of literature. We believe that the com-
prehensive analysis of leading research and commercial projects in HPC domain can provide readers with an understanding
of the essential concepts of the evolution of the resource allocation mechanisms in HPC systems. Moreover, this research will
help individuals and researchers to identify the important and outstanding issues for further investigation. The highlighted
aspects of the survey are as follows:

(a) Analysis of resource allocation mechanisms of cluster, grid, and cloud.
(b) Identifying the common features of each category and comparing the resource allocation mechanisms of the systems

based on the selected features.
(c) Classification of systems as software only and hybrid/hardware systems.

In contrast to the other compact surveys and system taxonomies, such as [101,102], the focus of this study is to
demonstrate the resource allocation mechanisms. Note that the purpose of this survey is to demonstrate the resource
allocation mechanisms and not the performance analysis of the systems. Although, the performance can be analyzed based
on the resource allocation mechanism but this is not the scope of the paper. The purpose of this study is to aggregate and
analyze the existing solutions for HPC under the resource allocation policies. Moreover, an effort has been made to provide
a broader view of the resource allocation mechanisms and strategies by discussing systems of different categories, such as
obsolete systems (systems that were previously being used), academic system (research projects proposed by institutes
and universities), and established systems (well-known working systems). The projects are compared on the basis of
the selected common features within the same category. For each category, the characteristics discussed are specific
and the list of features can be expanded further. Finally, the systems are cataloged into pure software and hybrid/
hardware HPC solutions.

The rest of the paper is organized as follows: In Section 2, we present the HPC system classification and highlight the key
terms and the basic characteristics of each class. In Section 3, we survey the existed HPC system research projects and com-
mercial approaches of each classification (cluster, grid, and cloud). The projects are cataloged into pure software and hybrid/
hardware solutions in Section 4. The paper concludes in Section 5 with some final remarks and open issues.
2. Overview of HPC systems

The section discusses three main categories of HPC systems that are analyzed, evaluated, and compared based on the set
of identified features. We put cloud under the category of HPC because it is now possible to deploy a HPC cloud, such as Ama-
zon EC2. Clusters having 50,000 cores have been run on Amazon EC2 for scientific applications [123]. Moreover, the HPC
workload is usually massively high scale and has to be run on many machines, which is naturally compatible with a cloud
environment. The taxonomy representing the categories and the selected features used for the comparison within the same
category are shown in Fig. 1. Dong et al. [122] designed a taxonomy for the classification of scheduling algorithms in distrib-
uted systems. Moreover, Ref. [122] has broadly categorized scheduling algorithms as: (a) Local vs. Global, (b) Static vs. Dy-
namic, (c) Optimal vs. Suboptimal, (d) Distributed vs. Centralized, and (e) Application centric vs. Resource centric. Apart from
above classification, different variants of scheduling, such as conservative, aggressive, and no reservation can also be found in
literature [17,100]. In conservative scheduling [87], processes allocate required resources before execution. Moreover, the
operations are delayed for serial execution of the tasks that helps in process sequencing. The delay is also helpful in rejection
of the processes. In conservative scheduling, operations are not rejected but delayed. In an aggressive (easy) scheduling [87],
operations are immediately scheduled for execution to avoid delay in the operations. Moreover, the operations are reordered
on the arrival of new operations. In some situations when a task cannot be completed in serial way, the operations are re-
jected. In aggressive scheduling, the operations are not delayed but have rejection risk at later stages. However, in conser-
vative scheduling the operations are not rejected but delayed. No reservation [88] is a dynamic scheduling technique where

Features

HPC

Cluster

Grid

Cloud

Resource
Alloca�on

Job Processing Type

QoS A�ributes

Job Composi�on

Resource Alloca�on Control

Pla�orm Support

Evalua�on Method

Scheduling Organiza�on
System Type

Resource Descrip�on

Resource Alloca�on Policy
Breadth of scope

Triggering Info

System Func�onality

Implementa�on Structure

System Focus

Dynamic Nego�a�on of QoS

Web APIs

Virtualiza�on

Services

User Access Interface

Value added Services

Process Migra�on

Fig. 1. HPC systems categories and attributes.

H. Hussain et al. / Parallel Computing 39 (2013) 709–736 713
the resources are not reserved prior to execution but allocated at run time. The resources without reservation are wasted
because, if a resource is not available at request time, then the process has to wait till the availability of resource.

2.1. HPC systems classes

2.1.1. Cluster computing systems
Cluster computing, referred as clustering, is the use of multiple computers, multiple storage devices, and redundant inter-

connections to form a single highly available system [143]. Cluster computing can be used for high availability and load bal-
ancing. A common use of cluster computing is to provide load balancing on high-traffic websites. The concept of clustering
was already present in DEC’s VMS systems [106,107]. IBM’s Sysplex is a cluster-based approach for a mainframe system
Admin

Scheduler
Nodes

Computer
Nodes

User Nodes

Storage
Servers

Management
Servers

Disk

Backup

Fig. 2. A cluster computing system architecture.

714 H. Hussain et al. / Parallel Computing 39 (2013) 709–736
[108]. Microsoft, Sun Microsystems, and other leading hardware and software companies offer clustering packages for sca-
lability and availability [109]. With the increase in traffic or availability assurance, all or some parts of the cluster can be
increased in size or number.

The goal of cluster computing is to design an efficient computing platform that uses a group of commodity computer re-
sources integrated through hardware, networks, and software to improve the performance and availability of a single com-
puter resource [144,145]. One of the main ideas of cluster computing is to portray a single system image to the outside
world. Initially, cluster computing and HPC were referred to the same type of computing systems. However, today’s technol-
ogy enables the extension of cluster class by incorporating load balancing, parallel processing, multi-level system manage-
ment, and scalability methodologies. Load balancing algorithms [104] are designed essentially to equally spread the load on
processors and maximize the utilization while minimizing the total task execution time. To achieve the goals of cluster com-
puting, the load-balancing mechanism should be fair in distributing the load across the processors [146]. The objective is to
minimize the total execution and communication cost encountered by the task assignment, subject to the resource
constraints.

The extension of traditional clusters transforms into user-demand systems (provides SLA-based performance) that deliver
Reliability, Availability, and Serviceability (RAS) needed for HPC applications. A modern cluster is made up of a set of com-
modity computers that are usually restricted to a single switch or group of interconnected switches within a single virtual
local-area network (VLAN) [93]. Each compute node (computer) may have different architecture specifications (single pro-
cessor machine, symmetric multiprocessor system, etc.) and access to various types of storage devices. The underlying net-
work is a dedicated network made up of high-speed and low-latency system of switches with a single or multi-level
hierarchic internal structure. In addition to executing compute-intensive applications, cluster systems are also used for rep-
licated storage and backup servers that provide essential fault tolerance and reliability for critical parallel applications. Fig. 2
depicts a cluster computing system that consists of: (a) Management servers (responsible for controlling the system by tak-
ing care of system installation, monitoring, maintenance, and other tasks), (b) Storage servers, disks, and backup (storage
servers are connected to disks for the storgae purpose and the disks are connected to backup for data backup purposes,
the storgae server in Fig. 2 provides a shared file system access across the cluster), (c) User nodes (used by system users
to login to user nodes to run the workloads on each cluster), (d) Scheduler nodes (users submit their work to a scheduler
nodes to run the workload), and (e) Computer nodes (run the workloads).

2.1.2. Grid computing systems
The concept of grid computing is based on using the Internet as a medium for the wide spread availability of powerful

computing resources as low-cost commodity components [142]. Computational grid can be thought of as a distributed sys-
tem of logically coupled local clusters with non-interactive workloads that involve a large number of files [15,111]. By non-
interactive, we mean that assigned workload is treated as a single task. The logically coupled clustering refers that the output
of one cluster may become input for another cluster, but within a cluster the workload is interactive. In contrast with the
conventional HPC (cluster) systems, grids account for different administrative domains with access policies, such as user
privileges [94,141]. Fig. 3 depicts a general model of grid computing system.

The motivations behind grid computing were the resource sharing and problem solving in multi-institutional and dy-
namic virtual organizations as depicted in Fig. 3. A group of individuals and institutions form a virtual organization. In virtual
organization, the individuals and the institutions define rules for resource sharing. Such rules can be: what is shared on the
Virtual
Organization

Virtual
Organization

Virtual
Organization

Virtual
Organization

Virtual
Organization

Storage

Satellite

Super
Computer

Cluster

Fig. 3. A model of grid computing system.

Cloud Applications
Social Computing, Enterprise, ISV,

Scientific, CDNs

Environment and Tools
Web 2.0, Mashups, Scripting, Libraries

QoS negitiation,
Controls and policies,

SLA management,
Acounting

VM
Management

and
Deployment

Resource
Compute, Storage, ...

Application Hosting
Platform

Core
Middleware

User-level
Middleware

User-level

System-level

User

Fig. 4. A layered model of cloud computing system.

H. Hussain et al. / Parallel Computing 39 (2013) 709–736 715
basis of what condition and to whom, etc. [95]. Moreover, Grid guarantees the secure access by user identification. The
aggregate throughput is more important than the price and overall performance of a grid system. What makes grid different
from conventional HPC systems, such as cluster, is that grids tend to be more loosely coupled, heterogeneous, and geograph-
ically dispersed [139,140].

2.1.3. Cloud computing systems
Cloud computing describes a new model for Information Technology (IT) services based on the Internet, and typically in-

volves provision of dynamically scalable and often virtualized resources over-the-Internet [2,3,12,147]. Moreover, cloud
computing provides the ease-of-access to remote computing sites using the Internet [4,5]. Fig. 4 shows a generic layered
model of cloud computing system. The user-level layer in Fig. 4 is used by the users to deal with the service provided by
the cloud. Moreover, the top layer also uses the services provided by the lower layer to deliver the capabilities of SaaS
[120]. The tools and environment that are required to create interfaces and applications on the cloud is provided by the
user-level middleware layer. The runtime environment that enables cloud computing capabilities to application services
of user-level middleware is provided by the Core middleware layer. Moreover, the computing capabilities are provided by
the layer through implementing the platform level services [120]. The computing and processing power of cloud computing
is aggregated through data centers [148–150]. At the system level layer physical resources, such as storage servers and appli-
cation servers are available that powers up the data center [120].

The current cloud systems, such as Amazon EC2 [68], Eucalyptus [71], and LEAD [121] are based mainly on the Virtual
Grid Application Development Software (VGrADS), sponsored by National Institute of Standards and Technology (NIST)
[6]. The term ‘‘Cloud’’ is a metaphor for the Internet. The metaphor is based on the cloud drawing used in the past to rep-
resent the telephone network [7] and later to depict the Internet in computer network diagrams as an abstraction of the
underlying infrastructure [8]. Typical cloud computing providers deliver common business applications online that are ac-
cessed through web service, and the data and software are stored on the servers. Clouds often appear as a single point of
access for computing the consumer needs. Commercial offerings are generally expected to meet the QoS requirements of
customers, and typically include SLAs [9].

The model of the cloud requires minimal management and interactions with IT administrators and resource providers, as
seen by the user. Alternatively, self-monitoring and healing of cloud computing system requires complex networking, stor-
age, and intelligent system configuration. Self-monitoring is necessary for automatic balancing of workloads across the phys-
ical network nodes to optimize the cost of system utilization. Failure of any individual physical software or hardware
component of the cloud system is arbitrated swiftly for rapid system recovery.

Table 1 depicts the common attributes among the HPC categories, such as size, network type, and coupling. Moreover, no
numeric data is involved in the Table 1. For example, the size of the grid is large as compared to cluster. The network grids

Table 1
Commonality between cluster, grid, and cloud systems.

Feature Cluster Grid Cloud

Size Small to medium Large Small to large
Network type Private, LAN Private, WAN Public, WAN
Job management and scheduling Centralized Decentralized Both
Coupling Tight Loose/tight Loose
Resource reservation Pre-reserved Pre-reserved On-demand
SLA constraint Strict High High
Resource support Homogeneous and heterogeneous (GPU) Heterogeneous Heterogeneous
Virtualization Semi-virtualized Semi-virtualized Completely virtualized
Security type Medium High Low
SOA and heterogeneity support Not supported Supported Supported
User interface Single system image Diverse and dynamic Single system image
Initial infrastructure cost Very high High Low
Self service and elasticity No No Yes
Administrative domain Single Multi Both

716 H. Hussain et al. / Parallel Computing 39 (2013) 709–736
are usually private and over Wide Area Network (WAN) that means that grids spread over the Internet are owned by a single
company. Foster et al. [101] uses various perspectives, such as architecture, security model, business model, programming
model, virtualization, data model, and compute model to compare grids and clouds. Sadashiv et al. [102] have done a com-
parison of three computing models (cluster, grid, and cloud) based on different characteristics, such as business model, SLA,
virtualization, and Reliability. Similar comparison can also be found in [98]. Another comparison amongst the three comput-
ing models can also be found [103].

2.2. Computer clusters: features and requirements

The overall performance of the cluster computing system depends on the features of the system. Cluster systems provide
a mature solution for different types of computation and data-intensive parallel application. Among many specific system
settings related to a particular problem, sets of basic generic cluster properties can be extracted as a common class of clas-
sical and modern cluster systems [118]. The extracted features shown in Fig. 1 are defined in the following paragraphs.

2.2.1. Job processing type
Jobs submitted to the cluster system may be processed as parallel or sequential. The jobs can be characterized as sequen-

tial or parallel based on the processing of the tasks involved in the job. A job that consists of parallel tasks has to execute
concurrently on different processors, where each task starts at the same time. (The readers are encouraged to see [130]
for more details on HPC job scheduling in Cluster.) Usually, the sequential jobs are executed at a single processor as a queue
of independent tasks. Parallel applications are mapped to the multi-processor parallel machine and are executed simulta-
neously on the processors. The parallel processing mode speeds up the whole job execution and the appropriate strategy
is to solve the complex large-scale problems within a reasonable amount of time and cost. Many conventional market-based
cluster resource management systems support sequential processing mode. However, number of compute intensive appli-
cations must be executed within a feasible deadline. Therefore, parallel processing mode of cluster job is implemented in
high-level cluster systems, such as SLURM [91], Enhanced MOSIX [2], and REXEC [3].

2.2.2. QoS attributes
QoS attributes describe the basic service requirements requested by the consumers that the service provider is required

to deliver. The consumer represents a business user that generates service requests at a given rate that is to be processed by
the system. General attributes involved in QoS are: (a) time, (b) cost, (c) efficiency, (d) reliability, (e) fairness, (f) throughput,
(g) availability, (h) maintainability, and (i) security. QoS metrics can be estimated by using various measurement techniques.
However, such techniques are difficult to use in solving a resource allocation problem with multiple constraints. The diffi-
culty in resource allocation problem with multiple constraints is still a critical problem in cluster computing. In some con-
ventional cluster systems, REXEC [3], Cluster-on-Demand [4], and LibraSLA [5], the job deadline and user defined budget
constraints, such as: (a) fairness, (b) time, and (c) cost QoS attributes are considered. Market-based cluster RMS still lacks
efficient support of reliability or trust. Recent applications that manipulate huge bytes of distributed data must provide guar-
anteed QoS during network accessibility. Providing the best effort services by ignoring the network mechanism is not enough
to the customer requirements. (Readers are encouraged to read [131,132] for more understanding of QoS attribute in
clusters.)

2.2.3. Job composition
Job composition depicts the number of tasks involved in a single job prescribed by the user. A single-task job is defined as

a monolithic application, in which just a single task is specified as depicted in Fig. 5(a). Parallel (or multi-task) jobs are usu-

Job A

Task 1

Job B

Task 1

...

Task 2

Task n

Depends

Depends

Depends

(a) (b)

Fig. 5. (a) Single task job and (b) Multiple task job.

Resource
Manager

R1 R2 R3 RN R4 …

Resource Manager1

R1 R2 R3

Resource Manager2

R4 R5 R6

(a) (b)

Fig. 6. Resource management (a) Centralized resource management (b) Decentralized resource management.

H. Hussain et al. / Parallel Computing 39 (2013) 709–736 717
ally represented by a Directed Acyclic Graph (DAG) as shown in Fig. 5(b). Moreover, the nodes express the particular tasks
partitioned from an application and the edges represent the inter-task communication [96]. The tasks can be dependent or
independent. Independent tasks can be executed simultaneously to minimize the processing time. Dependent tasks are cum-
bersome and must be processed in a pre-defined manner to ensure that all dependencies are satisfied. Market-based cluster
RMSs must support all three types of job compositions namely: (a) single task, (b) independent multiple-task, and (c) depen-
dent multiple-task [96].

2.2.4. Resource allocation control
Resource allocation control is a mechanism that manages and control resources in a cluster system. Resource allocation

control system can be centralized or decentralized [98]. The jobs in centralized system are being administered centrally by a
single resource manager that has complete knowledge of the system. In decentralized resource management system (RMS),
several resource managers and providers communicate with one another to keep the load for all resources balanced and sat-
isfy the specific users requirements [98]. Fig. 6 depicts centralized and decentralized resource management systems (more
details please see [133]).

2.2.5. Platform support
Two main categories of cluster infrastructure to support the execution of cluster applications are homogeneous and het-

erogeneous platforms. In a homogeneous platform, the system runs on a number of computers with similar architectures
and same operating systems (OSs). In a heterogeneous platform, the architecture and the OS of the nodes are different.

2.2.6. Evaluation method
The performance of cluster system can be evaluated through several metrics to determine the effectiveness of different

cluster RMSs. The performance metrics are divided into two main categories, namely system-centric and user-centric eval-
uation criteria [97]. System centric evaluation criteria depict the overall operational performance of the cluster. Alterna-
tively, user centric evaluation criteria portray the utility achieved by the participants. To assess the effectiveness of RMS
system-centric and user-centric criteria, evaluation factors are required. System-centric factors guarantee that system per-
formance is not compromised and user-centric factors assure that desired utility of various RMS are achieved from partic-
ipant perspective [97]. The system-centric factors can include disk space, access interval, and computing power. User-centric
factors can include the cost and execution time of the system. Moreover, a combination of system-centric and user-centric
approaches can be used to form another metric that uses features from both, to evaluate the system more effectively
[97,105].

718 H. Hussain et al. / Parallel Computing 39 (2013) 709–736
2.2.7. Process migration
In cluster, transfer of job from one computer to another without restarting is known as process migration. A standard

cluster RMS usually provides the process migration in homogeneous systems. The migration in heterogeneous systems is
much more complex because of the numerous complex conversion processes from sources to destination access points.

2.2.8. Correlation of cluster features and resource allocation
All the cluster computing features defined in the previous paragraphs are crucial for an efficient resource management

and allocation in the system. The job scheduling policy strictly depends on the type of the job processed in a cluster. More-
over, the job scheduling is completely different for batch (group) scheduling as compared to sequential and simultaneous
processed applications. The job processing schema, together with a job structure, mainly determines the speed of the cluster
system. The monolithic single-task job processed in a sequential mode is the main reason for possible ineffective system uti-
lization, because some cluster nodes are kept idle for a long time.

The cluster RMSs are defined as a system middleware that provides a single interface for user-level applications to be
executed on the cluster. The aforementioned, allows the complexities of the underlying distributed nature of the clusters
to be hidden from the users. For effective management, the RMS in cluster computing requires some knowledge of how users
value the cluster resources. Moreover, RMS provides support for the users to define QoS requirements for the job execution.
In the said scenario, the system-centric approaches have limited abilities to achieve the user desired utility. Therefore, the
focus is to increase the system throughput and maximize the resources utilization. The QoS attributes are thoroughly dis-
cussed in Section 2.2.

The administration of a centralized RMS is easier than the decentralized structures because a single entity in the cluster
has complete knowledge of the system. Moreover, definition of communication protocols for different local job dispatchers is
not required. Furthermore, the reliability of centralized systems may be low because of the complete outage of the system in
case of central cluster node failure. The distributed administration can tolerate a loss if any node is detached from a cluster.
Another important factor of resource allocation in cluster systems is the platform support. In homogenous systems, the re-
source types are related to the specified scheduling constraints and service requirements defined by the users. The analysis
of the requests sent to the system can help in managing the resource allocation process. In heterogeneous platform, the
range of resources required, which causes an increase in the complexity of the resource management may vary. A phenom-
enon where a process, task, or request is permanently denied for resources is known as starvation. To facilitate the parallel
processing of applications that requires the same type of resources, most of the cluster systems have homogeneous resource
configuration. However, some systems may have heterogeneous resource configurations to achieve concurrent execution of
distinct applications that requires different resources [3]. Since the group of nodes in heterogeneous platforms has different
resources configurations for specific tasks, we can conclude that the probability of occurring starvation is less in heteroge-
neous platform as compared to the homogenous platform.

If any node is disconnected from the cluster, then the workload of the node can be migrated to other nodes present in the
same cluster. Migration adds the reliability and balancing of resource allocation across the cluster. A single node can request
the migration of resources when a request received is difficult to handle. The cluster as a whole is responsible for process
migration.

2.3. Grid computer systems: features and requirements

Grid systems are composed of resources that are distributed across various organizations and administrative domains
[112]. A grid environment needs to dynamically address the issues involved in sharing a wide range of resources. Moreover,
various types of grid systems, such as Computational Grids (CGs), Desktop, Enterprise, and Data Grids, can be designed
[99,112]. For each type of grid, a set of various features can be defined and analyzed. We present multiple grid properties
that can be extracted from different grid classes to form the generic model of a grid system. A generic model could have
all or some of the following extracted properties.

2.3.1. System type
The large ultimate scale of a grid system requires an appropriate architectural model that allows efficient management of

geographically distributed resources over multiple administrative domains [7]. The system type can be categorized as com-
putational, data, and service grid, based on the focus of a grid. The computational grid can be categorized as high throughput
and distributed computing. The service grid can be categorized as on-demand, collaborative, and multimedia. In hierarchical
models the scheduling is a mixture of centralized and decentralized scheduling, having centralized scheduling at the top le-
vel and decentralized scheduling at the lower level. Therefore, we categorized our system type into three categories: (a) data,
(b) computational, and (c) service.

2.3.2. Scheduling organization
Scheduling organization refers to the way or mechanism that defines the way resources are being allocated. We have con-

sidered three main organizations of scheduling namely: (a) centralized, (b) decentralized, and (c) hierarchical. In the central-
ized model, a central authority has full knowledge of the system. The disadvantages of centralized model are limited
scalability, lack of fault tolerance, and difficulty in accommodating local multiple policies imposed by the resource owners.

Fig. 7. Taxonomy of resource allocation policies.

H. Hussain et al. / Parallel Computing 39 (2013) 709–736 719
Unlike centralized scheduling, the tasks are scheduled by multiple schedulers in decentralized scheduling. Moreover, a single
scheduler only maintains the information related to a sub-workflow. Therefore, the model naturally addresses issues, such as
fault-tolerance, scalability, site-autonomy, and multi-policy scheduling. The decentralized model is used for large scale
network sizes but the scheduling controllers need to coordinate with each other every time for smooth scheduling [136].
The coordination can be achieved through resource discovery or resource trading protocols. Finally, in the hierarchical
model, a central meta-scheduler (or meta-broker) interacts with local job dispatchers to define the optimal schedules.
The higher-level scheduler manages large sets of resources while the lower level job managers control a small set of re-
sources. The local schedulers have knowledge about resource clusters but cannot monitor the whole system. The advantage
of using hierarchical scheduling is the ability to incorporate scalability and fault-tolerance. Moreover, hierarchical schedul-
ing retains some of the advantages of the centralized scheme such as co-allocation (readers are encourage to see [134,135]
for more details).

2.3.3. Resource description
Grid resources are spread across the wide-area global network with different local resource allocation policies. The char-

acteristics should include specific parameters needed to express the resource, heterogeneity, structure, and availability in the
system. In the NWS project [9], the specification of availability of CPU, TCP Connection establishment time, end-to-end la-
tency, and available bandwidth are needed for resource description. Similarly, Cactus Worm needs an independent service
that is responsible for resource discovery and selection based on application-supplied criteria, using GRid Registration Pro-
tocol (GRRP) and GRid Information Protocol (GRIP) [10].

2.3.4. Resource allocation policies
A scheduling policy has to be defined for ordering of jobs and requests when any rescheduling is required. Different re-

source utilization policies are available for different systems due to different administrative domains. Fig. 7 represents the
taxonomy of resource allocation policies. Resource allocation polices are necessary for ordering the jobs and requests in all
types of grid models. In fixed resource allocation approach, the resource manager implements predefined policy.

Moreover, the fixed resource allocation approach is further classified into two categories namely, system oriented and
application oriented. System-oriented allocation policy focuses on maximizing the throughput of the system [63]. The
aim of application oriented allocation strategy is to optimize the specific scheduling attributes, such as time and cost (storage
capacity). Many examples of systems are available that use application oriented resource allocation policies, such as PUNCH
[54], WREN [65], and CONDOR [50]. The resource allocation strategy that allows external agents or entities to change the
scheduling policy is called an Extensible Scheduling Policy. The aforementioned can be implemented by using ad hoc exten-
sible schemes that defines an interface used by an agent for the modification of the scheduling policy [63].

2.3.5. Breadth of scope
The breadth of scope expresses the scalability and self-adaptation levels of the grid systems. If the system-or grid-enable

application is designed only for specific platform or application, then the breadth of scope is low. Systems that are highly
scalable and self-adaptive can be characterized as medium or high breadth of scope. Adopting the self-adaptive mechanisms
oriented towards specific type of applications can lead to poor performance of applications not covered by the mechanisms.
One example of a breadth of scope is a scheduler that reads applications as if there is no data dependency between the tasks,
but if an application has a task dependency, then the scheduler may perform poorly [106].

2.3.6. Triggering information
Triggering information refers to an aggregator service that collects information and check if the data against a set of con-

ditions defined in a configuration file are met [124]. If the conditions are met, then the specified action takes place. The

720 H. Hussain et al. / Parallel Computing 39 (2013) 709–736
service plays an important role in notifying certain actions to the administrator or controller whenever any service fails. One
example of the aforementioned action is to construct an email notification to the system administrator when the disk space
on a server reaches a certain threshold. Triggering information can be used by the schedulers while allocating resources.

2.3.7. System functionality
System functionality is an attribute used to define the core aspect of the system, such as Javelin is a system for Internet-

wide parallel computing based on Java.

2.3.8. Correlation of grid features and resource allocation
Grid systems are categorized into various types based on the characteristics of the resource, such as resource type and the

allocation policies [67]. The primary focus of computational grids is on processing capabilities. Computational grids are suit-
able for the execution of compute-intensive and high throughput applications that usually need more computing power by a
single resource [67]. Scheduling organization determines the priorities in the resource allocation process. In centralized sys-
tems, only single or multiple resources located in a single or multiple domains can be managed [99]. In decentralized sched-
uling model, the schedulers interact with each other to select resources appropriate for jobs execution. In case of conflicts
among resource providers on a global policy for resource management, the aforementioned system (centralized or decentral-
ized) can be difficult to implement as a grid system. The hierarchical system allows remote resource providers to enforce
local allocation policies [99]. Several policies are available for resource allocation. The fixed resource allocation policy is gen-
erally used for sequentially processed jobs. Extensible policies are used if the application priorities can be set using the exter-
nal agents.

2.4. Cloud computing systems: features and requirements

The cloud computing systems are difficult to model with resource contention (competing access to shared resources).
Many factors, such as the number of machines, types of application, and overall workload characteristics, can vary widely
and affect the performance of the system. A comprehensive study of the existing cloud technologies is performed in the fol-
lowing section based on a set of generic features in the cloud systems.

2.4.1. System focus
Each cloud system is designed to focus on certain aspects, such as Amazon Elastic Compute Cloud (EC2) is designed to

provide the best infrastructure for cloud computing systems with every possible feature available to the user [55]. Similarly,
GENI system [75], focuses on providing a virtual laboratory for exploring future internets in a cloud. Globus Nimbus [114],
focuses on extending and experimenting for the set of capabilities, such as resource as an infrastructure and ease of use.
Open Nebula [115], provides complete organization of data centers for on-premise Infrastructure as a Service (IaaS) cloud
infrastructure.

2.4.2. Services
Cloud computing is usually considered a next step from the grid-utility model [112]. However, the cloud system not only

realizes the service but also utilizes resource sharing. Cloud system guarantees the delivery of consistent services through
advanced data centers that are built on compute and storage virtualization technologies [72,112]. The type of services that
a system provides to a user is an important parameter to evaluate the system [11]. Cloud computing is all about providing
services to the users, either in the form of SaaS, PaaS, or IaaS. The cloud computing architecture can be categorized based on
the type of services they provide, such as Amazon EC2 provides computational services and storage services. However, the
Sun Network.com (Sun Grid) only provides computational services. Similarly, we can categorize Microsoft Live Mesh and
GRIDS Lab Aneka as infrastructure and software based cloud, respectively.

2.4.3. Virtualization
Cloud resources are modeled as virtual computational nodes connected through large-scale network conferring to the

specified topology. Peer-to-peer ring topology is a commonly used example for a cloud resource system and users commu-
nity organization [72]. Based on the virtualization, the cloud computing paradigm allows workloads to be deployed and
scaled-out quickly through the rapid provisioning of Virtual Machines (VMs) on physical machines. We evaluated a number
of systems based on the entities or the processes responsible for performing virtualization.

2.4.4. Dynamic QoS negotiation
Real-time middleware services must guarantee predictable performance under specified load and failure conditions

[105]. Provision of QoS attributes dynamically at run-time based on specific conditions is termed as Dynamic QoS negotia-
tion, such as renegotiable variable bit-rate [129]. Moreover, dynamic QoS negotiations ensure graceful degradation when the
aforementioned conditions are violated. QoS requirements may vary during the execution of the system workflow to allow
the best adaptation to customer expectations. Dynamic QoS negotiation in cloud systems are performed by either a dedi-
cated process or by an entity. Moreover, self-algorithms [105] can also be implemented to perform dynamic QoS negotiation.
In Eucalyptus group managers [71], the dynamic QoS operations are performed by the resource services. Dynamic QoS

H. Hussain et al. / Parallel Computing 39 (2013) 709–736 721
negotiation provides more flexibility to the cloud that can make a difference while selecting two different clouds, based on
the requirements of the user. That is the reason Dynamic QoS is used as a comparison attribute in the cloud.

2.4.5. User access interface
User access interface defines the communication protocol of the cloud system with general user. Access interfaces must

be equipped with the relevant tools necessary for better performance of the system. Moreover, the access interface can be
designed as a command line, query based, console based, or graphical form interface. Although the access interface is avail-
able in cluster and grid but in case of cloud, the access interface is important because if the interface provided to the user is
not user-friendly, then the user might not use the service. In another scenario, suppose two cloud service providers provides
same services but if one has a user-friendly interface and the second one does not, then user would definitely prefer the one
with a user-friendly interface. In such scenarios the access interface plays an important role and that is why it is used as a
comparison feature under cloud.

2.4.6. Web APIs
In cloud, the Website Application Programming Interface (Web API) is a web service dedicated for the combination of

multiple web services into new applications [11]. A set of Hypertext Transfer Protocol (HTTP) request messages and descrip-
tion of the schema of response messages in JavaScript Object Notation (JSON) or Extensible Markup Language (XML) format
makes a web API [11]. The ingredients of current Web APIs are Representational State Transfer (REST) style communication.
Earlier APIs were developed using Simple Object Access Protocol (SOAP) based services [11].

2.4.7. Value added services
Value added services are defined as additional services beyond the standard services provided by the system. Value added

services are available for a modest additional fee (or for free) as an attractive and low-cost alternative system support. More-
over, the purpose of value added services are to: (a) promote the cloud system, (b) attract the new service users, and (c) keep
the old service users intact. The services mentioned in SLA are standard services. Moreover, the services that are provided to
end-users to promote the standard services come under the category of value added services. Value added services are
important to promote the cloud and to provide an edge over competitors. If one cloud is only offering SLA based services
and other is offering SLA based service plus value added services too, then generally end-users will prefer the cloud that pro-
vides both of the services.

2.4.8. Implementation structure
Different programming languages and environments are used to implement a cloud system. The implementation package

can be monolithic and consists of a single specific programming language. The Google app engine is an example of a cloud
system that has been implemented in the Python Script Language. Another class is the high-level universal cloud systems,
such as Sun Network.com (Sun Grid) that can be implemented using Solaris OS and programming languages like Java, C, C++,
and FORTRAN. Implementation structure is an important aspect to compare amongst different clouds because if a cloud is
implemented in a language that is obsolete, then people will hesitate using such cloud.

2.4.9. VM migration
The VM technology has emerged as a building block of data centers, as it provides isolation, consolidation, and migration

of workload. The purpose of migrating VM is to seek improvement in performance, fault tolerance, and management of the
systems over the cloud. Moreover, in large scale systems the VM migration can also be used to balance the systems by
migrating the workload from overloaded or overheated systems to underutilized systems. Some hypervisors, such as
Vmware [89] and Xen, provides ‘‘live’’ migration, where the OS continues to run while the migration is performed. VM migra-
tion is an important aspect of the cloud towards achieving high performance and fault tolerance.

2.4.10. Pricing model in cloud
The pricing model implemented in the cloud is pay-as-you-go model, where the services are charged as per the QoS

requirements of the users. The resources in the cloud, such as network bandwidth and storage, are charged on a specific rate.
For example, the standard price for block storage on HP cloud is $0.10 per GB/mo [138]. The prices of the clouds may vary
depending on the types of services they provide.

2.4.11. Correlation of cloud features and resource allocation
The focus of the cloud system is an important factor for the selection of appropriate resources and services for the cloud

users. Some resources may require a specific type of infrastructure or platform. However, the cloud computing is more ser-
vice-oriented than resource-oriented [17]. The cloud users do not care much about the resources, but are more concerned
with the services being provided. Virtualization is used to hide the complexity of the underlying system and resources. User
satisfaction is one of the main concerns in provisioning cloud computing web services Dynamic QoS negotiations can only be
made if the resources are available.

722 H. Hussain et al. / Parallel Computing 39 (2013) 709–736
3. Mapping the hpc systems classification to various cluster, grid and cloud systems: comparison and survey of the
existing HPC solutions

In Table 1, a comparison of three HPC categories (cluster, grid, and cloud) is provided. We classify various HPC research
projects and commercial products according to the HPC systems classification that we have developed in Section 2. The list of
the systems discussed is not exhaustive but is representative of the classes. The projects in each category have been chosen
based on the factors specified for each HPC class that was reported in Sections 2.2–2.4.

3.1. Cluster computing system

A list of representative cluster projects and a brief summary is provided in Table 2. The systems discussed below are char-
acterized based on the generic cluster system features highlighted in Section 2.2.

HPC (Sec�on 3)

Cluster
(Sec�on 3.1)

Grid
(Sec�on 3.2)

Cloud
(Sec�on 3.3)

Enhance MOSIX

DQS

Gluster
Faucets

Tycoon
Cluster-on-demand

Ninf
GRACE

G-QoSM
Javelin
NWS
GHS
Stanford Peer Ini�a�ves

Grids Lab Aneka

Amazon EC2

GENI

Sun Network.com (Sun Grid)

Google App Engine
Eucalyptus

Microso� Live Mesh

E-Learning EcosystemKerrighed
Open SSI

PVM
CONDOR
REXEC

GNQS
LoadLeveler
LSF
SLURM
PBS

Libra
2K
AppLeS
Darwin
Cactus
Punch
Nimrod/G
NetSolve
MOL
Legion
Wren
Globus

OpenStack
3.1.1. Enhanced MOSIX
Enhanced Mosix (E-Mosix) is a tailored version of Mosix project [13], which was geared to achieve efficient resource uti-

lization amongst nodes on a distributed environment. Multiple processes are created by the users to run the applications.
Mosix will then discover the resources and will automatically migrate the processes among the nodes for performance
improvement without changing the run-time environment of the processes. E-Mosix uses cost-based policy for process
migration. The node in every cluster makes the resource allocation decisions independently. Different resources are collected
and the overall system performance measure is defined as a total cost of the resource utilization. E-Mosix supports parallel
job processing mode. Moreover, migration process is used to decrease the overall cost of job execution on different machines
in the cluster. Furthermore, a decentralized resource control is implemented and each cluster node in the system is supplied
with an autonomous resource assignment policy.

3.1.2. Gluster
Gluster defines a uniform computing and storage platform for developing applications inclined towards specific tasks,

such as storage, database clustering, and enterprise provisioning [14]. The distribution of the Gluster is independent and
has been tested on a number of distributions. Gluster is an open source and scalable platform whose distributed file system
(GlusterFS) is capable of scaling up to thousands of clients. Commodity servers are combined with Gluster and storage to
form a massive storage networks. Gluster System Provisioning (GlusterSP) and GlusterHPC are bundled cluster applications
associated with Gluster. The said system can be extended using Python scripts [14].

3.1.3. Faucets
Faucets [116] is designed for processing parallel applications and offers an internal adaptation framework for the parallel

applications based on adaptive Message Passing Interface (MPI) [16] and Charm++ [109] solutions. The number of

Table 2
Comparison of cluster computing systems.

System Job
processing
type

QoS attributes Job
composition

Resource
allocation
control

Platform
support

Evaluation
method

Process
migration

Enhanced
MOSIX
[12]

Parallel Cost Single task Decentralized Heterogeneous User-
centric

Yes

Gluster [14] Parallel Reliability (no point of failure) Parallel task Decentralized Heterogeneous N/A Yes
Faucets

[116]
Parallel Time, cost Parallel task Centralized Heterogeneous System-

centric
Yes

DQS [19] Batch CPU memory sizes, hardware
architecture and OS versions.

Parallel Task Decentralized Heterogeneous System-
centric

No

Tycoon [20] Sequential Time, cost Multiple task Decentralized Heterogeneous User-
centric

No

Cluster-on-
demand
[22]

Sequential Cost in terms of time Independent Decentralized Heterogeneous User-
centric

No

Kerrighed
[23,24]

Sequential Ease of use, high performance, high
availability, efficient resources
management, and high customizability of
the OS

Multiple task Decentralized Homogeneous System-
centric

Yes

OpenSSI
[25]

Parallel Availability, scalability and
manageability

Multiple task Centralized Heterogeneous System-
centric

Yes

Libra [26] Batch,
sequential

Time, cost Parallel Centralized Heterogeneous System-
centric,
User-
centric

Yes

PVM [28] Parallel,
concurrent

Cost Multiple task Centralized Heterogeneous User-
centric

Yes

Condor
[50,51]

Parallel Throughput, productivity of computing
environment

Multiple task Centralized Platform
support

System-
centric

Yes

REXEC [30] Parallel,
sequential

Cost Independent,
single task

Decentralized Homogeneous User-
centric

No

GNQS [31] Batch,
parallel

Computing power Parallel
processing

Centralized Heterogeneous System-
centric

No

LoadLeveler
[32]

Parallel Time, high availability Multiple task Centralized Heterogeneous System-
centric

Yes

LSF [90] Parallel,
Batch

Job submission simplification, setup time
reduction and operation errors

Multiple task Centralized Heterogeneous System-
centric

Yes

SLURM [91] Parallel Simplicity, scalability, portability and
fault tolerance

Multiple task Centralized Homogeneous System-
centric,
User-
centric

No

PBS [92] Batch Time, jobs queuing Multiple task Centralized Heterogeneous System-
centric

Yes

H. Hussain et al. / Parallel Computing 39 (2013) 709–736 723
applications executed on Faucets can vary [18]. The aforementioned process allows the utilization of all resources that are
currently available in the system. For each parallel task submitted to the system, the user has to specify the required soft-
ware environment, expected completion time, number of processors needed for the task completion, and budget limits. The
privileged scheduling criterion in Faucets is the completion time of a job. The total cost of the resource utilization calculated
for a particular user is specified based on the bids received from the resource providers. Faucets supports time-shared sched-
uling that simultaneously executes adaptive jobs based on dissimilar percentages of allocated processors. Faucets support
parallel job processing type. Moreover, the constraints about the requirements of any parallel task remain constant through-
out the task execution. Jobs are submitted to Faucets with a QoS requirement and subscribing clusters return bids. Moreover,
the best bid that meets all criteria is selected. Bartering is an important unit of Faucet that permits cluster maintainers to
exchange computational power with each other. Moreover, units are awarded when the bidding cluster successfully runs
an application. Users can later on trade the bartering units to use the resources on other subscribing clusters.
3.1.4. Distributed Queuing System (DQS)
DQS is used for scheduling background tasks to a number of workstations. The tasks are presented to the system as a

queue of applications. The queue of tasks is automatically organized by the DQS system based on the current resource status
[19]. Jobs in the queue are sorted on the priority of subsequent submission pattern, internal sub-priority, and the job iden-
tifier. The sub-priority is calculated each time the master node scans the queued jobs for scheduling. The calculations are
relative to each user and reflect the total number of jobs in the queue that are ahead of each job. The total number of jobs
includes any of the use jobs that are in ‘‘Running’’ state or in ‘‘Queued’’ state.

724 H. Hussain et al. / Parallel Computing 39 (2013) 709–736
3.1.5. Tycoon
Tycoon allocates cluster resources with different system performance factors, such as CPU cycles, memory, and band-

width [20,21]. Tycoon is based on the principle of proportional resource sharing. Moreover, the major advantage of Tycoon
is to differentiate the values of the jobs. Communication delay is a major factor for resource acquisition latency, and no pro-
cess of manual bidding is available in Tycoon. Manual bidding supports proficient use of different resources when no precise
bids are present at all. Tycoon is composed of four main components namely: (a) bank, (b) auctioneers, (c) location service,
and (d) agents. Tycoon uses two-tier architecture for the allocation of resources. Moreover, Tycoon differentiates between
allocation mechanism and user strategy. Allocation mechanism offers different means to seek user assessments for efficient
execution and user strategy captures high-level preferences that vary across number of users but are more application-
dependent. The division of allocation mechanism and user strategy permits requirements not to be restricted and dependent.

3.1.6. Cluster on demand
Cluster-on-demand allocates servers from a common pool to multiple partitions called virtual clusters, with indepen-

dently configured software environments [22]. The jobs executed in the system are implicitly single-task applications and
are ordered on the basis of arrival time. For each job submitted to the system, the user specifies a value function containing
a constant reduction factor for the required level of services needed by the user [22]. The value function remains static
throughout the execution once the agreement has been approved by the user. A cluster manager is responsible for schedul-
ing the tasks to resources from different administrative domains. The support of adaptive allocation of resource update is
available. Moreover, the support in cluster manager forces less costly dedicated jobs to wait for more costly new tasks that
may arrive later in the future. A deduction can be made from the aforementioned, that no hard constraints are supported
because many accepted jobs can take more time for the completion than anticipated. The cost measure of cluster-on-demand
is the cost of node configuration for a full wipe clean install. The cluster-on-demand uses a user-centric evaluation of cost
measure and the major cost factor is the type of hardware devices used.

3.1.7. Kerrighed
Kerrighed is a cluster system with a Linux kernel patch as a main module for controlling the whole system behavior

[23,24]. For fair load balancing of the cluster, schedulers use sockets, pipe, and char devices. Moreover, the use of devices
does not affect the cluster communication mechanisms due to seamless migration of the applications across the system.
Furthermore, the migration of single threaded and multi-threaded applications are supported in the process. The running
process at one node can be paused and restarted at another node. Kerrighed system provides a view of single Symmetric
Multi-Processing (SMP) machine.

3.1.8. Open Single System Image (OpenSSI)
OpenSSI is an open source uniform image clustering system. Moreover, the collection of computers to serve as a joint

large cluster [25] is also supported by OpenSSI. Contrary to Kerrighed, in OpenSSI, the number of resources that are available
may vary during the task execution. OpenSSI is based on Linux OS. The concept of bit variation process migration that is de-
rived from Mosix, is used in OpenSSI. Bit Variation dynamically balances the CPU load on the cluster by migrating different
threaded processes. The process management in OpenSSI is tough. A single process ID is assigned to each process on a cluster
and the inter process communication is handled cluster wide. The limitation of OpenSSI is the support of maximum 125
nodes per cluster.

3.1.9. Libra
Libra takes advantage of the number of jobs based on the system and user requirements [26]. Different resources are allo-

cated based on the budget and deadline constraints for each job. Libra communicates with the federal resource manager that
is responsible for collecting information of different resources presented in the cluster. In case of a mixed composition of
resources, estimated execution time is calculated on diverse worker nodes. Libra assigns different resources to executing jobs
based on the deadlines. A centralized accounting mechanism is used for resource utilization of current jobs, to periodically
relocate time partitions for each critical job and to meet the deadlines. Libra assumes that each submitted job is sequential
and is composed of a single task. Libra schedules tasks to internal working nodes available in the cluster [27]. Each internal
node has a task control component that relocates and reassigns processor time, and performs partitioning periodically based
on the actual execution and deadline of each active job. The system evaluation factors to assess overall system performance
are system-centric with average waiting and response time as the parameters. However, Libra performs better than tradi-
tional First Come First Serve (FCFS) scheduling approach for both user-centric and system-centric evaluation factors.

3.1.10. Parallel Virtual Machine (PVM)
PVM is a portable software package combining a heterogeneous collection of computers in a network to provide a view of

a single large parallel computer. The aim of using PVM is to aggregate memory and power of many computers to solve large
computational problems in a cost efficient way. To solve much larger problems, PVM accommodates existing computer hard-
ware with some minimal extra cost. A PVM user outside the cluster can view the cluster as a single terminal. All cluster de-
tails are hidden from the end user, irrespective of how cluster puts tasks on individual nodes. PVM is currently being used by

H. Hussain et al. / Parallel Computing 39 (2013) 709–736 725
a number of websites across the globe for solving medical, scientific, and industrial problems [28]. PVM is also employed as
an educational tool for teaching parallel programming courses.

3.1.11. Rexec
In REXEC, a resource sharing mechanism, the users struggle for shared resources in a cluster [30]. The computational load

of the resources is balanced according to the total allocation cost, such as credits per minute that users agreed to pay for
resource utilization. Multiple daemons select the best node to execute particular tasks that are the key components of
the decentralized resource management control system. Numbers of jobs are mapped to the distributed resources at the
same time intervals according to the time-shared scheduling rules. REXEC supports parallel and sequential job processing.
Users specify the cost restrictions that remains fixed after the task submission. The resource assignments already presented
in the system are reassigned, whenever a new task execution is being initialized or finished. REXEC uses an aggregate utility
function as a user-centric evaluation factor that represents the cost of all tasks on the cluster. The end-users are charged
based on the completion times of the tasks.

3.1.12. Generic Network Queuing System (GNQS)
GNQS is an open source batch processing system. The networks of computers or applications on a single machine are

scheduled through GNQS that does not allow tasks to be executed simultaneously [31]. GNQS is not a shareware application,
works in GNU OS, and is maintained by a large community across the Internet. ANSI-C language is required to compile the
code with root privileges to successfully run the GNQS on a single local computer.

3.1.13. Load Leveler
Load Leveler [32] is a parallel scheduling system developed by IBM that works by matching the processing needs of each

task and priorities of available resources. Number of end users can execute jobs in a limited time interval by using load
leveler. For high availability and workload management, the Load Leveler provides a single point of control. In a multi-user
production environment, the use of Load Leveler supports aggregate improvement in system performance as well as turn-
around time with equal distribution of the resources. In Load Leveler, every machine that contributes must run one or more
daemons [32].

3.1.14. Load Sharing Facility (LSF)
LSF [90] has a complete set of workload management abilities that manages workload in distributed, demanding, and crit-

ical HPC environments. LSF executes batch jobs. The set of workload management and intelligent scheduling features fully
utilize the computing resources. LSF schedules a complex workload and provides a highly available and scalable architecture.
Ref. [90], provides HPC components like HPC data center for managing workload and also provides vendor support.

3.1.15. Simple Linux Utility for Resource Management (SLURM)
SLURM [91] is an open source, scalable, and fault tolerant cluster management and job scheduling system. SLURM is used

in small and large Linux cluster environments. SLURM provides exclusive and non-exclusive access of computing resources
to users. Then, the execution and monitoring of the allocated computing resources are performed. Finally, the awaiting re-
quests are accomplished.

3.1.16. Portable Batch System (PBS)
PBS [92] provides job resource management in batch cluster environments. In HPC environments, PBS provides the jobs

information to the Moab, which is a job scheduler used in PBS. Moab decides the selection of jobs for execution. PBS selects
and dispatches jobs from the queue to cluster nodes for execution. PBS supports non-interactive batch jobs and interactive
batch jobs. The non-interactive jobs are more common. The essential execution commands and resource requests are created
in the form of a job script that is submitted for execution.

3.1.17. Condor (HTCondor)
A large collection of heterogeneous machines and networks are managed by Condor (recently renamed as HTCondor) high

throughput computing environment [50,51]. Condor shares and combines the idle computing resources. Condor reserves the
information of the originating machine specifications through remote system call capabilities. The remote system call tracks
the originated machines when the file system or scheme is not shared among the users. A Condor matchmaker is used to
determine the compatible resource request. The matchmaker triggers a query to the condor collector for resource informa-
tion stored for resource discovery.

3.2. Grid computing system

A diverse range of applications is employed in computational grids. Scientists and engineers rely on grid computing to
solve challenging problems in engineering, manufacturing, finance, risk analysis, data processing, and science [33]. Table 3
shows the representative grid systems that are analyzed according to the grid features specified in Section 2.3. All the values

Table 3
Comparison of grid computing systems.

System Sys type Scheduling
organization

Resource description Resource
allocation
policy

Breadth
of scope

Triggering
info

Sys
functionality

GRACE [33,34] Computational Not specified can
be
decentralized/ad-
hoc

CPU process power,
memory, storage
capacity and network
bandwidth

Fixed AOP High High Resources are allocated
on demand and supply

Ninf [35] Computational Decentralized No QoS, periodic push
dissemination,
centralized queries
discovery

Fixed AOP Medium Low A global computing
client–server based
system

G-QoSM
[37,38,119]

On-demand Requirements
matching

Processing power and
bandwidth

Fixed AOP High High SLA based resources are
allocated in the system

Javelin [40] Computational Decentralized Soft QoS, distributed
queries discovery, other
network directory store,
periodic push
dissemination

Fixed AOP Low Medium A system for Internet-
wide parallel computing
based on Java

NWS [47] Hierarchical Heuristics based
host capacity

End-to-end latency and
available bandwidth,
availability of CPU

N/A Low Low Used for short term
performance prediction

GHS[41] Hierarchical Heuristics based
on host capacity

Availability of CPU, TCP
connection
establishment time, end-
to-end latency

N/A Medium Medium Scalability and precision
in prediction at high
level than NWS [47]

Stanford peer
initiatives

Computational Hierarchical/
decentralized

CPU cycles, disk space,
network bandwidth

NA High Medium Distribution of main
costs of sharing data,
disk space for storing
files and bandwidth for
transfer

2 K [43,44] On-demand Hierarchical/
decentralized

Online dissemination,
Soft network QoS, agent
discovery

Fixed AOP High Medium Flexible and adaptable
distributed OS used for a
wide variety of platforms

AppLeS [48,36] High-
throughput

Hierarchical/
decentralized

Models for resources
provided by Globus,
Legion, or Netsolve

Fixed AOP Low Medium Produces scheduling
agents for computational
grids

Darwin [49] Multimedia Hierarchical/
decentralized

Hard QoS, graph
namespace

Fixed system
oriented
policy (SOP)

Low High Manages resources for
network services

Cactus Worm
[52]

On-demand Requirements
matching

N/A Fixed AOP High Medium When required
performance is not
achieved the system
allows applications to
adapt accordingly

PUNCH [54] Computational Hierarchical/
decentralized

Soft QoS, periodic push
dissemination,
distributed queries
discovery

Fixed AOP Medium Medium A middleware that
provides transparent
access to remote
programs and resources.

Nimrod/G
[56,57]

High-
throughput

Hierarchical/
decentralized

Relational network
directory data store, soft
QoS, distributed queries
discovery

Fixed AOP Medium Medium Provides brokering
services for task farming
application

NetSolve [60] Computational Decentralized Soft QoS, periodic push
dissemination,
distributed queries
discovery

Fixed AOP Medium Medium A network-enabled
application server for
solving computational
problems in distributed
environment

MOL [61] Computational Decentralized Distributed queries
discovery, periodic push
dissemination

Extensible ad
hoc
scheduling
policies (ASP)

Low Low Provide resource
management for
dynamic
communication, fault
management, and access
provision

Legion
[63,64](1999)

Computational Hierarchical/
decentralized

Soft QoS, periodic pull
dissemination,
distributed queries
discovery

Extensible
structured
scheduling
policy (SSP)

Medium Medium Provides an
infrastructure for grid
based on object meta
system

Wren [65] Grid No mechanism for
initial scheduling

NA Fixed AOP Low Low Provide active probing
with low overhead.

726 H. Hussain et al. / Parallel Computing 39 (2013) 709–736

Table 3 (continued)

System Sys type Scheduling
organization

Resource description Resource
allocation
policy

Breadth
of scope

Triggering
info

Sys
functionality

Globus [66] Hierarchical Decentralized Soft QoS, network
directory store,
distributed queries
discovery

Extensible
Ad-hoc
scheduling
policy (ASP)

High Medium Provides basic services
for modular deployment
of grids in Globus meta
computing Toolkit

H. Hussain et al. / Parallel Computing 39 (2013) 709–736 727
of the features are straight forward. For some features, we did a comparative study, such as breadth of scope or triggering
information and the values are high, medium, or low. No threshold value for the categorization is provided.

3.2.1. Grid Architecture for Computational Economy (GRACE)
GRACE is a generic infrastructure for the market-based grid approach that co-exists with other grid systems, such as Glo-

bus. The interactions of the grid users with the system are provided through grid resource broker (GRB). GRACE employs
Nimrod-G grid scheduler [33] responsible for: (a) resource discovery, (b) selection, (c) scheduling, and (d) allocation. The re-
source brokers fulfill the user demands by optimizing execution time of the jobs and user budget expenses, simultaneously
[33]. GRACE architecture allocates resources on supply and demand basis [34]. The resources monitored by GRACE are soft-
ware applications or hardware devices. GRACE enables the control of CPU power, memory, storage capacity, and network
bandwidth. The resources are allocated according to the fixed application-oriented policy.

3.2.2. Network infrastructure (Ninf)
Ninf [35] is an example of a computational grid that is based on a client–server infrastructure. Ninf clients are connected

with the servers through local area networks. The server machine and the client machines could be heterogeneous, and the
data to be communicated is translated into a mutual network data format [35]. The components of the Ninf system are client
interfaces, remote libraries, and a meta-server. Ninf applications invoke Ninf libraries and the request is forwarded to the
Ninf meta-server that maintains the Ninf servers directory. Ninf meta-server forwards the library request to the appropriate
server. Moreover, Ninf uses centralized resource discovery mechanism. The computational resources are registered with
meta-server through library services [36]. The scheduling mechanism in Ninf is decentralized and the server performs actual
scheduling of the client requests. Ninf uses a fixed application oriented policy, has a medium level breadth of scope, and pro-
vides no QoS. The triggering information in Ninf is low.

3.2.3. Grid-Quality of Services Management (G-QoSM)
G-QoSM [34,37,38] system works under an Open Grid Service Architecture (OGSA) [119]. G-QoSM provides resource and

service discovery support, based on QoS features. Moreover, guarantee of supporting QoS at application, network, and middle
grid level is also provided. G-QoSM provides three levels of QoS namely: (a) best effort, (b) controlled, and (c) guaranteed
levels. The resources are allocated on the basis of SLA between the users and providers. G-QoSM utilizes SLA mechanism,
so the triggering information as well as breadth of scope is high. The scheduling organization in G-QoSM can be centralized
or decentralized. However, the main focus of G-QoSM is managing the QoS. The resources focused by the G-QoS management
are the bandwidth and processing power. G-QoSM uses fixed application oriented policy for resource allocation.

3.2.4. Javelin
Javelin is a Java based infrastructure [40] that may be used as an Internet-wide parallel computing system. Javelin is com-

posed of three main components: (a) clients, (b) hosts, and (c) brokers. Hosts provide computational resources, clients seek
for computational resources and resource brokers support the allocation of the resources. In Javelin, hosts can be attached to
a broker, considering as a resource. Javelin uses hierarchical resource management [36]. If a client or host wants to connect
to Javelin, then a connection with Javelin broker has to be made that is agreed to support the client or host. The backbone of
Javelin is the Broker Name Service (BNS). The BNS is an information system that keeps the information about available bro-
kers [40]. Javelin has a decentralized scheduling organization with a fixed application oriented resource allocation policy.
The breadth of scope of Javelin is low and only supports Java based applications. The triggering information of Javelin is
medium.

3.2.5. Network weather service (NWS)
NWS [47] is a distributed prediction system for the network (and resources) dynamics. The prediction mechanism in NWS

is based on the adaptation strategies that analyze the previous system states. In NWS, system features and network perfor-
mance factors, such as bandwidth, CPU speed, TCP connection establishment time, and latency are considered as the main
criteria of resource description measurements [34]. System, such as NWS have been used successfully to choose between
replicated web pages [127] and to implement dynamic scheduling agents for meta-computing applications [125,126].

728 H. Hussain et al. / Parallel Computing 39 (2013) 709–736
Extensible system architecture, distributed fault-tolerant control algorithms, and adaptive programming techniques has
been illuminated by the implementation of the NWS to operate in a variety of meta-computing and distributed environ-
ments with changing performance characteristics. NWS uses host capacity based scheduling organization. Moreover, NWS
works well for short time processes in restricted area grid clusters. Therefore, the breadth of scope and triggering informa-
tion of NWS is low.

3.2.6. Grid harvest service (GHS)
The goal of GHS is to achieve high scalability and precision in a network [41]. The GHS system is comprised of five sub-

systems, namley: (a) task allocation module, (b) execution management system, (c) performance measurement, (d) perfor-
mance evaluation, and (e) task scheduling modules [42]. GHS enhances application performance by task re-scheduling and
utilizing two scheduling algorithms. First algorithm minimizes task execution time and the second algorithm is used to as-
sign the tasks to an individual resource. GHS, like NWS [47], uses host capacity based heuristics as scheduling organization.
The breadth of scope and the triggering information is of medium level in GHS [34].

3.2.7. Stanford Peers Initiative
Stanford Peers Initiative utilizes a peer-to-peer data trading framework to create a digital archiving system. Stanford

Peers Initiative uses a unique bid trading auction method that seeks bids from distant web services to replicate the collec-
tion. In response, each remote web service replies that reflect the amount of total disk storage space [29]. The local web ser-
vice selects the lowest bid for maximizing the benefits. Because the system focuses on preserving the data for the longest
possible period, the major system performance factor is the reliability. The reliability measure is a Mean Time To Failure cri-
terion (MTTF) for each local web service. Each web service tries to minimize the total cost of trading that is usually measured
in terms of disk space provided. For replicating data collection, a decentralized management control is implemented in the
system. The web service makes the decision to select the suitable remote services. Each web service is represented as an
independent system entity. The storage space remains fixed throughout, even if a remote service is selected.

3.2.8. 2k
2 K grid system provides distributed services for multiple flexible and adaptable platforms [43,44]. The supported plat-

form ranges from Personal Digital Assistants (PDAs) to large scale computers for the application processing. 2 K is a reflective
OS built on top of a reflective Object Request Broker (ORB), dynamicTAO [45], a dynamically configurable version of The Ace
ORB (TAO) [46]. The key features of 2 K are: (a) distribution, (b) user-centrism, (c) adaptation, and (d) architectural aware-
ness. 2 K is an example of an on-demand grid system that uses agents for resource discovery and mobile agents to perform
resource dissemination functionality [36]. 2 K uses decentralized and hierarchical scheduling organization and a fixed appli-
cation oriented resource allocation policy. In 2 K system, no mechanism for rescheduling is supported. The breadth of scope
of the 2 K system is high due to multiple range of platforms. Moreovoer, the triggering information is medium due to soft
QoS provisioning.

3.2.9. AppLeS
AppLeS is an application level grid scheduler that operates as an agent in a dynamic environment. AppLeS assists an appli-

cation developer by enhancing the scheduling activity. For each application, an individual AppLeS agent is designed for re-
source selection. Unlike the projects, such as Legion or Globus grid packages [48] that utilize resource management systems,
AppLeS agents are not utilized as resource management system. However, AppLeS is used for computational purposes. Ap-
pLeS provide templates that are used in structurally similar applications. AppLeS utilize hierarchical or decentralized sched-
ulers and a fixed application oriented policy for resource allocation [36]. The triggering information in AppLeS is medium and
the breadth of scope is low.

3.2.10. Darwin
Darwin is a grid resource management system that provides value-added network services electronically [49]. The main

features of the system are: (a) high level resource selection, (b) run-time resource management, (c) hierarchical scheduling,
and (d) low level resource allocation mechanisms [49]. Darwin utilizes hierarchical schedulers and online rescheduling
mechanisms. The resource allocation policy in Darwin is fixed system-oriented. To allocate resources globally in grid, The
system employs a request broker called Xena [49]. For resource allocation at higher level, Darwin uses a hierarchical fair ser-
vice curve scheduling algorithm (H-FSC). Darwin runs in routers and provides hard network QoS.

3.2.11. Cactus Worm
Cactus Worm [52] is an on-demand grid computing system. Cactus Worm supports an adaptive application structure and

can be characterized as an experimental framework that can handle dynamic resource features. Cactus supports dynamic
resource selection for resource interchange through migration. The migration mechanism is performed only when the
performance is not adequate [52]. Cactus Worm supports different architectures namely: (a) uni-processors, (b) clusters,
and (c) supercomputers [53]. The scheduling organization in Cactus Worm is based on requirements matching (Condor)
and uses a fixed-based application oriented policy (AOP) for resource allocation. The functionality of the Cactus Worm is

Table 4
Comparison of cloud computing systems.

System System focus Services Virtualization Dynamic
QoS
negotiation

User access
interface

Web APIs Value
added
services

Implementation
structure

Amazon elastic
compute
cloud (EC2)
(2006)

Infrastructure Compute,
storage
(Amazon
S3)

OS level
running on a
Xen
hypervisor

None EC2 command-
line tools

Yes Yes Customizable Linux-
based AMI

Eucalyptus
(2009)

Infrastructure Compute,
storage

Instance
manager

Group
managers
through
resource
services

EC2’s SOAP and
query
interfaces

Yes Yes Open source Linux-
based

Google App
Engine
(2008)

Platform Web
application

Application
container

None Web-based
administration
console

Yes No Python

GENI (2007) Virtual
laboratory

Compute Network
accessible
APIs

Clearing
house
based
resource
allocation

Slice federation
architecture 2.0

Network
accessible
APIs

Yes SFA (PlanetLab),
ProtoGENI and GCF

Microsoft Live
Mesh (2005)

Infrastructure Storage OS level None Web-based live
desktop and
any devices
with live mesh
installed

N/A No N/A

Sun
Network.com
(Sun Grid)
(2007)

Infrastructure Compute Job
management
system (Sun
Grid Engine)

None Job submission
scripts, sun
grid web portal

Yes Yes Solaris OS, Java, C, C++,
FORTRAN

E-learning
ecosystem
(2007)

Infrastructure Web
application

Infrastructure
layer

None Web-based
dynamic
interfaces

Yes Yes Programming models
available in ASP.Net for
front end and any
database like SQL,
Oracle at the Back end

GRIDS Lab Aneka
(2008)

Software
platform for
enterprise
clouds

Compute Resource
manager and
scheduler

SLA-based
resource
reservation
on Aneka
Side

Workbench,
web-based
portal

Yes No APIs supporting
different programming
models in C# and .Net
supported

OpenStack
(2011)

Software
platform

Compute,
storage,
web Image

Compute, web
image service

None REST interface Yes Yes N/A

H. Hussain et al. / Parallel Computing 39 (2013) 709–736 729
expressed in adaptation of the resource allocation policy if the required performance level is not achieved. Moreover, the
breadth of scope is high and triggering information is at the middle level in Cactus Worm.

3.2.12. Punch
Purdue University Network Computing Hub (PUNCH) is a network-based computing middleware testbed that provides

OS services in a distributed computing environment [54]. PUNCH is a multi-user and multi-process environment that allows:
(a) a transparent remote access to applications and resources, (b) access control, and (c) job control functionality. PUNCH
supports a virtual grid organization by fully decentralized and autonomous management of resources [110]. The key concept
is to design and implement a platform that provides independence between the applications and the computing infrastruc-
ture. PUNCH possesses hierarchical decentralized resource management and predictive machine learning methodologies for
mapping the jobs to resources. PUNCH uses: (a) an extensible schema model, (b) a hybrid namespace, (c) soft QoS, (d) dis-
tributed queries discovery, and (e) periodic push dissemination as resources. The resources are allocated according to the
fixed application oriented policy. The functionality of PUNCH systems is expressed in terms of flexible remote access to
the user and the computing infrastructure of the application. The breadth of scope and triggering information of PUNCH
are at the middle level.

3.2.13. Nimrod/G
Nimrod/G is designed to seamlessly execute large-scale parameter study simulations, such as parameter sweep applica-

tions, through a simple declarative language and GUI on computational Grids [56,57]. Nimrod/G is a grid resource broker for
managing and steering task farming applications and follows a computational market-based model for resource manage-
ment. Nimrod/G strives for low cost access to computational resources using GRACE services. Moreover, the user defined

730 H. Hussain et al. / Parallel Computing 39 (2013) 709–736
constraints cost is minimized using adaptive scheduling algorithms. Beside the parameter studies, Nimrod/G also provides
support for a single window to: (a) manage and control experiments, (b) discover resources, (c) trade resources, and (d) per-
form scheduling [58,66]. Nimrod/G uses a task performing engine that generates user defined scheduling policies. Nimrod
uses hierarchical decentralized scheduler and predictive pricing models as scheduling organizations. Moreover, Nimrod/G
uses resource descriptions, such as (a) relational network directory data store, (b) soft QoS, (c) distributed queries discovery,
and (d) periodic dissemination. Fixed application-oriented policy driven by user-defined requirements, such as deadline and
budget limitations are used in Nimrod/G for resource allocation. Active Sheets is an example of Nimrod/G used to execute
Microsoft Excel computations/cells on the Grid [59].
3.2.14. NetSolve
NetSolve [60] is an application server based on a client–agent–server environment. NetSolve integrates distributed re-

sources to a desktop application. NetSolve resources include hardware, software, and computational software packages.
TCP/IP sockets are used for the interaction among the user, agents, and servers. The server can be implemented in any sci-
entific package. Moreover, the clients can be implemented in C, FORTRAN, MATLAB, or web pages. The agents are responsible
for locating the best possible resources available in the network. Once the resource is selected, the agents execute the client
request and return the answers back to the user. NetSolve is a computational grid with a decentralized scheduler. NetSolve
uses soft QoS, distributed queries discovery and periodic push dissemination for the resource description. Moreover, a fixed
application oriented policy is used for resource allocation. Breadth of scope and triggering information of NetSolve is med-
ium as scalability is limited to certain applications.
3.2.15. Meta Computing Online (MOL)
MOL system consists of a kernel as the core component of system and provides the basic infrastructure for interconnected

resources, users, and third party meta-computer components [61]. MOL supports dynamic communications, fault manage-
ment, and access provisions. The key aspects of MOL kernel are reliability and flexibility. Moreover, MOL is the first meta-
computer infrastructure that does not reveal a single point of failure [62]. MOL has a decentralized scheduler and uses: (a)
hierarchical namespace, (b) object model store, and (c) distributed queries discovery as resource description. MOL uses
extensible ad hoc scheduling policies for resource allocation. No QoS support is available, so the triggering information
and breath of scope are low.
3.2.16. Legion
Legion is a software infrastructure that aims to connect multiple hosts ranging from PCs to massive parallel computers

[63]. The most important features that motivate the use of legion include: (a) site autonomy, (b) support for heterogeneity,
(c) usability, (d) parallel processing to achieve high system performance, (e) extensibility, (f) fault tolerance, (g) scalability,
(h) security, (i) multi-language implementation support, and (j) global naming [64]. Legion appears as a vertical system and
follows a hierarchical scheduling model. Legion uses distributed queries for resource discovery and periodic pull for dissem-
ination. Moreover, Legion uses extensible structured scheduling policy for resource allocation. One of the main objectives of
the Legion is the system scalability and high performance. The breadth of scope and triggering information are high in
Legion.
3.2.17. Wren
Wren is a topology-based steering approach for providing network measurement [65]. The network ranges from clusters

to WANs and uses information about the possible bottlenecks that may occur in the networks from topologies. The informa-
tion is useful in steering the measurement techniques to calculate the channels where the bottlenecks may occur. Passive
and active measurement systems are combined by Wren to minimize the measurement load [65]. Topology-based steering
is used to achieve the load measurement task. Moreover, no mechanism for initial scheduling is available and a fixed appli-
cation policy is used for resource allocation. Furthermore, Wren has limited scalability that results in low breadth of scope.
No QoS attributes are considered in WREN and, the triggering information is also low.
3.2.18. Globus
The Globus system achieves a vertically integrated treatment of applications, networks, and middleware [66]. The low

level toolkit performs: (a) communication, (b) authentication, and (c) access. Meta computing systems has the problem of
configuration and performance optimization.
3.3. Cloud computing systems

Numerous cloud approaches tackle complex resource provisioning and programming problems for the users with differ-
ent priorities and requirements. Eight examples of cloud computing solutions are summarized and characterized under the
key system features in Table 4.

Table 5
Classification of grid, cloud and cluster systems into software and hybrid/hardware approaches.

Software only systems Hybrid and hardware only systems

Cluster systems
OpenMosix, Kerrighed, Gluster, Cluster-On-Demand, Enhanced MOSIX, Libra,

Faucets, Nimrod/G, Tycoon, DQS, PVM, LoadLeveler, SLURM, PBS, LSF, GNQS
OpenSSI

Grid systems
G-QoSM, 2 K, Bond, Globus, Javelin, Legion, Netsolve, Nimrod/G, Ninja, PUNCH, MOL,

AppLeS, Condor, Workflow Based Approach, Grid Harvest Service, Cactus Worm,
Network Weather Service

GRACE, Ninf

Cloud systems
OpenStack, Eucalyptus Amazon EC2, Sun Grid, Google App Engine, GRIDS Lab Aneka,

Microsoft Live Mesh, GENI, E-learning ecosystem

H. Hussain et al. / Parallel Computing 39 (2013) 709–736 731
3.3.1. Amazon Elastic Compute Cloud (EC2)
EC2 [117] is a virtual computing environment that enables a user to use web service interfaces to launch instances with a

variety of operating systems. EC2 provides a rental service of VM on the Internet [68]. Amazon’s EC2 service has become a
standard-bearer for IaaS providers and provides many different service levels to the users [69]. Depending on the individual
user choices, a new ‘Machine Image’ based on: (a) application types, (b) structures, (c) libraries, (d) data, and (e) associated
configuration settings can be specified. The user can also choose the available Amazon Machine Images (AMIs) in the net-
work and upload AMI to Simple Storage Service (S3). The machine can reload in a shorter period of time, for performing flex-
ible system operations. Moreover, the whole system load time increases significantly. Virtualization is achieved by running
the machines on Xen [70] at OS level. The users interact with the system through EC2 Command-line tools. EC2 is built
through customizable Linux-based AMI environment.

3.3.2. Eucalyptus
Eucalyptus [71] is a Linux-based open source software framework dedicated for cloud computing. Eucalyptus allows the

users to execute and control the entire VM instances deployed across a variety of physical resources. Eucalyptus is composed
of a Node Controller (NC) that controls the: (a) execution, (b) inspection, and (c) termination of VM instances on the hosts
running Cluster Controller (CC) [72]. CC gathers information about VM and schedules VM execution on specific NCs. More-
over, CC manages virtual instance networks. A Storage Controller (SC) called ‘‘Walrus’’, a storage service, provides a mech-
anism for storing and accessing VM images and user data [72]. Cloud Controller is the web service entry point for users and
administrators that make high level scheduling decisions. Eucalyptus high-level system components are implemented as
web services in a system [72]. Instance manager is responsible for virtualization in Eucalyptus. Moreover, EC2’s SOAP and
Query interfaces provide the system access to the user. Dynamic QoS negotiation is performed in Eucalyptus by Group Man-
agers, who collect information through resource services.

3.3.3. Google Application Engine (GAE)
GAE [73] is a freeware platform designed for the execution of web applications. The applications are managed through a

web-based administration console [74]. GAE is implemented using Java and Python. GAE provide users with a facility of
authorization and authentication as a web service that lifts burden from the developers. Other than supporting Python stan-
dard library and Java, GAE also supports APIs for (a) Datastore, (b) Google accounts, (c) URL fetch, (d) image manipulation,
and (e) Email services.

3.3.4. Global Environment for Network Innovations (GENI)
GENI provides a mutual and grouping environment for academia, industry, and public to catalyze revolutionary discov-

eries and innovation in the emerging field of global networks [75]. The project is sponsored by the National Science Foun-
dation and is open source and broadly inclusive. GENI is a ‘‘virtual laboratory’’ for exploring future internets at scale [76]. The
virtualization is achieved through network accessible APIs. GENI creates major opportunities to: (a) understand, (b) innovate,
(c) transform global networks, and (d) interactions with society. GENI enables researchers to play with different network
structures by running experimental systems within private isolated slices of a shared test bed [76]. The user can interact
with the GENI interface through Slice Federation Architecture 2.0 [128]. Dynamic QoS Negotiation is also incorporated
through clearing house based resource allocation. GENI can be implemented in: (a) SFA (PlanetLab), (b) ProtoGENI, and
(c) GCF based environment.

3.3.5. Microsoft Live Mesh
Microsoft Live Mesh aims to provide remote access to applications and data that are stored online. The user can access the

uploaded applications and data through web-based live desktop or Live Mesh software [111]. The Live Mesh software uses
Windows Live Login for password-protection and is authenticated when all file transfers are protected using Secure Socket

732 H. Hussain et al. / Parallel Computing 39 (2013) 709–736
Layers (SSLs) [111]. The concept of virtualization is implemented at the OS level. Any machine having live mesh installed can
access Microsoft Live Mesh or Web-based Live Desktop.

3.3.6. Sun Network.Com (Sun Grid)
Sun Grid [78,79] is used to execute Java, C, C++, and FORTRAN based applications on the cloud. For running an application

on Sun Grid, the user has to follow a certain sequence of steps. First, the user has to build and debug the applications and
scripts at a local development environment. The environment configuration must be similar to that on the Sun Grid [79].
Secondly, a bundled zip archive (containing all the related scripts, libraries, executable binaries, and input data) must be cre-
ated and then uploaded to Sun Grid. The virtualization is achieved through a job management system commonly termed as
Sun Grid Engine. Lastly, the Sun Grid web portal or API can be used to execute and monitor the application. After the com-
pletion of application execution, the results can be downloaded to the local development environment for viewing [78,79].

3.3.7. E-learning ecosystem
E-learning ecosystem is a cloud computing based infrastructure used for the specification of all components needed for

the implementation of e-learning solutions [80–82]. A fully developed e-learning ecosystem may include: (a) web-based
portal, (b) access learning program, and (c) personal career aspirations. The purpose is to facilitate the users or employees
to: (a) check the benefits, (b) make changes to medical plans, and (c) learn competencies that tie to the business objectives
[81]. The focus of an e-learning ecosystem is to provide an infrastructure that applies business discipline to manage the
learning assets and activity of the entire enterprise. The virtualization is implemented at the infrastructure layer [82].
Web based dynamic interfaces are used to interact with the users. Moreover, some value added services are also provided
on demand to exclusive users.

3.3.8. Grids Lab Aneka
GRIDS Lab Aneka [83] is a service oriented architecture used in enterprise grids. The aim of Aneka is to provide a devel-

opment of dynamic communication protocols that may change the preferred selection at any time. Grids Lab Aneka supports
multiple application models, persistence, and security solutions [83,84]. Virtualization is an integral part and is achieved in
Aneka through the resource manager and scheduler. The dynamic QoS negotiation mechanism is specified based on the SLA
resource requirements. Moreover, Aneka addresses deadline (maximum time period that application needs to be completed
in) and budget (maximum cost that the user is willing to pay for meeting the deadline) constraints. The user access is pro-
vided by using a workbench or a web-based portal along with value added services.

3.3.9. OpenStack
OpenStack is a large-scale open source software maintained by the collaboration of programmers for producing an open

standard operating system that runs clouds for virtual computing or storage for both public and private clouds. OpenStack is
composed of three software projects: (a) OpenStack Compute, (b) OpenStack Object Storage, and (c) OpenStack Image Service
[113]. OpenStack Compute produces a redundant and scalable cloud computing platform by provisioning and managing
large networks of VM. OpenStack Object Storage is a long-term storage system that stores multi petabytes of accessible data.
OpenStack Image Service is a standard REST interface for querying information about virtual disk images. OpenStack is an
open industry standard with massively scalable public cloud. Moreover, OpenStack avoids proprietary vendor lock-in by sup-
porting all available Hypervisors abide by Apache 2.0 licensing.

4. Classification of systems

The classification of computing models (cluster, grid, and cloud) under (a) software only and (b) hardware or hybrid only
systems, is discussed in the following section and is shown in Table 5. The software only classification is composed of tools,
mechanisms, and policies. The hardware and hybrid classification is comprised of infrastructures or hardware oriented solu-
tions. Any change in the hardware design and OS extensions is done by the manufacturers. The hardware and OS support can
be cost prohibitive to the end-users. However, programming in the case of the addition of new hardware and software can
result in more time and computational cost used. Moreover, the programming can become a big burden to end-users. The
cost to change hardware and software at the user level is the least amongst all the costs associated with the system.

4.1. Software only solutions

The software only solutions are the projects that are distributed as software products, components of a software package,
or as a middleware. The controlling mechanism or job schedulers are the features that are important in software only solu-
tions. As an example of such systems, DQS and GNQS cluster queuing systems can be considered. Moreover, the crucial com-
ponent is the queue management module. The other examples include OSCAR and CONDOR grid software packages. For
many grid approaches, the middleware layer is a crucial layer [58]. In fact, for research purposes, the grid system can be re-
duced just to software only layer. Therefore, most of the grid systems presented in Table 5 is categorized as the pure software
solutions.

H. Hussain et al. / Parallel Computing 39 (2013) 709–736 733
4.2. Hardware/hybrid only solutions

Hardware/hybrid class of HPC systems is usually referred to as the multi-level cloud systems. Because the clouds are used
for business purposes, strict integration of the service software application is needed with the physical devices. Moreover,
the intelligent software packages are specially designed and dedicated.

5. Conclusions

The survey provides a detailed comparison and description of the three broad categories of HPC systems namely cluster,
grid, and cloud. The said categories have been investigated and analyzed in terms of resource allocation. Moreover, the well-
known projects and applications from each category are briefly discussed and highlighted. Furthermore, the aforementioned
projects are compared on the basis of selected common features belonging to the same category. For each category, more
specific characteristics are discussed. The features list can be expanded further for cluster, grid, and cloud. However, because
the scope of the paper was on resource allocation only, the selected characteristics allow more clear distinctions at each level
of the classification. The survey will help the readers analyze the gap between what is already available in existing systems
and what is still required, so that outstanding research issues can be identified. Moreover, the features of cluster, grid, and
cloud are closely related to each other and the survey will help to understand the differences. Furthermore, the systems of
each category have been classified under software only and hybrid or hardware only. The hardware and OS support could be
cost prohibitive to end-users. However, programming level is a big burden to end-users. Amongst the three HPC categories,
grid and cloud computing appears promising and a lot of research has been conducted in each category. The focus of future
HPC systems is to reduce the operational cost of data centers and increase the resilience to failure, adaptability, and graceful
recovery. This survey can help new researchers to address the open areas in the research. Moreover, the survey provides the
basic information along with the description of the projects in the broad domain of cluster, grid, and cloud.

Acknowledgments

The authors are thankful to Kashif Bilal and Osman Khalid for the valuable reviews, suggestions, and comments.

References

[1] G. Andrews, Foundations of Multithreaded, Parallel, and Distributed Programming, Addison–Wesley, Boston, MA, USA, 2000.
[2] Y. Amir, B. Awerbuch, A. Barak, R. Borgstrom, A. Keren, An opportunity cost approach for job assignment in a scalable computing cluster, IEEE

Transactions on Parallel and Distributed Systems 11 (7) (2000) 760–768.
[3] C. Yeo, R. Buyya, A taxonomy of market-based resource management systems for utility-driven cluster computing, Software: Practice and Experience

36 (13) (2006) 1381–1419.
[4] D. Irwin, L. Grit, J. Chas, Balancing risk and reward in a market-based task service, in: 13th International Symposium on High Performance, Distributed

Computing (HPDC13), June 2004, pp. 160–169.
[5] C. Yeo, R. Buyya, Service level agreement based allocation of cluster resources: handling penalty to enhance utility, in: 7th IEEE International

Conference on Cluster Computing (Cluster 2005), September 2005.
[6] J. Sherwani, N. Ali, N. Lotia, Z. Hayat, R. Buyya, Libra: a computational economy-based job scheduling system for clusters, Software: Practice and

Experience 34 (6) (2004) 573–590.
[7] T. Casavant, J. Kuhl, A taxonomy of scheduling in general-purpose distributed computing systems, IEEE Transactions on Software Engineering 14 (2)

(1988) 141–154.
[8] J. Regeh, J. Stankovic, M. Humphrey, The case for hierarchical schedulers with performance guarantees, TR-CS 2000-07, Department of Computer

Science, University of Virginia, March 2000, p. 9.
[9] R. Wolski, N. Spring, J. Hayes, Predicting the CPU availability of time-shared Unix systems on the computational grid, in: Proceedings of the 8th High-

Performance Distributed Computing Conference, August 1999.
[10] E. Huedo, R. Montero, I. Llorente, A framework for adaptive execution in grids, Software-Practice and Experience 34 (07) (2004) 631–651.
[11] D. Benslimane, D. Schahram, S. Amit, Services Mashups: the new generation of web applications, IEEE Internet Computing 12 (5) (2008) 13–15.
[12] C. Diaz, M. Guzek, J. Pecero, P. Bouvry, S. Khan, Scalable and energy-efficient scheduling techniques for large-scale systems, in: 11th IEEE International

Conference on Computer and Information Technology (CIT), September 2011, pp. 641–647.
[13] A. Barak, O. La’adan, The MOSIX multicomputer operating system for high performance cluster computing, Future Generation Computer Systems 13

(4–5) (March 1998) 361–372.
[14] Gluster, www.gluster.org, accessed February 16, 2012.
[15] P. Lindberg, J. Leingang, D. Lysaker, K. Bilal, S. U. Khan, P. Bouvry, N. Ghani, N. Min-Allah, J. Li, Comparison and analysis of greedy energy-efficient

scheduling algorithms for computational grids, in: A. Y. Zomaya, Y.-C. Lee (Eds.), Energy Aware Distributed Computing Systems, John Wiley & Sons,
Hoboken, NJ, USA, 2012, ISBN 978-0-470-90875-4, Chapter 7.

[16] M. Bhandarkar, L. Kal’e, E. Sturler, J. Hoeflinger, Adaptive load balancing for MPI programs, Lecture Notes in Computer Science (LNCS) 2074 (2001)
108–117.

[17] G. L. Valentini, S. U. Khan, P. Bouvry, Energy-efficient resource utilization in cloud computing, in: A. Y. Zomaya, H. Sarbazi-Azad (Eds.), Large Scale
Network-centric Computing Systems, John Wiley & Sons, Hoboken, NJ, USA, 2013, ISBN: 978-0-470-93688-7, Chapter 16.

[18] L. Kal’e, S. Kumar, J. DeSouza, A malleable-job system for timeshared parallel machines, in: 2nd International Symposium on Cluster Computing and
the Grid (CCGrid 2002), May 2002, pp. 215–222.

[19] DQS, http://www.msi.umn.edu/sdvl/info/dqs/dqs-intro.html, accessed March 20, 2011.
[20] K. Lai, L. Rasmusson, E. Adar, L. Zhang, B. Huberman, Tycoon: an implementation of a distributed, market-based resource allocation system,

Multiagent Grid System 1 (3) (2005) 169–182.
[21] A. Bernardo, H. Lai, L. Fine, Tycoon: a distributed market-based resource allocation system, TR-arXiv:cs.DC/0404013, HP Labs, Palo Alto, CA, USA,

February 2008, p. 8.
[22] J. Chase, D. Irwin, L. Grit, J. Moore, S. Sprenkle, Dynamic virtual clusters in a grid site manager, in: 12th International Symposium on High Performance,

Distributed Computing (HPDC12), June 2003, pp. 90–100.

http://refhub.elsevier.com/S0167-8191(13)00121-X/h0005
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0005
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0010
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0010
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0015
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0015
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0020
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0020
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0025
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0025
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0030
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0035
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0040
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0040
http://www.gluster.org
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0045
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0045
http://www.msi.umn.edu/sdvl/info/dqs/dqs-intro.html
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0050
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0050

734 H. Hussain et al. / Parallel Computing 39 (2013) 709–736
[23] C. Morin, R. Lottiaux, G. Vallee, P. Gallard, G. Utard, R. Badrinath, L. Rilling, Kerrighed: a single system image cluster operating system for high
performance computing, in: Proceedings of Europar 2003 Parallel Processing, Lecture Notes in Computer Science, vol. 2790, August 2003, pp. 1291–
1294.

[24] Kerrighed, http://kerrighed.org/wiki/index.php/Main_Page, accessed March 15, 2011.
[25] OpenSSI, http://openssi.org/cgi-bin/view?page=openssi.html, accessed March 12, 2011.
[26] J. Sherwani, N. Ali, N. Lotia, Z. Hayat, R. Buyya, Libra: a computational economy based job scheduling system for clusters, International Journal of

Software: Practice and Experience 34 (06) (2004) 573–590.
[27] C. Yeo, R. Buyya, Pricing for utility-driven resource management and allocation in clusters, International Journal of High Performance Computing

Applications 21 (4) (2007) 405–418.
[28] P. Springer, PVM support for clusters, in: 3rd IEEE International Conference on, Cluster Computing (CLUSTER’01), October 2001.
[29] B. Cooper, H. Garcia-Molina, Bidding for storage space in a peer-to-peer data preservation system, in: 22nd International Conference on Distributed

Computing Systems (ICDCS 2002), July 2002, pp. 372–381.
[30] B. Chun, D. Culler, Market-based proportional resource sharing for clusters, TR-CSD-1092, Computer Science Division, University of California,

Berkeley, USA, January 2000, p. 19.
[31] GNQS, http://gnqs.sourceforge.net/docs/starter_pack/introducing/index.html, accessed January 20, 2011.
[32] Workload management with load leveler, http://www.redbooks.ibm.com/abstracts/sg246038.html, accessed February 10, 2011.
[33] R. Buyya, D. Abramson, J. Giddy, A case for economy grid architecture for service oriented grid computing, in: 15th International Parallel and

Distributed Processing Symposium, April 2001, pp. 776–790.
[34] D. Batista, N. Fonseca, A brief survey on resource allocation in service oriented grids, in: IEEE Globecom Workshops, November 2007, pp. 1–5.
[35] H. Nakada, M. Sato, S. Sekiguchi, Design and implementation of Ninf: towards a global computing infrastructure, Future Generation Computing

Systems 15 (5–6) (1999) 649–658 (Meta-computing Special Issue).
[36] K. Krauter, R. Buyya, M. Maheswaran, A taxonomy and survey of grid resource management systems for distributed computing, Journal of Software

Practice and Experience 32 (2) (2002) 135–164, http://dx.doi.org/10.1002/spe.432.
[37] R. Al-Ali, A. Hafid, O. Rana, D. Walker, QoS adaptation in service-oriented grids, Performance Evaluation 64 (7–8) (2007) 646–663.
[38] R. Al-Ali, O. Rana, D. Walker, S. Jha, S. Sohail, G-QoSM: grid service discovery using QoS properties, Computing and Informatics Journal 21 (4) (2002)

363–382 (Special Issue on Grid Computing).
[39] F. Pinel, J. Pecero, S. Khan, P. Bouvry, A review on task performance prediction in multi-core based systems, in: 11th IEEE International Conference on

Computer and Information Technology (CIT), September 2011, pp. 615–620.
[40] M. Neary, A. Phipps, S. Richman, P. Cappello, Javelin 2.0: Java-based parallel computing on the internet, in: European Parallel Computing Conference

(Euro-Par 2000), August 2000, pp. 1231–1238.
[41] X. Sun, M. Wu, GHS: a performance system of grid computing, in: 19th IEEE International Parallel and Distributed Processing Symposium, April 2005.
[42] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, K. Kennedy, Task scheduling strategies for workflow-based applications in grids, in: IEEE

International Symposium on Cluster Computing and Grids (CCGRID’05), vol. 2, May 2005, pp. 759–767.
[43] D. Carvalho, F. Kon, F. Ballesteros, M. Romn, R. Campbell, D. Mickunas, Management of execution environments in 2K, in: 7th International Conference

on Parallel and Distributed Systems (ICPADS ’00), July 2000, pp. 479–485.
[44] F. Kon, R. Campbell, M. Mickunas, K. Nahrstedt, 2K: a distributed operation system for dynamic heterogeneous environments, in: 9th IEEE

International Symposium on High Performance Distributed Computing (HPDC ’00), August 2000, pp. 201–210.
[45] M. Roman, F. Kon, R. H. Campbell, Design and implementation of runtime reflection in communication middleware the dynamic use case, in:

Workshop on Middleware (ICDCS’99), May 1999.
[46] D. Schmidt, Distributed object computing with CORBA Middleware, http://www.cs.wustl.edu/~schmidt/corba.html, accessed February 4, 2011.
[47] R. Wolski, N. Spring, J. Hayes, The network weather service: a distributed resource performance forecasting service for metacomputing, Future

Generation Computer Systems 15 (5) (1999) 757–768.
[48] F. Berman, R. Wolski, The AppLeS project: a status report, in: 8th NEC Research Symposium, May 1997.
[49] P. Chandra, A. Fisher, C. Kosak, Ng. TSE, P. Steenkiste, E. Takahashi, H. Zhang, Darwin: customizable resource management for value-added network

services, in: 6th IEEE International Conference on Network Protocols, October 1998.
[50] M. Litzkow, M. Livny, M. Mutka, Condor – a hunter of idle workstations, in: 8th International Conference of Distributed Computing Systems, June

1988, pp. 104–111.
[51] J. Basney, M. Livny, Deploying a high throughput computing cluster, in: R. Buyya (Ed.), High Performance Cluster Computing, vol. 1, Prentice Hall,

1999, pp. 116–134.
[52] G. Allen, D. Angulo, I. Foster, G. Lanfermann, C. Liu, T. Radke, E. Seidel, J. Shalf, The cactus worm: experiments with dynamic resource discovery and

allocation in a grid environment, International Journal of High Performance Computing Applications 15 (4) (2001) 345–358.
[53] F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, D. Gannon, L. Johnsson, K. Kennedy, C. Kesselman, J. Mellor-Crummey, D. Reed, L. Torczon, R.

Wolski, The GrADS project: software support for high-level grid application development, International Journal of Supercomputer Applications 15
(04) (2001) 327–344.

[54] N. Kapadia, J. Fortes, PUNCH: an architecture for web-enabled wide-area network-computing, The Journal of Networks, Software Tools and
Applications 2 (2) (1999) 153–164 (Special Issue on High Performance Distributed Computing).

[55] L. Wang, S.U. Khan, Review of performance metrics for green data centers: a taxonomy study, Journal of Supercomputing 63 (3) (2013) 639–656.
[56] D. Abramson, J. Giddy, L. Kotler, High performance parametric modeling with Nimrod/G: killer application for the global grid?, in: International

Parallel and Distributed Processing Symposium (IPDPS 2000), May 2000, pp. 520–528.
[57] R. Buyya, D. Abramson, J. Giddy, Nimrod/G: an architecture for a resource management and scheduling system in a global computational grid, in:

International Conference on High Performance Computing in Asia–Pacific Region (HPC Asia 2000), vol. 1, May 2000, pp. 283–289.
[58] R. Buyya, J. Giddy, D. Abramson, An evaluation of economy-based resource trading and scheduling on computational power grids for parameter sweep

applications, in: 2nd International Workshop on Active Middleware Services (AMS’00), August 2000.
[59] L. Kotler, D. Abramson, P. Roe, D. Mather, Activesheets: super-computing with spreadsheets, in: Advanced Simulation Technologies Conference High

Performance Computing, Symposium (HPC’01), April 2001. .
[60] H. Casanova, J. Dongarra, Netsolve: a network-enabled server for solving computational science problems, International Journal of Supercomputer

Applications and High Performance Computing 11 (3) (1997) 212–223.
[61] J. Gehring, A. Streit, Robust resource management for metacomputers, in: 9th IEEE International Symposium on High Performance Distributed

Computing, August 2000.
[62] I. Foster, C. Kesselman, Globus: a metacomputing infrastructure toolkit, International Journal of Supercomputer Applications 11 (2) (1996) 115–128.
[63] S. Chapin, J. Karpovich, A. Grimshaw, The legion resource management system, in: 5th Workshop on Job Scheduling Strategies for Parallel Processing,

April 1999, pp. 162–178.
[64] S. Andrew, W. Wulf, The legion vision of a worldwide virtual computer, Communications of ACM 40 (1) (1997) 39–45.
[65] B. Lowekamp, Combining active and passive network measurements to build scalable monitoring systems on the grid, ACM SIGMETRICS Performance

Evaluation Review 30 (4) (2003) 19–26.
[66] G. Valentini, W. Lassonde, S. Khan, N. Min-Allah, S. Madani, J. Li, L. Zhang, L. Wang, N. Ghani, J. Kolodziej, H. Li, A. Zomaya, C. Xu, P. Balaji, A. Vishnu, F.

Pinel, J. Pecero, D. Kliazovich, P. Bouvry, An overview of energy efficiency techniques in cluster computing systems, Cluster Computing 16 (1) (2011)
1–13, http://dx.doi.org/10.1007/s10586-011-0171-x.

http://kerrighed.org/wiki/index.php/Main_Page
http://openssi.org/cgi-bin/view?page=openssi.html
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0055
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0055
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0060
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0060
http://gnqs.sourceforge.net/docs/starter_pack/introducing/index.html
http://www.redbooks.ibm.com/abstracts/sg246038.html
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0065
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0065
http://dx.doi.org/10.1002/spe.432
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0075
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0080
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0080
http://www.cs.wustl.edu/~schmidt/corba.html
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0085
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0085
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0090
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0090
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0090
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0090
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0095
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0095
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0100
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0100
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0100
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0105
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0105
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0280
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0110
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0110
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0115
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0120
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0125
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0125
http://dx.doi.org/10.1007/s10586-011-0171-x

H. Hussain et al. / Parallel Computing 39 (2013) 709–736 735
[67] S. Khan, I. Ahmad, A cooperative game theoretical technique for joint optimization of energy consumption and response time in computational grids,
IEEE Transactions on Parallel and Distributed Systems 20 (3) (2009) 346–360.

[68] S. Toyoshima, S. Yamaguchi, M. Oguchi, Storage access optimization with virtual machine migration and basic performance analysis of Amazon EC2,
in: IEEE 24th International Conference on Advanced Information Networking and Applications Workshops, Apr. 2010, pp. 905–910.

[69] Z. Hill, M. Humphrey, A quantitative analysis of high performance computing with Amazon’s EC2 infrastructure: the death of the local cluster?, in:
10th IEEE/ACM International Conference on Grid Computing, October 2009, pp. 26–33.

[70] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, A. Warfield, Xen and the art of virtualization, ACM Symposium on
Operating Systems Principles (SOSP) 37 (5) (2003) 164–177.

[71] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, D. Zagorodnov, The eucalyptus open-source cloud computing system, in: 9th
IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID ’09), May 2009, pp. 124–31.

[72] F. Lombardi, R. DiPietro, Secure virtualization for cloud computing, Journal of Network and Computer Application 34 (4) (2011) 1113–1122.
[73] A. Bedra, Getting started with Google app engine and Clojure, IEEE Journal of Internet Computing 14 (4) (2010) 85–88.
[74] Google App Engine, http://appengine.google.com, accessed February 02, 2011.
[75] GENI, http://www.geni.net, acessed February 02, 2011.
[76] I. Baldine, Y. Xin, A. Mandal, C. Heermann, Networked cloud orchestration: a GENI perspective, in: IEEE GLOBECOM Workshops, December 2010, pp.

573–578.
[77] J. Kolodziej, S.U. Khan, Data scheduling in data grids and data centers: a short taxonomy of problems and intelligent resolution techniques,

Transactions on Computational Collective Intelligence, vol. X (2013) pp. 103–119.
[78] Sun Network.com (Sun Grid), http://www.network.com, accessed February 08, 2011.
[79] W. Gentzsch, Sun grid engine: towards creating a compute power grid, in: 1st IEEE/ACM International Symposium on Cluster Computing and the Grid,

May 2001, pp. 35–36.
[80] L. Uden, E. Damiani, The Future of E-learning: E-learning ecosystem, in: 1st IEEE International Conference on Digital Ecosystems and Technologies,

June 2007, pp. 113–117.
[81] V. Chang, C. Guetl, E-Learning ecosystem (ELES)-a holistic approach for the development of more effective learning environment for small-and-

medium sized enterprises, in: 1st IEEE International Conference on Digital Ecosystems and Technologies, February 2007, pp. 420–425.
[82] B. Dong, Q. Zheng, J. Yang, H. Li, M. Qiao, An e-learning ecosystem based on cloud computing infrastructure, in: 9th IEEE International Conference on

Advanced Learning Technologies, July 2009, pp. 125–127.
[83] X. Chu, K. Nadiminti, C. Jin, S. Venugopal, R. Buyya, Aneka: next-generation enterprise grid platform for e-science and e-business applications, in: 3rd

IEEE International Conference on e-Science and Grid Computing, December 2007, pp. 151–159.
[84] A. Chien, B. Calder, S. Elbert, K. Bhatia, Entropia: architecture and performance of an enterprise desktop grid system, Journal of Parallel and Distributed

Computing 63 (5) (2003) 597–610.
[85] P. Kokkinos, E. Varvarigos, A framework for providing hard delay guarantees and user fairness in grid computing, Future Generation Computer

Systems 25 (6) (2009) 674–686.
[86] E. Varvarigos, Routing and scheduling in grids, in: 10th Anniversary International Conference on Transport and Optical Networks, June 2008, pp. 170–

174.
[87] P. Berstein, http://research.microsoft.com/en-us/people/philbe/chapter3.pdf, accessed July 25, 2011.
[88] P. Wieder, O. Waldrich, W. Ziegler, Advanced techniques for scheduling, reservation and access management for remote laboratories and instruments,

in: 2nd IEEE International Conference on e-Science and Grid, Computing (e-Science’06), December 2006, pp. 128–128.
[89] Vmware, Inc., http://www.vmware.com/pdf/vsphere4/r41/vsp_41_resource_mgmt.pdf, accessed July 23, 2011.
[90] http://www.platform.com/workload-management/high-performance-computing, accessed August 07, 2011.
[91] M. Jette, A. Yoo, M. Grondona, SLURM: simple linux utility for resource management, D.G. Feitelson, L. Rudolph (Eds.), Job Scheduling Strategies for

Parallel Processing, 2003, pp. 37–51.
[92] Research computing and cyber infrastructure, http://rcc.its.psu.edu/user_guides/system_utilities/pbs/, accessed August 07, 2011.
[93] G. White, M. Quartly, http://www.ibm.com/developerworks/systems/library/es-linuxclusterintro, accessed February 15, 2012.
[94] Grid computing, http://www.adarshpatil.com/newsite/images/grid-computing.gif, accessed February 20, 2012.
[95] I. Foster, C. Kesselman, S. Tuecke, The anatomy of the grid, International Journal of Supercomputer Applications 15 (3) (2001) 200–222.
[96] J. Leung, Handbook of Scheduling: Algorithms, Models, and Performance Analysis, 1st ed., CRC Press Inc., Boca Raton, FL, USA, 2004.
[97] P. Dutot, L. Eyraud, G. Mounie, D. Trystram, Bi-criteria algorithm for scheduling jobs on cluster platforms, in: 16th ACM Symposium on Parallelism in

Algorithms and Architectures (SPAA), July 2004, pp. 125–132.
[98] N. Arora, R. Blumofe, C. Plaxton, Thread scheduling for multi-programmed multi-processors, Theory of Computing Systems 34 (2) (2001) 115–144.
[99] J. Kolodziej, S. Khan, F. Xhafa, Genetic Algorithms for energy-aware scheduling in computational grids, in: 6th IEEE International Conference on P2P,

Parallel, Grid, Cloud, and, Internet Computing (3PGCIC), October 2001, pp. 17–24.
[100] K. Ramamritham, J. Stankovic, Scheduling algorithm and operating system support for real-time systems, Proceedings of IEEE 82 (1) (2002) 55–67.
[101] I. Foster, Y. Zhao, I. Raicu, S. Lu, Cloud computing and grid computing 360-degree compared, in: Grid Computing Environments Workshop 2008

(GCE’08), November 2008, pp. 1–10.
[102] What is the difference between Cloud, Cluster and Grid Computing?, http://www.cloud-competence-center.de/understanding/difference-cloud-

cluster-grid/, accessed February 5, 2011.
[103] T. Xie, A. Sung, X. Qin, M. Lin, L. Yang, Real-time scheduling with quality of security constraints, International Journal of High Performance Computing

and Networking 4 (3) (2006) 188–197.
[104] P. Brucker, Scheduling Algorithms, 4th ed., Springer-Verlag, Guildford, Surrey, UK, 2004.
[105] F. Pinel, J. Pecero, P. Bouvry, S. Khan, A two-phase heuristic for the scheduling of independent tasks on computational grids, in: ACM/IEEE/IFIP

International Conference on High Performance Computing and Simulation (HPCS), July 2011, pp. 471–477.
[106] Continuous Availability for Enterprise Messaging: Reducing Operational Risk and Administration Complexity, http://www.progress.com/docs/

whitepapers/public/sonic/sonic_caa.pdf, accessed February 12, 2011.
[107] Cluster computing, http://searchdatacenter.techtarget.com/definition/cluster-computing, accessed February 03, 2011.
[108] Parallel sysplex, http://www-03.ibm.com/systems/z/advantages/pso/, accessed February 22, 2011.
[109] L. Kal’e, S. Krishnan, Charm++: parallel programming with message-driven objects, in: G.V. Wilson, P. Lu (Eds.), Parallel Programming Using C++, MIT

Press, Cambridge, MA, USA, 1996, pp. 175–213.
[110] N. Kapadia, R. Figueiredo, J. Fortes, PUNCH: Web portal for running tools, IEEE Micro 20 (3) (2000) 38–47.
[111] Microsoft Live Mesh, http://www.mesh.com, accessed February 12, 2011.
[112] N. Sadashiv, S. Kumar, Cluster, grid and cloud computing: a detailed comparison, in: 6th International Conference on Computer Science & Education

(ICCSE), September 2011, pp. 477–482.
[113] OpenSatck, http://openstack.org/downloads/openstack-overview-datasheet.pdf, accessed April 04, 2012.
[114] Globus Nimbus, http://www.nimbusproject.org/doc/nimbus/faq/, accessed April 05, 2012.
[115] Open Nebula, http://opennebula.org/, accessed April 05, 2012.
[116] L. Kal’e, S. Kumar, M. Potnuru, J. DeSouza, S. Bandhakavi, Faucets: efficient resource allocation on the computational grid, in: 33rd International

Conference on Parallel Processing (ICPP 2004), August 2004.
[117] Amazon elastic compute cloud (EC2), http://www.amazon.com/ec2/, accessed February 10, 2011.

http://refhub.elsevier.com/S0167-8191(13)00121-X/h0135
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0135
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0140
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0140
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0145
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0150
http://appengine.google.com
http://www.geni.net
http://www.network.com
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0155
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0155
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0160
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0160
http://research.microsoft.com/en-us/people/philbe/chapter3.pdf
http://www.vmware.com/pdf/vsphere4/r41/vsp_41_resource_mgmt.pdf
http://www.platform.com/workload-management/high-performance-computing
http://rcc.its.psu.edu/user_guides/system_utilities/pbs/
http://www.ibm.com/developerworks/systems/library/es-linuxclusterintro
http://www.adarshpatil.com/newsite/images/grid-computing.gif
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0165
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0170
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0170
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0175
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0180
http://www.cloud-competence-center.de/understanding/difference-cloud-cluster-grid/
http://www.cloud-competence-center.de/understanding/difference-cloud-cluster-grid/
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0185
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0185
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0190
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0190
http://www.progress.com/docs/whitepapers/public/sonic/sonic_caa.pdf
http://www.progress.com/docs/whitepapers/public/sonic/sonic_caa.pdf
http://searchdatacenter.techtarget.com/definition/cluster-computing
http://www-03.ibm.com/systems/z/advantages/pso/
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0195
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0195
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0195
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0195
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0195
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0200
http://www.mesh.com
http://openstack.org/downloads/openstack-overview-datasheet.pdf
http://www.nimbusproject.org/doc/nimbus/faq/
http://opennebula.org/
http://www.amazon.com/ec2/

736 H. Hussain et al. / Parallel Computing 39 (2013) 709–736
[118] L. Wang, J. Tao, H. Marten, A. Streit, S.U. Khan, J. Kolodziej, D. Chen, MapReduce across distributed clusters for data-intensive applications, in: IEEE
26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), May 2012, pp. 2004, 2011, 21–25. http://
dx.doi.org/10.1109/IPDPSW.2012.249.

[119] I. Foster, C. Kesselman, J. Nick, S. Tuecke, The physiology of the grid an open grid services architecture for distributed systems integration, Argonne
National Laboratory, Mathematics and Computer Science Division Chicago, January 2002, 37 pp., www.globus.org/research/papers/ogsa.pdf.

[120] R. Buyya, R. Ranjan, R.N. Calheiros, Modeling and simulation of scalable cloud computing environments and the cloudsim toolkit: challenges and
opportunities, Proceedings of the 7th High Performance Computing and Simulation Conference HPCS 2009, IEEE Press, New York, USA, Leipzig,
Germany, 2009. June 21–24.

[121] K.K. Droegemeier, D. Gannon, D. Reed, B. Plale, J. Alameda, T. Baltzer, K. Brewster, R. Clark, B. Domenico, S. Graves, E. Joseph, D. Murray, R.
Ramachandran, M. Ramamurthy, L. Ramakrishnan, J.A. Rushing, D. Weber, R. Wilhelmson, A. Wilson, M. Sue, S. Yalda, Service-oriented environments
for dynamically interacting with mesoscale weather, Computing in Science and Engineering 7 (6) (2005) 12–29.

[122] F. Dong, S.G. Akl, Scheduling algorithms for grid computing: state of art and open problems. Queens University. Technical report. http://
www.cs.queensu.ca/TechReports/Reports/2006-504.pdf.

[123] Amazon’s HPC cloud: supercomputing for the 99%, http://arstechnica.com/business/2012/05/amazons-hpc-cloud-supercomputing-for-the-99/,
accessed 11 Sep, 2012.

[124] L. Wang, W. Jie, J. Chen, Grid Computing: Infrastructure, Service, and Applications, CRC Press, Kindle Edition, 2009. pp. 338.
[125] F. Berman, R. Wolski, S. Figueira, J. Schopf, G. Shao, Application level scheduling on distributed heterogeneous networks, in: Proceedings of

Supercomputing, 1996.
[126] N. Spring, R. Wolski, Application level scheduling: gene sequence library comparison, in: Proceedings of ACM International Conference on

Supercomputing, July 1998.
[127] D. Andresen, T. McCune, Towards a hierarchical scheduling system for distributed WWW server clusters, in: Proceedings of the Seventh IEEE

International Symposium on High Performance Distributed Computing (HPDC).
[128] Slice Federation Architecture 2.0, GENI, http://groups.geni.net/geni/wiki/SliceFedArch, accessed September 17, 2012.
[129] L. Skorin-Kapov, M. Matijasevic, Dynamic QoS negotiation and adaptation for networked virtual reality services, in: IEEE WoWMoM ’05, Taormina,

Italy, June 2005, pp. 344–351.
[130] S. Iqbal, R. Gupta, Y. Lang, Job scheduling in HPC clusters, Power Solutions (2005) 133–135.
[131] S. Senapathi, D.K. Panda, D. Stredney, H.-W. Shen, A QoS framework for clusters to support applications with resource adaptivity and predictable

performance, in: Proceedings of the IEEE International Workshop on Quality of Service (IWQoS), May 2002.
[132] K.H. Yum, E.J. Kim, C. Das, QoS provisioning in clusters: an investigation of router and NIC design, in: ISCA-28, 2001.
[133] S. Ali, T.D. Braun, H.J. Siegel, A.A. Maciejewski, N. Beck, L. Boloni, M. Maheswaran, A.I. Reuther, J.P. Robertson, M.D. Theys, B. Yao, Characterizing

resource allocation heuristics for heterogeneous computing systems, in: A.R. Hurson (Ed.), Advances in Computers, Parallel, Distributed, and
Pervasive Computing, vol. 63, Elsevier, Amsterdam, the Netherlands, 2005, pp. 91–128.

[134] F. Pascual, K. Rzadca, D. Trystram, Cooperation in multi-organization scheduling, Concurrency and Computation: Practice and Experience 21 (7)
(2009) 905–921.

[135] Y.S. Kee, D. Logothetis, R. Huang, H. Casanova, A. Chien, Efficient resource description and high quality selection for virtual grids, in: Proceedings of
CCGrid, 2005.

[136] M. Tchiboukdjian, N. Gast, D. Trystram, Decentralized list scheduling, Annals of Operations Research 207 (1) (2012) 1–23.
[137] S.M. Mostafa, S.Z. Rida, S.H. Hamad, Finding time quantum of round robin CPU scheduling algorithm in general computing systems using integer

programming, International Journal of Research and Reviews in Applied Sciences (IJRRAS) 5 (1) (2010) 64–71.
[138] HP Cloud, https://www.hpcloud.com/pricing, accessed August 08, 2013.
[139] D. Chen, L. Wang, X. Wu, J. Chen, S.U. Khan, J. Kolodziej, M. Tian, F. Huang, W. Liu, Hybrid modelling and simulation of huge crowd over a hierarchical

grid architecture, Future Generation Computer Systems 29 (5) (2013) 1309–1317.
[140] J. Kolodziej, S.U. Khan, Multi-level hierarchical genetic-based scheduling of independent jobs in dynamic heterogeneous grid environment,

Information Sciences 214 (2012) 1–19.
[141] S.U. Khan, A goal programming approach for the joint optimization of energy consumption and response time in computational grids, in: 28th IEEE

International Performance Computing and Communications Conference (IPCCC), Phoenix, AZ, USA, December 2009, pp. 410–417.
[142] J. Kołodziej, S.U. Khan, L. Wang, M. Kisiel-Dorohinicki, S.A. Madani, E. Niewiadomska-Szynkiewicz, A.Y. Zomaya, C. Xu, Security, energy, and

performance-aware resource allocation mechanisms for computational grids, Future Generation Computer Systems, October 2012, ISSN 0167-739X,
http://dx.doi.org/10.1016/j.future.2012.09.009.

[143] G.L. Valentini, W. Lassonde, S.U. Khan, N. Min-Allah, S.A. Madani, J. Li, L. Zhang, L. Wang, N. Ghani, J. Kolodziej, H. Li, A.Y. Zomaya, C.-Z. Xu, P. Balaji, A.
Vishnu, F. Pinel, J.E. Pecero, D. Kliazovich, P. Bouvry, An overview of energy efficiency techniques in cluster computing systems, Cluster Computing 16
(1) (2013) 3–15.

[144] F. Pinel, J.E. Pecero, S.U. Khan, P. Bouvry, Energy-efficient scheduling on milliclusters with performance constraints, in: ACM/IEEE International
Conference on Green Computing and Communications (GreenCom), Chengdu, Sichuan, China, August 2011, pp. 44–49.

[145] L. Wang, S.U. Khan, D. Chen, J. Kolodziej, R. Ranjan, C.-Z. Xu, A.Y. Zomaya, Energy-aware parallel task scheduling in a cluster, Future Generation
Computer Systems 29 (7) (2013) 1661–1670.

[146] L. Wang, J. Tao, H. Marten, A. Streit, S.U. Khan, J. Kolodziej, D. Chen, MapReduce across distributed clusters for data-intensive applications, in: 26th
IEEE International Parallel and Distributed Processing Symposium (IPDPS), Shanghai, China, May 2012, pp. 2004–2011.

[147] J. Kolodiej, S.U. Khan, E. Gelenbe, E.-G. Talbi, Scalable optimization in grid, cloud, and intelligent network computing, Concurrency and Computation:
Practice and Experience 25 (12) (2013) 1719–1721.

[148] D. Kliazovich, P. Bouvry, Y. Audzevich, S.U. Khan, GreenCloud: a packet-level simulator of energy-aware cloud computing data centers, in: 53rd IEEE
Global Communications Conference (Globecom), Miami, FL, USA, December 2010.

[149] K. Bilal, S.U. Khan, L. Zhang, H. Li, K. Hayat, S.A. Madani, N. Min-Allah, L. Wang, D. Chen, M. Iqbal, C.-Z. Xu, A.Y. Zomaya, Quantitative comparisons of
the state of the art data center architectures, Concurrency and Computation: Practice and Experience 25 (12) (2013) 1771–1783.

[150] J. Shuja, S.A. Madani, K. Bilal, K. Hayat, S.U. Khan, S. Sarwar, Energy-efficient data centers, Computing 94 (12) (2012) 973–994.

http://dx.doi.org/10.1109/IPDPSW.2012.249
http://dx.doi.org/10.1109/IPDPSW.2012.249
http://www.globus.org/research/papers/ogsa.pdf
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0205
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0205
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0205
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0205
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0210
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0210
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0210
http://www.cs.queensu.ca/TechReports/Reports/2006-504.pdf
http://www.cs.queensu.ca/TechReports/Reports/2006-504.pdf
http://arstechnica.com/business/2012/05/amazons-hpc-cloud-supercomputing-for-the-99/
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0215
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0215
http://groups.geni.net/geni/wiki/SliceFedArch
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0220
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0225
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0225
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0225
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0225
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0225
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0230
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0230
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0235
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0240
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0240
https://www.hpcloud.com/pricing
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0245
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0245
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0250
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0250
http://dx.doi.org/10.1016/j.future.2012.09.009
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0255
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0255
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0255
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0260
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0260
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0265
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0265
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0270
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0270
http://refhub.elsevier.com/S0167-8191(13)00121-X/h0275

	A survey on resource allocation in high performance distributed computing systems
	1 Introduction
	1.1 Motivation

	2 Overview of HPC systems
	2.1 HPC systems classes
	2.1.1 Cluster computing systems
	2.1.2 Grid computing systems
	2.1.3 Cloud computing systems

	2.2 Computer clusters: features and requirements
	2.2.1 Job processing type
	2.2.2 QoS attributes
	2.2.3 Job composition
	2.2.4 Resource allocation control
	2.2.5 Platform support
	2.2.6 Evaluation method
	2.2.7 Process migration
	2.2.8 Correlation of cluster features and resource allocation

	2.3 Grid computer systems: features and requirements
	2.3.1 System type
	2.3.2 Scheduling organization
	2.3.3 Resource description
	2.3.4 Resource allocation policies
	2.3.5 Breadth of scope
	2.3.6 Triggering information
	2.3.7 System functionality
	2.3.8 Correlation of grid features and resource allocation

	2.4 Cloud computing systems: features and requirements
	2.4.1 System focus
	2.4.2 Services
	2.4.3 Virtualization
	2.4.4 Dynamic QoS negotiation
	2.4.5 User access interface
	2.4.6 Web APIs
	2.4.7 Value added services
	2.4.8 Implementation structure
	2.4.9 VM migration
	2.4.10 Pricing model in cloud
	2.4.11 Correlation of cloud features and resource allocation

	3 Mapping the hpc systems classification to various cluster, grid and cloud systems: comparison and survey of the existing HPC solutions
	3.1 Cluster computing system
	3.1.1 Enhanced MOSIX
	3.1.2 Gluster
	3.1.3 Faucets
	3.1.4 Distributed Queuing System (DQS)
	3.1.5 Tycoon
	3.1.6 Cluster on demand
	3.1.7 Kerrighed
	3.1.8 Open Single System Image (OpenSSI)
	3.1.9 Libra
	3.1.10 Parallel Virtual Machine (PVM)
	3.1.11 Rexec
	3.1.12 Generic Network Queuing System (GNQS)
	3.1.13 Load Leveler
	3.1.14 Load Sharing Facility (LSF)
	3.1.15 Simple Linux Utility for Resource Management (SLURM)
	3.1.16 Portable Batch System (PBS)
	3.1.17 Condor (HTCondor)

	3.2 Grid computing system
	3.2.1 Grid Architecture for Computational Economy (GRACE)
	3.2.2 Network infrastructure (Ninf)
	3.2.3 Grid-Quality of Services Management (G-QoSM)
	3.2.4 Javelin
	3.2.5 Network weather service (NWS)
	3.2.6 Grid harvest service (GHS)
	3.2.7 Stanford Peers Initiative
	3.2.8 2k
	3.2.9 AppLeS
	3.2.10 Darwin
	3.2.11 Cactus Worm
	3.2.12 Punch
	3.2.13 Nimrod/G
	3.2.14 NetSolve
	3.2.15 Meta Computing Online (MOL)
	3.2.16 Legion
	3.2.17 Wren
	3.2.18 Globus

	3.3 Cloud computing systems
	3.3.1 Amazon Elastic Compute Cloud (EC2)
	3.3.2 Eucalyptus
	3.3.3 Google Application Engine (GAE)
	3.3.4 Global Environment for Network Innovations (GENI)
	3.3.5 Microsoft Live Mesh
	3.3.6 Sun Network.Com (Sun Grid)
	3.3.7 E-learning ecosystem
	3.3.8 Grids Lab Aneka
	3.3.9 OpenStack

	4 Classification of systems
	4.1 Software only solutions
	4.2 Hardware/hybrid only solutions

	5 Conclusions
	Acknowledgments
	References

