
A Blocked QR-Decomposition for the Parallel Symmetric
Eigenvalue Problem

T. Auckenthalera,∗, T. Hucklea, R. Wittmanna

aFakultät für Informatik, Technische Universität München, D-85748 Garching, Germany

Abstract

In this paper we present a new stable algorithm for the parallel QR-decomposition of ”tall and
skinny” matrices. The algorithm has been developed for the dense symmetric eigensolver ELPA,
whereat the QR-decomposition of tall and skinny matrices represents an important substep. Our
new approach is based on the fast but unstable CholeskyQR algorithm [1]. We show the stabil-
ity of our new algorithm and provide promising results of our MPI-based implementation on a
BlueGene/P and a Power6 system.

Keywords: QR-decomposition, eigenvalue and eigenvector computation, two-step
tridiagonalization, parallelization

1. Introduction

Finding the eigenvalues and eigenvectors of a symmetric matrix is a widespread problem in
linear algebra. If the symmetric matrix is dense, the most suited proceeding is to (1) reduce the
matrix to symmetric tridiagonal form, (2) solve the tridiagonal eigensystem and (3) if eigenvec-
tors are desired, transform the eigenvectors of the tridiagonal eigensystem back to those of the
dense matrix. Thereby, the reduction to tridiagonal form is the bottleneck of the whole algorithm
in terms of runtime [2]. A detailed analysis of the parallel tridiagonalization can be found in [3].
There are two major reasons limiting the performance. On the one hand, a huge amount of op-
erations (∼ 50%) has to be performed using memory bound matrix-vector operations (BLAS2),
limiting the sequential performance of the algorithm. On the other hand, a high number of mes-
sages limits the scalability of the parallel execution on distributed memory systems.

In our recent publications ([4], [5]) we presented a parallel symmetric eigensolver where the
tridiagonalization is done in two steps leading to staggering results in both, absolute performance
and scaling behavior. The implementation is meanwhile publicly available as a library under the
name ELPA [6].

The two-step tridiagonalization was originally presented in [7]. At first, the full symmetric
matrix of size n is reduced to symmetric banded form with (semi)bandwidth b. In a second step
the banded matrix is reduced to tridiagonal form. Except of lower order terms, the first step

∗Corresponding author
Email addresses: auckenth@in.tum.de (T. Auckenthaler), huckle@in.tum.de (T. Huckle),

wittmanr@in.tum.de (R. Wittmann)

Preprint submitted to Elsevier June 29, 2013

*Manuscript
Click here to view linked References

http://ees.elsevier.com/parco/viewRCResults.aspx?pdf=1&docID=1700&rev=1&fileID=83997&msid={28705AA5-0499-4A21-B63B-7F7D156C32D7}

Parallel algorithm Flops on critical path Messages Comm. volume
PDGEQRF 2mn2

P + n2

2 log(P) 2n log(P) n2

2 log(P)
TSQR 2mn2

P + 2
3n

3 log(P) log(P) n2

2 log(P)
CholeskyQR 2mn2

P + n3

3 log(P) log(P) n2

2 log(P)

Table 1: Out of [9]: Performance model of selected parallel QR-decomposition algorithms. n ×m stands for the size
of the matrix, P for the number of parallel processes. PDGEQRF represents the ScaLAPACK QR-decomposition, based
on the classical Householder approach.

can entirely be done using matrix-matrix operations (BLAS3). The second step uses BLAS2 but
requires asymptotically less operations compared to step one (6n2b vs. 4/3n3).

Algorithm 1 outlines the band reduction of a symmetric matrix A. The algorithm consists

Algorithm 1 Symmetric band reduction
1: for block col = 1→ (n/b− 1) do
2: col← (block col − 1) ∗ b+ 1
3: Q,R← QRDecomposition(A(col+b:n,col:col+b−1))
4: A(col+b:n,col:col+b−1) ← R
5: A(col+b:n,col+b:n) ← QTA(col+b:n,col+b:n)Q
6: end for

of n/b iterations. In each iteration a QR-decomposition on a block-column of width b has to be
performed (line 3). Afterwards the block-column is substituted with the matrix R (line 4) and
the orthogonal matrix Q is applied to the rest of the matrix A (line 5). The most flops (4/3n3)
are spent on the update of the trailing matrix. However, the QR-decomposition gets increasingly
important for massively parallel execution. In this paper we describe further optimizations of the
symmetric band reduction which were achieved by means of a new algorithmic approach for the
parallel QR-decomposition.

There exists related work which tackles the parallel QR-decomposition of tall and skinny
matrices too. In [8, 9] Demmel et al. propose an algorithm named Tall Skinny QR (TSQR). The
approach consists of first performing a local QR-decomposition on each process (assuming a 1D
parallel data layout). Afterwards, the resulting matrices Ri are reduced to a final matrix R using
any form of reduction tree (e.g., a binary tree). In [10] Dongarra et al. present an implementation
thereof, experimenting with different kinds of reduction trees. In [11] a QR-decomposition,
based on the Cholesky factorization, is proposed. CholeskyQR computes R using the Cholesky
decomposition of ATA since ATA = RTQTQR = RTR. Q can then be computed with
Q = AR−1. CholeskyQR is suited very well for parallel computation since it requires only one
synchronization point. However, it is not numerically stable if A is ill conditioned [1]. A good
comparison regarding parallel performance and numerical stability of the cited algorithms can
be found in [9]. Table 1 summarizes this work.

Our approach is mathematically equivalent to CholeskyQR and shares its good performance
characteristics. However, our algorithm is extended by a concept of adaptive blocking to guar-
antee numerical stability for ill conditioned matrices. Furthermore, we compute Householder
transformations instead of an orthogonal matrix Q.

The rest of this paper is organized as follows. Sect. 2 presents the classical Householder
QR-decomposition as it is used within ScaLAPACK [12] and the ELPA eigensolver. In Sect.

2

3 we introduce our new approach, which we will call blocked Householder-CholeskyQR in the
following. We derive the algorithm and analyze its accuracy. Sect. 4 provides performance and
accuracy results of the algorithm and, finally, Sect. 5 summarizes our work.

2. Householder QR-decomposition

A common problem in numerical algorithms is the decomposition of a matrix A ∈ Rn×m
into a product of matrices Q ∈ Rn×n and R ∈ Rn×m, where R is upper triangular and Q is
orthogonal. The most common methods to achieve this decomposition are based on Householder
transformations.

A Householder matrix of order n is defined as:

H = I − y · τ · yT ∈ Rn×n with y ∈ Rn and τ =
2

‖y‖22
(1)

It can be shown that Householder matrices are symmetric and orthogonal. Let v be a vector of
size n which shall be transformed to a vector x ∈ Rn where the entries from 2 to n are set to
zero. This vector may be a column of our matrix that we want to decompose. Algorithm 2,

Algorithm 2 HouseGen: Generation of Householder transformation

β = ‖v‖2 · sign(v(1))

τ =
v(1) + β

β

y =

(
1,

vT(2:n)

v(1) + β

)T
x = (−β, 0, . . . , 0)T

then, shows how the Householder vector y and the scalar τ are computed such that the following
equation holds:

x = HT v = (I − y · τ · yT)v (2)

The generated Householder vector y and its scaling factor τ can be applied to a matrixA ∈ Rn×m
in the following way:

A′ = (I − y · τ · yT) ·A (3)

This transformation is done by Algorithm 3.

Algorithm 3 HouseLeft: Left-sided application of Householder transformation
1: zT = τ · yT ·A
2: A′ = A− y · zT

3

By combining the generation (Algorithm 2) and the application (Algorithm 3) of Householder
transformations it is possible to reduce a matrix A ∈ Rn×m with n ≥ m to a matrix R ∈ Rn×m
of the following form (see Algorithm 4):

R =

(
R1

0

)
with R1 ∈ Rm×m and upper triangular (4)

The orthogonal matrix Q is never computed explicitly, but is represented by the set of House-

Algorithm 4 QR-decomposition of a matrix A ∈ Rn×m

1: for i = 1→ m do
2: τ, y, x← HouseGen(A(i:n,i))
3: A(i:n,i+1:m) ← HouseLeft(τ, y, A(i:n,i+1:m))
4: A(i:n,i) ← x
5: end for

holder vectors yi and scaling factors τi, with

QT =
∏
i

(I − yi · τi · yTi), i = 1, . . . ,m. (5)

3. Blocked Householder-CholeskyQR

The aim of our new algorithm is to make the reduction to banded form less dependent on
network latency and, thus, to improve the scalability. To compute the individual Householder
vectors the classical Householder QR-decomposition, as presented in Sect. 2, requires at least
one synchronization point for each column of the matrix. This limits the scalability of the algo-
rithm. The basic idea of blocked Householder-CholeskyQR is to generate and apply more than
one Householder transformation with a single communication operation.

It turned out that the derived algorithm shares many commonalities with CholeskyQR, since
it is based on the Cholesky decomposition of ATA. However, our approach is extended by a
concept of adaptive blocking to guarantee numerical stability. Furthermore, we generate House-
holder transformations to represent the orthogonal matrix Q, such that the QR-decomposition is
easily integrable into the existing reduction to banded form within ELPA. In the following we
sketch the derivation of the algorithms which can also be found in [13].

3.1. Rank-k QR-decomposition
At first, we introduce some notation for the following algorithm. We define the matrix

A ∈ Rn×m as A0. Ak stands for the content of the matrix after applying k Householder trans-
formations. Y ∈ Rn×k contains all generated Householder vectors yi. Furthermore, we define
H1, H2, · · · , Hk to be the Householder matrices corresponding to y1, y2, · · · , yk.

W.l.o.g. we assume to start with a matrix A0 ∈ Rn×m where the first k columns have the
following form:

A0 (1:n,1:k) = (a1, a2, · · · , ak) = (u1, u2, · · · , uk)


α1,1 α1,2 · · · α1,k

α2,2 · · · α2,k

· · ·
αk,k

 . (6)

4

ui and uj are normalized and mutually orthogonal for i 6= j. Out of these vectors we want to
compute the set of Householder vectors y1, . . . , yk and the appropriate scalars τ1, . . . , τk and
β1, . . . , βk as well as the content of R.

We start with the definition of the Householder vectors yi

yi (1:i−1) = 0T(1:i−1), yi (i) = 1,

yi (i+1:n) =
Ai−1 (i+1:n,i)

Ai−1 (i,i) + βi
, (7)

and the scalars τi and βi from Algorithm 2

βi =‖Ai−1 (i:n,i)‖2 · sign(Ai−1 (i,i)) (8)

τi =
Ai−1 (i,i) + βi

βi
. (9)

A possible decomposition into Q and R is shown in Equation (6) since (u1, u2, · · · , uk) is
orthogonal and the matrix containing αi,j is upper triangular. If the Householder transformations
are defined as it has been done in Algorithm 2, then R has the following form:

R =


−s1α1,1 −s1α1,2 · · · −s1α1,k

−s2α2,2 · · · −s2α2,k

· · ·
−skαk,k

 , (10)

where si is the sign of Ai−1 (i,i).
For the first row of R we can easily show that

R1,j = (H1 ·A0)1,j = −s1α1,j . (11)

After the application of the first Householder transformation A1 = H1A0 has the following
form:

A1 (1:n,1:k) = H1(a1, a2, · · · , ak) = (û1, û2, · · · , ûk)


α1,1 α1,2 · · · α1,k

α2,2 · · · α2,k

· · ·
αk,k

 , (12)

where ûi = H1ui. Furthermore, we can show that û1 = −s1e1 and ûi (1) = 0 for i > 1.
If we now look at the matrix A1 (2:n,2:k), we come upon the same pattern as for A0. But now

we have to deal with a QR-decomposition of size (n − 1) × (k − 1) instead of n × k. As for
R(1,1:k) we can now determine R(2,2:k). Therefore, Equation (10) is true by induction.

To compute the coefficients αi,j of the matrix R we need all combinations of dot products
D = ATA, where D(i,j) = aTi aj . In addition we need all signs si to get the final content of R.
In Algorithm 5 we show how to compute all the αi,j out of D. Please note that this algorithm
corresponds to a Cholesky decomposition of ATA.

After computing the coefficients αi,j , we need an update strategy to compute Ai out of
Ai−1 without any further synchronization requirements. Therefore, line 1 of Algorithm 3 can
be generalized to

5

Algorithm 5 Computation of αi,j (Cholesky decomposition)
1: for i = 1→ k do
2: αi,i ←

√
D(i,i)

3: for j = i+ 1→ k do
4: αi,j ←

D(i,j)

αi,i

5: for l = i+ 1→ j do
6: D(l,j) ← D(l,j) − αi,jαi,l
7: end for
8: end for
9: end for

zi (j) = τi · yTi ·Ai−1 (i:n,j)

= Ai−1 (i,j) +
ATi−1 (i:n,i) ·Ai−1 (i:n,j)

βi
, (13)

and, thus, using Equation (7),

Ai (i+1:n,j) =Ai−1 (i+1:n,j) − zi (j) ·
Ai−1 (i+1:n,i)

Ai−1 (i,i) + βi

=Ai−1 (i+1:n,j) − ρi,jAi−1 (i+1:n,i), with (14)

ρi,j =
Ai−1 (i,j) +

ATi−1 (i:n,i)·Ai−1 (i:n,j)

βi

Ai−1 (i,i) + βi
. (15)

Since

ATi−1 (i:n,i)Ai−1 (i:n,j) = (αi,i ˆ̂ui)
T︸ ︷︷ ︸ · (ˆ̂ui, · · · , ˆ̂uj) · (αi,j , · · · , αj,j)T︸ ︷︷ ︸ = αi,iαi,j ,

AT
i−1 (i:n,i)

Ai−1 (i:n,j)

Equation (15) can be simplified to

ρi,j =
Ai−1 (i,j) +

αi,iαi,j
βi

Ai−1 (i,i) + βi
, (16)

where ˆ̂u corresponds to u after applying i Householder transformations. Out of Equation (14)
and Algorithm 5 we can now formulate the rank-k variant of HouseGen (see Algorithm 6). The
update of the matrixA in line 9 can easily be done in a blocked fashion such that cache efficiency
is guaranteed.

After the generation, the Householder transformations have to be applied to the rest of the
matrix. This can be done with blocked Householder transformations, e.g. compact WY transfor-
mations [14].

3.2. Accuracy analysis
Under certain conditions the presented algorithm runs into numerical problems. In the fol-

lowing we will analyze the relative error of the rank-k QR-decomposition and derive a criterion
for the stability of the algorithm.

6

Algorithm 6 HouseGen, rank-k version
1: D ← ATA
2: Compute αi,j (Algorithm 5)
3: for i = 1→ k do
4: βi ← αi,i · sign(Ai−1 (i,i))
5: R(i,i) ← −βi
6: τi ←

Ai−1 (i,i)+βi
βi

7: for j = i+ 1→ k do

8: ρi,j ←
Ai−1 (i,j)+

αi,iαi,j
βi

Ai−1 (i,i)+βi

9: Ai (i+1:n,j) ← Ai−1 (i+1:n,j) − ρi,jAi−1 (i+1:n,i)

10: R(i,j) ← − sign(Ai−1 (i,i)) · αi,j
11: end for
12: yi ← (0T(1:i−1), 1,

Ai−1 (i+1:n,i)

Ai−1 (i,i)+βi
)T

13: end for

Let e(x) be an upper bound for the numerical error when computing x. For the computation
of dot products we can estimate the error with

e(D(i,i)) ≤
n∑
l=1

(a2i (l)ε) ≤ (aTi ai)ε = (α2
1,i + α2

2,i + · · ·+ α2
i,i) ε, and (17)

e(D(j,i)) ≤
n∑
l=1

(ai (l)aj (l)ε) ≤ ‖ai‖‖aj‖ ε

=
√
(α2

1,j + α2
2,j + · · ·+ α2

j,j)(α
2
1,i + α2

2,i + · · ·+ α2
i,i) ε, (18)

for the diagonal and non-diagonal elements of D respectively.
Out of Algorithm 5 and Equation (17) and (18) we can now derive error bounds for αi,i and

αj,i with j < i:

e(α2
i,i) =e(D(i,i)) +

i−1∑
j=1

e(α2
j,i) (19)

e(αj,i) =
e(D(j,i)) +

∑j−1
l=1 (e(αl,i)e(αl,j))

|αj,j |
. (20)

For the first column of R we can estimate the error with e(α2
1,1) = O(α2

i,iε) leading to a relative
error of

e(α2
1,1)

α2
1,1

= O(ε)� 1. (21)

Considering that the relative error of all preceding diagonal elements αj,j is bounded by O(ε),

7

we can use the fact that√
(α2

1,j + α2
2,j + · · ·+ α2

j,j)

|αj,j |
= O(1), and (22)

e(αl,j)

|αj,j |
= O(1) for all l < j < i (23)

to simplify Equation (20):

e(αj,i) =O
(√

(α2
1,i + α2

2,i + · · ·+ α2
i,i) ε

)
+

j−1∑
l=1

O(e(αl,i)). (24)

This result, in turn, allows us to simplify Equation (19):

e(α2
i,i) =O((α2

1,i + α2
2,i + · · ·+ α2

i,i) ε) (25)

Please note that we assumed the maximal blocking factor k to be a constant.
To guarantee similar accuracy compared to the non-blocked QR-decomposition, we limit the

relative error by claiming

α2
1,i + α2

2,i + · · ·+ α2
i−1,i

α2
i,i

≤ εfallback. (26)

Finally, we can set a criterion for the numerical stability of generating and applying the i-th
Householder transformation: the i-th Householder vector is regarded as ”stable” if Householder
transformation i − 1 is stable and Equation (26) is fulfilled. We set εfallback to 1 to avoid any
substantial accuracy losses.

Using this criterion we can define the maximal number of columns to decompose in one step.

4. Benchmark results

In this section we provide performance results on a BlueGene/P with 16384 cores and a
Power6 system with 6624 cores. Both systems are located at the Rechenzentrum Garching
(RZG).

All performance tests are carried out within the symmetric eigensolver ELPA. To benchmark
the new QR-decomposition we solve an eigenproblem of size n = 27069, resulting from a matrix
in quantum chemistry (Poly27069). Within the eigensolver the QR-decomposition is called on
many different sized tall and skinny matrices, as can be seen from Algorithm 1. We compare
the newly developed blocked Householder-CholeskyQR, using two different blocking factors
(rank-2 and rank-16), to the ScaLAPACK routine PDGEQRF (Netlib implementation compiled
on top of IBM’s ESSL) and the original ELPA code using an own implementation of the classical
Householder QR-decomposition.

The ELPA solver uses a 2D block-cyclic distribution of the input matrix with a block-size
of 16. The intermediate bandwidth b of the two-step tridiagonalization is set to 32. As can be
seen from Algorithm 1, in each iteration the QR-decomposition is called on a b-wide panel of
the matrix. This means that, resulting from the block-cyclic data distribution, only 2 process
columns of the 2D processor grid are effectively involved in the QR-decomposition. During our

8

BlueGene/P [#cores] Power6 [#cores]
512 1024 2048 4096 256 512 1024 2048

Full to band 53.6s 33.0s 22.5s 17.0s 18.0s 12.9s 8.0s 6.1s
thereof QR 10.8s 9.1s 6.3s 5.9s 3.5s 3.2s 3.1s 3.0s

20.1% 27.6% 28.0% 34.7% 19.4% 24.8% 38.8% 49.2%

Table 2: Absolute and relative effort of the QR-decompositions during the reduction to banded form of Poly27069, using
ELPA with the classical Householder QR-decomposition.

 1

 10

 100

 64 128 256 512 1k 2k 4k 8k

tim
e

[s
]

#cores

Power6: PDGEQRF
ELPA (classic)
ELPA (rank−2)

ELPA (rank−16)
BlueGene/P: PDGEQRF

ELPA (classic)
ELPA (rank−2)

ELPA (rank−16)

Figure 1: Accumulated runtime of the QR-decompositions during the reduction to banded form of Poly27069.

benchmarks we use core counts from 64 till up to 8192. For square numbers we use a processor
grid which is a perfect square, e.g. 8× 8 for 64 cores. For non square core counts we first refine
in the row dimension, e.g. 32 × 16 for 512 cores. All computations are carried out using one
MPI-process per core.

At first, we examine the importance of the QR-decomposition during the reduction to banded
form. Table 2 shows the runtime of the reduction to banded form of Poly27069 and, thereof, the
time required for QR-decompositions. We can see that the QR-decomposition gets increasingly
relevant with higher numbers of processes. While this part of the algorithm requires about 20%
of the time on 512 cores of the BlueGene/P and on 256 cores of the Power6 system, this ratio
grows to 35% on 4096 BlueGene/P cores and to 49% on 2048 cores of the Power6. The results
clearly show that the QR-decomposition is the limiting factor of the reduction to banded form
if high scalability is required. The bottleneck QR-decomposition is more pronounced on the
Power6. This may be explained with the higher single-core performance of the Power6 which
implies that network latency issues become even more relevant.

In Figure 1 we compare different implementations of the QR-decomposition (PDGEQRF,
ELPA unblocked, ELPA rank-2, and ELPA rank-16). The plot shows the accumulated runtime
of all QR-decompositions during the reduction to banded form of Poly27069. Due to the tininess
of the problems in relation to the number of processes, the scaling is expectably poor. How-
ever, blocked Householder-CholeskyQR leads to noticeable speedups, whereas the unblocked
algorithms don’t scale at all.

In Figure 2 we show detailed timings for the different QR-decomposition calls during the
band reduction of Poly27069. The timings are plotted for the runs with the highest core count on
each system. The reduction to banded form of Poly27069 consists of n/b − 1 = 845 iterations,

9

 0

 2

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500 600 700 800

tim
e

[m
s]

iteration

PDGEQRF
ELPA (classic)
ELPA (rank−2)

ELPA (rank−16)

 0

 1

 2

 3

 4

 5

 6

 7

 0 100 200 300 400 500 600 700 800

tim
e

[m
s]

iteration

PDGEQRF
ELPA (classic)
ELPA (rank−2)

ELPA (rank−16)

Figure 2: Timings of the occurring QR-decompositions during the reduction to banded form of Poly27069. In iteration
i a QR-decomposition of a matrix of size (n − ib − b) × 32 is performed. Left: BlueGene/P with 8192 cores (ELPA
rank-16 and ELPA rank-2 show the best performance (overlapping), followed by ELPA classic and PDGEQRF), right:
Power6 with 2048 cores (ELPA rank-16 shows the best performance, followed by ELPA rank-2, PDGEQRF, and ELPA
classic).

whereas in each iteration i a matrix of size (n − ib − b) × 32 has to be decomposed. The gap
between the individual variants seems to be rather constant over the iterations of the algorithm.
This means, in other words, that the speedup of blocked Householder-CholeskyQR is higher
for smaller matrices. Again, the blocked QR-decomposition seems to be more profitable on the
Power6, compared to the BlueGene/P.

For the presented performance results we disabled the fallback mechanism and ignored the
accuracy of the results. In the next plots (Figure 3 and 4) we will analyze accuracy issues and
fallback statistics.

For the measurements in Figure 3 we construct ill conditioned matrices of the following
form. We construct a matrix A by multiplying Q′ and R′. Q′ is an arbitrary orthogonal matrix.
R′ is upper triangular and has entries of 1 on the diagonal. The values above the diagonal are
set to ”odiag/diag” which ranges from 1e-08 to 1e+08 during the test. We compare runtime and
accuracy of the results for different values of odiag/diag and use the orthogonality (I−QTQ) and
the residual error (A −QR) of the result as measures for the accuracy. In Figure 3 we compare
blocked Householder-CholeskyQR with no fallback (left), blocked Householder-CholeskyQR
with εfallback = 1 (middle), and the ScaLAPACK QR-decomposition PDGEQRF (right). As
expected, the ScaLAPACK QR-factorization produces accurate results for all examined matrices.
On the other hand the blocked QR-decomposition with no fallback is very fast. However, if
odiag/diag is larger than 1, the algorithm gets numerically unstable. With the conservative choice
of εfallback = 1 we profit from both, the efficiency of the blocked execution if the matrix is well
conditioned and the numerical stability of the classical Householder QR-decomposition if the
matrix is ill conditioned.

In the next plot we investigate how often such fallbacks to lower blockings occur for real
matrices. In Figure 4 we can see blocking statistics during the reduction to banded form of
Poly27069 (right) and a random matrix of size 27069 (left). The maximal blocking is set to
16. For both matrices the algorithm can perform full blocking most of the time. There were
no observable differences regarding accuracy between the classical solver and the solver using
blocked Householder-CholeskyQR. These are very promising results. However, more testing

10

 0

 2

 4

 6

 8

 10

 12

 14

 1e−08 0.0001 1 10000 1e+08
 1e−20

 1e−19

 1e−18

 1e−17

 1e−16

 1e−15

 1e−14

 1e−13

tim
e

[m
s]

er
ro

r
odiag/diag

time
residual

orthogonality

 0

 2

 4

 6

 8

 10

 12

 14

 1e−08 0.0001 1 10000 1e+08
 1e−20

 1e−19

 1e−18

 1e−17

 1e−16

 1e−15

 1e−14

 1e−13

tim
e

[m
s]

er
ro

r

odiag/diag

time
residual

orthogonality

 0

 2

 4

 6

 8

 10

 12

 14

 1e−08 0.0001 1 10000 1e+08
 1e−20

 1e−19

 1e−18

 1e−17

 1e−16

 1e−15

 1e−14

 1e−13

tim
e

[m
s]

er
ro

r

odiag/diag

time
residual

orthogonality

Figure 3: Runtime and accuracy while computing the QR-decomposition of A = QR, where R has the following struc-
ture: values of odiag/diag above the diagonal and values of 1 on the diagonal. Left: blocked Householder-CholeskyQR
with no fallback (runtime continuously at 2ms, residual and orthogonality deteriorate for odiag/diag > 1), middle:
blocked Householder-CholeskyQR with εfallback = 1 (runtime switches from 2ms to 6ms at odiag/diag ∼ 1, resid-
ual and orthogonality continuously at 1e-19 and 1e-17 respectively), right: ScaLAPACK QR-decomposition (runtime,
residual and orthogonality at 6ms, 1e-19 and 1e-17 respectively).

 500

 1000

 1500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

#c
al

ls

blocking factor

random matrix of size 27069

 500

 1000

 1500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

#c
al

ls

blocking factor

Poly27069

Figure 4: Blocking statistics of blocked Householder-CholeskyQR during the reduction to banded form. The maximal
blocking factor was set to 16. εfallback was set to 1. Left: random matrix of size 27069, right: Poly27069.

with a broader set of matrices has still to be done.

5. Conclusion

We have presented a new blocking strategy for the parallel QR-decomposition which sig-
nificantly reduces the synchronization requirements. The algorithm has been developed for the
parallel symmetric eigensolver ELPA, but can be used wherever a scalable QR-decomposition
of tall and skinny matrices is required. Moreover, the implementation can be used as a basic
building block for the QR-decomposition of general rectangular matrices.

In each step, the algorithm generates and applies k Householder transformations instead of
one. This reduces the number of messages for the execution on a distributed memory system.
We have defined a stability criterion for the algorithm. If this criterion is not fulfilled, we switch
back to lower blocking such that numerical stability is guaranteed.

Benchmarks on a BlueGene/P and a Power6 system have shown that the new implementation
clearly outperforms the QR-decompositions in ScaLAPACK (routine PDGEQRF) and ELPA.

11

Acknowledgment

The authors would like to thank Rainer Johanni for fruitful comments on accuracy issues and
the Rechenzentrum Garching for providing their computing infrastructure.

References

[1] A. Stathopoulos, K. Wu, A block orthogonalization procedure with constant synchronization requirements, SIAM
J. Sci. Comput 23.

[2] E. Breitmoser, A. G. Sunderland, A performance study of the PLAPACK and ScaLAPACK eigensolvers on HPCx
for the standard problem, in: Technical Report from the HPCx Consortium, 2003.

[3] K. Stanley, Execution time of symmetric eigensolvers, Ph.D. thesis, University of California at Berkeley (1997).
[4] T. Auckenthaler, V. Blum, H.-J. Bungartz, T. Huckle, R. Johanni, L. Krämer, B. Lang, H. Lederer, P. Willems, Par-

allel solution of partial symmetric eigenvalue problems from electronic structure calculations, Parallel Computing.
[5] T. Auckenthaler, H.-J. Bungartz, T. Huckle, L. Krämer, B. Lang, P. R. Willems, Developing algorithms and software

for the parallel solution of the symmetric eigenvalue problem (2010).
[6] ELPA documentation, http://elpa-lib.fhi-berlin.mpg.de, accessed 09-14-2012.
[7] C. Bischof, B. Lang, X. Sun, Parallel tridiagonalization through two-step band reduction, in: Proc. Scalable High-

Performance Computing Conf., IEEE Computer Society Press, Los Alamitos, CA, 1994, pp. 23–27.
[8] J. Demmel, L. Grigori, M. Hoemmen, J. Langou, Communication-optimal parallel and sequential QR and LU

factorizations, SIAM J. Sci. Comput. 34 (1) (2012) 206–239. doi:10.1137/080731992.
[9] J. Demmel, L. Grigori, M. Hoemmen, J. Langou, Communication-avoiding parallel and sequential QR and LU

factorizations, Technical Report No. UCB/EECS-2008-89.
[10] J. Dongarra, M. Faverge, T. Herault, J. Langou, Y. Robert, Hierarchical QR factorization algorithms for

multi-core cluster systems, in: Proceedings of the 2012 IEEE 26th International Parallel and Distributed
Processing Symposium, IPDPS ’12, IEEE Computer Society, Washington, DC, USA, 2012, pp. 607–618.
doi:10.1109/IPDPS.2012.62.

[11] W. Gander, Algorithms for the QR decomposition, Seminar für Angewandte Mathematik: Research report, 1980.
[12] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry,

A. Petitet, K. Stanley, D. Walker, R. C. Whaley, ScaLAPACK Users’ Guide, SIAM, Philadelphia, PA, 1997.
[13] T. Auckenthaler, Highly scalable eigensolvers for petaflop applications, Ph.D. thesis, Technische Universität

München (2012).
[14] R. Schreiber, C. van Loan, A storage-efficient WY representation for products of Householder transformations,

SIAM J. Sci. Stat. Comput. 10 (1989) 53–57. doi:10.1137/0910005.

12

