
ar
X

iv
:1

10
9.

49
25

v1
 [

cs
.D

C
]

 2
2

Se
p

20
11

Couillard: Parallel Programming via Coarse-Grained Data-Flow

Compilation

Leandro A. J. Marzulo, Tiago A. O. Alves, Felipe M. G. Frana

Universidade Federal do Rio de Janeiro

Programa de Engenharia de Sistemas e Computao, COPPE

Rio de Janeiro, RJ, Brasil

{tiagoaoa, lmarzulo, felipe}@cos.ufrj.br

Vtor Santos Costa

Universidade do Porto

Departamento de Cincia de Computadores

Porto, Portugal

vsc@dcc.fc.up.pt

Resumo

Data-flow is a natural approach to parallelism. How-
ever, describing dependencies and control between fine-
grained data-flow tasks can be complex and present
unwanted overheads. TALM (TALM is an Architec-
ture and Language for Multi-threading) introduces a
user-defined coarse-grained parallel data-flow model,
where programmers identify code blocks, called super-
instructions, to be run in parallel and connect them
in a data-flow graph. TALM has been implemented
as a hybrid Von Neumann/data-flow execution system:
the Trebuchet. We have observed that TALM’s useful-
ness largely depends on how programmers specify and
connect super-instructions. Thus, we present Couil-
lard, a full compiler that creates, based on an anno-
tated C-program, a data-flow graph and C-code cor-
responding to each super-instruction. We show that
our toolchain allows one to benefit from data-flow ex-
ecution and explore sophisticated parallel programming
techniques, with small effort. To evaluate our system
we have executed a set of real applications on a large
multi-core machine. Comparison with popular paral-
lel programming methods shows competitive speedups,
while providing an easier parallel programing approach.

1. Introduction

Data-flow programming provides a natural approach
to parallelism, where instructions execute as soon as
their input operands are available [12, 21, 18, 23]. Ac-
tually in dynamic data-flow, we may even have inde-
pendent instructions from multiple iterations on a loop
running simultaneously, as parts of the loop may run
fast than others and reach next iterations. There-
fore it is complex to describe control in data-flow,
since instructions must only proceed to execution when
operands from the same iteration match. However, this
difficulty is compensated by the amount of parallelism
exploited this way

TALM (TALM is an Architecture and Language for
Multi-threading) [19, 2, 3] is an execution model de-
signed to exploit the advantages of data-flow in multi-
thread programming. A program in TALM is com-
prised of code blocks called super-instructions and sim-
ple instructions connected in a graph according to their
data dependencies (i.e. a data-flow graph). To paral-
lelize a program using the TALM model, the program-
mer marks portions of code that are to become super-
instructions and describe their dependencies. With this
approach, parallelism comes naturally from data-flow
execution.

The major advantage of TALM is that it provides
a coarse-grained parallel model that can take advan-
tage of data-flow. It is also a very flexible model, as
the main data-flow instructions are available, thus al-
lowing full compilation of control in a data-flow fash-

http://arxiv.org/abs/1109.4925v1

ion. This gives the programmer the latitude to choose
from coarser to more fine-grained execution strategies.
This approach contrasts with previous work in data-
flow programming [12, 21, 23], which often aimed at
hiding data-flow execution from the programmer.

A first implementation of TALM, the Trebuchet
system, has been developed as a hybrid Von
Neumann/data-flow execution system for thread-based
architectures in shared memory platforms. Trebuchet
emulates a data-flow machine that supports both
simple instructions and super-instructions. Super-
instructions are compiled as separate functions that
are called by the runtime environment, while regular
instructions are interpreted upon execution. Although
Trebuchet needs to emulate data-flow instructions, ex-
perience showed most running time is within our super-
instructions. Initial results show the parallel engine
to be competitive with state-of-the-art parallel appli-
cations using OpenMP, both in terms of base perfor-
mance, and in terms of speedups [19, 2, 3]. On the
other hand, parallelism for for simple SPMD (Single-
Program Multiple Data) applications can be explored
quite well with tools such as OpenMP. The main bene-
fits exploited by TALM become apparent when exper-
imenting with applications that require more complex
techniques, such as software pipelining or speculative
execution.

The usefulness of TALM clearly depends on how the
programmer can specify and connect super-instructions
together, including the complex task of describing con-
trol using data-flow instructions. We therefore in-
troduce Couillard, a C-compiler designed to compile
TALM annotated C-programs into a data-flow graph,
including the description of program control using dy-
namic data-flow. Couillard is designed to insulate the
programmer from the details of data-flow program-
ming. By requiring the programmer to just anno-
tate the code with the super-instruction definitions
and their dependencies, Couillard greatly simplifies the
task of parallelizing applications with TALM.

This work makes two contributions:

• We define the TALM language, as an extension
of ANSI C and present a full implementation of
the Couillard Compiler, which generates data-flow
graphs and super-instruction code for TALM.

• We evaluate the performance of Couillard on two
state-of-the-art PARSEC [6] benchmarks. We
demonstrate that Trebuchet and Couillard allows
one to explore complex parallel programing tech-
niques, such as non-linear software pipelines and
hiding I/O latency. Comparison with popular par-
allel programming models, such as Pthreads [8],

OpenMP [9] and Intel Thread Building Blocks [22]
shows that our approach is not just competitive
with state-of-the-art technology, but that in fact
can achieve better speedups by allowing one to eas-
ily exploit a sophisticated design space for parallel
programs.

The paper is organized as follows. In Sect. 2 we
briefly review TALM architecture and its implemen-
tation, the Trebuchet. In Sect. 3 we describe TALM
language and Couillard implementation. In Sect. 4
we present performance results on the two PARSEC
benchmarks. In Sect. 5 we discuss some related works.
Last, we present our conclusions and discuss future
work.

2. TALM and Trebuchet

TALM [19, 2, 3] allows application developers to
take advantage of the possibilities available in the data-
flow model in current Von Neumann architectures, in
order to explore TLP in a more flexible way. TALM
ISA sees applications in the form of a data-flow graph
that can be run in parallel.

A main contribution of TALM is that it enables pro-
grammers to introduce user-defined instructions, the so
called super-instructions. TALM assumes a contract
with the programmer whether she or he guarantees
that execution of the super-instruction can start if all
inputs are available, and where she or he guarantees to
make output arguments available as soon as possible,
but not sooner. Otherwise, TALM has no information
on the semantics of individual super-instructions, and
indeed imposes no restrictions. Thus, a programmer
can use shared memory in super-instructions without
having to inform TALM. Although this requires ex-
tra care from the programmer, the advantage is that
TALM allows easy porting of imperative programs and
easily allows program refinement.

TALM has been implemented for multi-cores as a
hybrid Von Neumann/data-flow execution system: the
Trebuchet. Trebuchet is in fact a data-flow virtual ma-
chine that has a set of data-flow processing elements
(PEs) connected in a virtual network. Each PE is as-
sociated with a thread at the host (Von Neumann) ma-
chine. When a program is executed on Trebuchet, in-
structions are loaded into the individual PEs and fired
according to the Data-flow model. Independent in-
structions will run in parallel if they are mapped to
different PEs and there are available cores at the host
machine to run those PEs’ threads simultaneously.

Trebuchet is a Posix-threads based implementation
of TALM. It loads super-instructions as a dynami-

cally linked library. At run-time, execution of super-
instructions is fired by the virtual machine, according
to the data-flow model, but their interpretation comes
down to a procedure call resulting in the direct execu-
tion of the related block.

C Source

.c

Blocks Definition

Transformed Source

.df.c

Library
Compilation

Data-flow Assembly

Data-flow Assembly

.fl

Data-flow
Assembly process

Placement

Execution

Library binary

Binary
Load

Super-Instructions
Code Extraction

Super-Instructions Source

.lib.c

PE N

PE 2
inst 32
inst 45
inst 60

PE 1
inst 3
inst 50
inst 52

inst 19
inst 39
inst 43

.so

N
E
T
W
O
R
K

Figure 1. Work-flow to follow when writing
parallel applications with Trebuchet.

Trebuchet may either rely solely on static schedul-
ing of instructions among PEs or may also use work-
stealing as a tool against imbalance. The work-stealing
algorithm employed by Trebuchet is based on the ABP
algorithm [4], the main difference being that the algo-
rithm developed for Trebuchet provides a FIFO double-
ended queue (deque) instead of a LIFO one, as is the
case for the ABP algorithm. The FIFO order is cho-
sen so that older instructions have execution priority,
which is desirable for the applications we target at this
moment.

Figure 1 shows the work-flow to be followed in or-
der to parallelize a sequential program and execute
on Trebuchet. Initially, blocks that will form super-
instructions are defined. Then, a super-instruction
code extraction is performed to transform all blocks
into functions that will collect input operands from
Trebuchet, process and return output operands. Pro-
filing tools may be used in helping to determine which
portions of code are interesting candidates for paral-
lelization.

In the next step, the transformed blocks are com-
piled into a dynamic library, which will be available
to the abstract machine interpreter. Then, a data-flow

graph connecting all blocks is defined and the data-
flow assembly code is generated. The code may have
both super-instructions and simple (fine-grained) in-
structions. TALM provides all the standard data and
control instructions that one would expect in a dynamic
data-flow machine.

Last, a data-flow binary is generated from the as-
sembly, processor placement is defined, and the binary
code is loaded and executed. As said above, execu-
tion of simple instructions requires full interpretation,
whereas super-instructions are directly executed on the
host machine.

In [2, 3] TALM was used to parallelize a set of 7 ap-
plications: a matrix determinant calculation, a matrix
multiplication application, a ray tracing application,
Equake from SpecOMP 2001, IS from NPB3.0-OMP,
and also LU and Mandelbrot from the OpenMP Source
code Repository [11]. The achieved speedups for 8
threads, in relation to the sequential versions were, re-
spectively 2.52, 4.16, 4.39, 3.61, 3.00, 2.19 and 7.16.
On the other hand, OpenMP versions of those bench-
marks have provided speedups of 1.96, 4.15, 4.39, 3.40,
3.11, 2.19 and 7.13. These results are very promising,
and show that Trebuchet can be very competitive with
OpenMP for regular applications.

Trebuchet provides a natural platform for exper-
imenting with advanced parallel programming tech-
niques. In [19] a thread-level speculation model based
on optimistic transactions with ordered commits was
created for TALM and implemented in Trebuchet. Ex-
ecution of speculative instructions is done within trans-
actions, each one formed by one speculative instruction
and its related Commit instruction. Transactions will
have access only to local copies of the used resources.
Once they finish running, if no conflicts are found, lo-
cal changes will be persisted to global state by Commit

instructions, associated with each speculative instruc-
tion. In case conflicts are found in a speculative in-
struction I, local changes will be discarded and I will
have to be re-executed.

Using speculative execution liberates the program-
mer to consider only explicit dependencies while guar-
anteeing correct execution of coarse-grained tasks.
Moreover, the speculation mechanism does not demand
centralized control, which is a key feature for upcom-
ing many-core systems, where scalability has become
an important concern. To evaluate the speculation sys-
tem, a bank server simulator artificial application was
implemented to simulate scenarios varying computa-
tion load, transaction size, speculation depth, and con-
tention. Results of execution of this application with
up to 24 threads in a 24-core machine suggest that
there is a wide range of situations where speculation

can be very effective and indeed achieve speedups close
to the ideal case.

3. Compilation

The data-flow model exposes thread-level paral-
lelism by taking advantage of how data is exchanged
between processing elements. In this vein, program-
ming in TALM is about identifying parallel tasks and
how data is consumed and produced between them.
The initial Trebuchet implementation provided an ex-
ecution environment for multi-cores, plus an assembler
and loader. It was up to the programmer to code super-
instructions in the library and to write TALM assem-
bly code linking the different instructions together and
specifying control trough data-flow instructions, not al-
ways a trivial task.

In this work we propose Couillard, a C-compiler for
data-flow style execution. With Couillard, the pro-
grammer annotates blocks of code that are going to
become super-instructions, and further annotates the
program variables that correspond to their inputs and
outputs. Couillard then produces the C-code corre-
sponding to each super-instruction to be next compiled
as a shared object to the target architecture and loaded
by Trebuchet. Moreover, Couillard generates TALM
assembly code to connect all super-instructions accord-
ing to the user’s specification. This assembly code
represents the actual data-flow graph of the program.
Moreover, control constructs such as loops and if-then-
else statements that are not within super-instruction
will also be compiled to TALM assembly code. This
assembly code will then be used by Trebuchet to guide
execution, following the data-flow rules.

Couillard front-end uses PLY (Python Lex-Yacc) [5]
and a grammar that is a subset of ANSI-C extended
with super-instruction constructs. Couillard back-end,
to generates TALM assembly code for TALM, super-
instructions C-code (to be compiled into a dynamically
linked library) and a graph representation of the pro-
gram, using Graphviz notation [1].

3.1. Front-end

We assume that super-instructions take most of the
running time of an application, as regular instruc-
tions are mostly used to describe the data and con-
trol relations between super-instructions. Since super-
instruction code will be compiled using a regular C-
compiler and regular instructions tend to be simple,
Couillard does not need to support the full ANSI-C
grammar.

Couillard, therefore adopts a subset of the ANSI-
C grammar extended to support data-flow directives
relative to super-instructions and their dependencies.
We have also changed the syntax of variable declara-
tion and access, which is necessary to parallelize super-
instructions. The compiler front-end produces an AST
(Auxiliary Syntax Tree) that will be processed to gen-
erate a data-flow graph representation.

3.1.1 Blocks and Super-Instructions

The annotation pair #BEGINBLOCK and #ENDBLOCK is
used to mark blocks of code that will not be compiled
to data-flow. Those blocks usually contain include files,
auxiliary function definitions, and global variables dec-
larations, to be used by super-instruction code in the
dynamic library.

Super-instruction annotation is performed according
to the following syntax:

treb_super <single|parallel> input(<inputs_list>)

output(<output_list>)

#BEGINSUPER

...

#ENDSUPER

Super-instructions declared as single will always
have only one instance in the data-flow graph, while
instructions declared as parallel may have multiple
instances that can run in parallel, depending on the
placement and availability of resources at the host ma-
chine. In the example of Fig. 3 (described in more de-
tails in Section 3.4), we have single super-instructions
at the beginning and end of the computation. In con-
trast, the inner code corresponds to parallel super-
instructions.

3.1.2 Variables

Couillard requires the programmer to specify how vari-
ables connect the different super-instructions. More
precisely, all variables used as inputs or outputs of
super-instructions must be previously declared to guar-
antee that data will be exchanged correctly between
instructions (without loss due to wrong type cast-
ings). Also, output variables used on parallel super-
instructions must be declared as follows:

treb_parout <type> <identifier>;

The Storage Classifier treb parout is used because
parallel super-instructions, in general, have multiple in-
stances, Therefore, output variables of parallel super-
instructions will also have multiple instance, one for
each instance of the parallel super-instruction.

When using a treb parout variable as input to an-
other super-instruction (or even in external C-code) it
is necessary to specify the instance that is being ref-
erenced. To do so, Couillard provides the following
syntax:

<identifier>::< NUMBER |

* |

mytid |

(mytid + NUMBER) |

(mytid - NUMBER) |

lattid>

Consider a variable named x. The notation x :: 0
refers to instance 0 of variable x, while x :: ∗ refers
to all instances of this variable (this provides an useful
abstraction when a super-instruction can receive input
from a number of sources). Also, it is often convenient
to refer to the instance for the current (parallel) super-
instruction. If x is used as input to another parallel
super-instruction, we can select x through the expres-
sion x :: mytid. To illustrate this situation, in the ex-
ample of Fig. 3, each instance k (0 ≤ k ≤ 1, since there
are 2 instances of each parallel super-instruction) of
Proc-2A receives as input c :: k, produced by Proc-1.
Expression with + and − are also allowed with mytid.
For example, if a parallel super-instruction X produces
operand a and another parallel super-instructions Y

uses specifies a :: (mytid − 1) as input, it means that
for a task i, Y.i will receive a from X.(i − 1). Last,
the reserved word lasttid refers to the last instance of
a parallel super-instruction and can be used to specify
inputs to parallel and single super-instruction.

For the cases were there are dependencies between
instances of the same parallel super-instructions we can
specify input variables using the following construct:

local.<identifier>::<(mytid + NUMBER) |

(mytid - NUMBER)>

For example, if we state that a parallel super-
instruction s produces operand o and receives local.o ::
(mytid− 2), it means that s.i (instance i of s) depends
on s.(i−2). Moreover, it means that s.0 and s.1 do not
have local dependencies. We can also specify operands
that will be sent only to those independent instances
of s. We use the following syntax:

starter.<identifier>::< NUMBER |

* |

mytid |

(mytid + NUMBER) |

(mytid - NUMBER) |

lattid>

In the former example if we also define starter.c as
an input of s, only s.0 and s.1 will receive this operand.
A practical example of use of this constructs is to se-
rialize distributed I/O operation to hide I/O latency,
explained in Section 3.4.

The rationale to describe parallel code in super-
instructions is simple. The developer first divides the
code in blocks that can be run in parallel. Initializa-
tion and termination blocks will most often be single,
whereas most of the parallel work will be in parallel

blocks. The programmer next specifies how the blocks
communicate. If the communication is purely control-
based the programmer should further add an extra
variable to specify this connection (a common tech-
nique in parallel programming). Note that the pro-
grammer still has to prevent data races between blocks
unless speculative execution is used (which is not yet
supported by the compiler).

3.2. Back-end

After generating an Abstract Syntax Tree (AST) of
a program, Couillard produces its corresponding data-
flow graph. From this graph, it generates three output
files:

1. A .dot file describing the graph in the Graphviz
[1] notation. This file will be used to create an im-
age of that graph, using the Graphviz toolchain.
Although a Graphviz graph is not needed by Tre-
buchet, it may be useful for academic purposes or
to provide a more intelligible look of the produced
graph to the programmers that want to and per-
form manual adjustments to their applications.

2. A .fl file describing the graph using TALM’s ISA.
This file will be the input to Trebuchet ’s Assem-
bler, producing the .flb binary file that will be
loaded into Trebuchet ’s Virtual Machine.

3. A .lib.c file describing the super-instructions as
functions, in C-code, to be compiled as a dynami-
cally linked library, using any regular C-compiler.
All inputs and outputs variables described with
Couillard syntax are automatically declared and
initialized within the generated function. No-
tice also that the super-instruction body does not
need to parsed by Couillard. It is just treated
as the value of a super-instruction node at the
AST representation. This allowed us to focus only
on the instructions necessary to connect super-
instructions in a coarse-grained data-flow graph.

3.3. Auxiliary Functions and Command
Line Arguments

The functions, treb get tid() and
treb get n tasks(), have been added to Tre-
buchet virtual machine and they can be called inside
super-instructions code. The former returns the thread
id of that super-instruction’s instance, while the later
returns the number of threads. Those functions can
be used to identify the portion of work to be done by
each instance.

Figure 2. Example of how to hide I/O latency
with TALM.

In our system, applications are executed within the
Trebuchet virtual machine. Therefore, command line
argument variables cannot be declared within the ap-
plication’s code. They need to be passed trough Tre-
buchet ’s command line. Thus, Trebuchet stores a vec-
tor of command line arguments and the number of ar-
guments at treb superargv and treb superargc vari-
ables, respectively. Then, Couillard declares those
variables as extern when generating the .lib.c file,
meaning that programmers can access those arguments
within super-instructions’ body.

3.4. Illustrative Examples

Figure 2 provides an example of how TALM high-
level language is used to hide I/O latency in a parallel
application. In this example we assume that 300 ele-
ments need to be read from a file, processed and then

the result must be written in an output file. In pane A
we can see the different steps to be performed by super-
instructions (inner code not shown): (i) initialization of
variables and FILE pointers, (ii) reading, (iii) process-
ing, (iv) writing and (v) closing of files. Pane B shows
the associated data-flow graph, generated by Couillard.

Figure 3. Example of non-linear parallel
pipeline with TALM.

One can notice that reading and writing stages are
described as parallel super-instructions, but since there
are local inputs, they will be executed serially (al-
though spread among different PEs). This construct
allows the execution of each processing task to start as
soon as the corresponding read operation has finished,
instead of waiting for the hole read. It also allows writ-
ing the results of each processing task i without having
to wait for tasks x, where x < i, to finish.

Figure 3 provides an example of how to use TALM
high-level language to describe a non-linear parallel
pipeline. The example is a skeleton code of an ap-
plication that reads a file containing a bag of tasks to
be processed and writes the results to another file. The
processing phase can be divided in 3 stages (Proc-1,
Proc-2 and Proc-3). The processing task, Proc-2, was

divided in two different tasks (Proc-2A and Proc-2B),
that are executed conditionally. Figure 3 (pane A)
shows TALM annotations, while the corresponding
data-flow graph for 2 threads, generated by the Couil-
lard compiler, is shown in Fig. 3 (pane B).

4. Experiments and Results

Our goal is to obtain good performance in real ap-
plications and evaluate the TALM for complex parallel
programming. We study how our model performs on
two state-of-the-art benchmarks from the PARSEC [6]
suite: Blackscholes and Ferret. The experiments were
executed 5 times in order to remove discrepancies in the
execution time. We used as parallel platform a machine
with four AMD Six-Core OpteronTM8425 HE (2100
MHz) chips (24 cores) and 64 GB of DDR-2 667MHz
(16x4GB) RAM, running GNU/Linux (kernel 2.6.31.5-
127 64 bits). The machine was running in multi-user
mode, but no other users were in the machine.

Figure 4. Blackscholes results.

We started our study with a regular application:
Blackscholes. It calculates the prices for a portfolio of
European options analytically with the Black-Scholes
partial differential equation (PDE). There is no closed-
form expression for the Black-Scholes equation, and as
such it must be computed numerically. The applica-
tion reads a file containing the portfolio. Black-Scholes
partial differential equation for each option in the port-
folio can be calculated independently. The application
is parallelized with multiple instances of the process-
ing thread that will be responsible for a group of op-
tions. Results are then written sequentially to an out-
put file. The PARSEC suite already comes with 3 par-
allel versions of the Blackscholes benchmark: OpenMP,
Pthreads and TBB. We have produced a Trebuchet ver-
sion of Blacksholes, following the same patterns present

in the PARSEC versions to exploit parallelism. How-
ever, we observed that we can hide I/O latency and
increase memory locality if we have multiple instances
of the input and output threads. Thus, we have also
implemented Blackscholes according to the example
shown at Section 3.4, Figure 2.

Figure 4 shows the results obtained for the Blacksc-
holes benchmark. Using TALM language, it is possible
to obtain good performance (comparable to Pthreads
implementations) in a simple fashion. However, the
flexibility of the language enables the programmer to
achieve even greater results employing more complex
techniques of parallelization.

The second benchmark we considered is an irregular
application called Ferret. This application is based on
the Ferret toolkit which is used for content-based simi-
larity search. It was developed at Princeton University,
and represents emerging next-generation search en-
gines for non-text document data types. Ferret is par-
allelized using the pipeline model and only a Pthreads
version is provided with PARSEC. However, we had
access to a TBB version of Ferret [20] which is also
used in this experiment.

First, we have observed that the task size in Fer-
ret is quite small, and would result in high interpreta-
tion overheads by the virtual machine, specially when
using a large number of cores, where the communica-
tion costs become more apparent. Therefore, we have
adapted the application to process blocks of five images
per task, instead of one.

Figure 5. Ferret results.

Our parallel version of ferret uses a pipeline pat-
tern where the I/O stages are single super-instructions
and processing stages are parallel. We relied at our
work-stealing mechanism (described in Section 2) to
perform dynamic load balancing. Results presented in
Fig. 5 show that our implementation with work steal-

ing (Treb Couillard (WS) at the graphic) obtains close
to linear speedups, for up to 24 cores, and in fact per-
forms better than the TBB version, and very close to
the speedups achieved by the Pthreads version. Also
one can note that work stealing added a significant con-
tribution to the application performance (speedups for
Treb Couillard (no WS) are lower).

Moreover, we have also prepared a manually fine-
tuned version of ferret, using over-subscription to rely
on the operating system to perform load balancing. We
run Trebuchet with 3 times more PEs than the num-
ber of used cores and adjust Trebuchet ’s scheduling
affinity mechanism to use only the cores necessary for
each scenario. Results show that it is possible to over-
come Pthreads’ performance. Nevertheless, this minor
performance gap between a high-level and a manual
TALM implementation could be reduced with improve-
ments on the work stealing mechanism and addition of
code optimization features on Couillard.

5. Related Work

Data-flow is an long standing idea in the parallel
computing community, with a vast amount of work on
both pure and hybrid architectures [23, 13, 7]. Data-
flow techniques are widely used in areas such as inter-
nal computer design and stream processing. Swanson’s
WaveScalar Architecture [23] was an important influ-
ence in our work, as it was a Data-flow architecture
but also showed that it is possible to respect sequen-
tial semantics in the data-flow model, and therefore
run programs written in imperative languages, such as
C and C++. The key idea in WaveScalar is to decou-
ple the execution model from the memory interface, so
that the memory requests are issued according to the
program order. To do so, WaveScalar relied on com-
piler to process memory access instructions to guaran-
tee the program semantics. However, the WaveScalar
approach requires a full data-flow hardware, that has
not been achieved in practice.

Threading Building Blocks (TBB) [22] is a C++ li-
brary designed to provide an abstract layer to help pro-
grammers develop multi-threaded code. TBB enables
the programmer to specify parallel tasks, which leads
to a more high-level programming than implementing
directly the code for threads. Another feature of TBB
is the use of templates to instantiate mechanisms such
as pipelines. The templates, however, have limitations.
For instance, only linear pipelines can be described us-
ing the pipeline template.

Another project that relies on code augmentation
for parallelization is DDMCPP [24]. DDMCPP is a
preprocessor for the Data Driven Multithreading model

[17], which, like TALM, is based on dynamic data-flow.
HMPP [10] is “an Heterogeneous Multi-core Parallel

Programming environment that allows the integration
of heterogeneous hardware accelerators in a seamless
intrusive manner while preserving the legacy code”. It
provides a run time environment, a set of compilation
directives and a preprocessor, so that the program-
mer can specify portions of accelerator codes, called
codelets, that can run at GPGPU, FPGAs, a remote
machine (using MPI) or the CPU itself. Codelets are
pure functions, without side-effects. Multiple codelets
implemented for different hardware can exist and the
runtime environment will chose which codelet will run,
according to hardware availability and compile direc-
tives previously specified. The runtime environment
will also be responsible for the data transfers to/from
the hardware components involved in the computation.

The Galois System [16, 15, 14] is an “object-based
optimistic parallelization system for irregular applica-
tions”. It comprises: (i) syntactic constructs for pack-
ing optimistic parallelism as iteration over ordered and
unordered sets, (ii) a runtime system to detect unsafe
accesses to shared memory and perform the necessary
recovery operations and (iii) assertions about meth-
ods in class libraries. Instead of tracking memory ad-
dresses accessed by optimistic code, Galois tracks high-
level semantics violation on abstract data types. For
each method that will perform accesses to shared mem-
ory, the programmer needs to describe which methods
can be commuted without conflicts (and under which
circumstances). Gallois also introduces an alternative
method to the commutative checks, since it may be
costly [15]. Shared data is partitioned, attributed do
the different processing cores and the system monitors
if partitions are being “touched” by concurrent threads
(which would raise a conflict). Despite the detection
method used, the programmer needs to describe, for
each method that access shared objects, an inverse
method that will be executed in case of rollback. The
runtime system is in charge of detecting conflicts, call-
ing inverse methods and commanding re-execution.

6. Conclusions and Future Work

We have presented the Couillard compiler, that
compiles an extension of the C-language into TALM
code. Initial evaluation on state-of-the-art parallel ap-
plications showed TALM code, generated by Couillard
and running on Trebuchet (a TALM implementation
for multicores), to be competitive with handcrafted
Pthreads and TBB code, up to 24 processors. Eval-
uation also shows that we can significantly improve
performance by simply experimenting with the connec-

tivity and grain of the building-blocks, supporting our
claim that Couillard provides a flexible and scalable
framework for parallel computing.

Work on improving Trebuchet continues. Flexible
scheduling is an important requirement in irregular ap-
plications, we thus have been working on improving the
work stealing mechanism for Trebuchet runtime envi-
ronment. Moreover, placement has a strong impact
on applications performance and scalability. We are
therefore studying efficient ways to perform automatic
placement on Trebuchet.

We are also working on refining Couillard and on in-
troducing new features to the support library. Extend-
ing Couillard to allow the use of templates to describe
application that fit well known parallel patterns and
to enable the use of Trebuchet ’s memory speculation
mechanisms [19] are subject of ongoing research. This
work is based in our experience with porting actual ap-
plications to the framework. Thus, finding applications
that are interesting candidates to be parallelized with
Couillard is constantly within our research goals.

TALM’s super-instructions could also be imple-
mented to different hardware, using different lan-
guages, as in HMPP [10], as long as there is a way to
call them from our virtual machine. Currently, super-
instructions are compiled as functions in a dynamically
linked library, but a interface to call GPGPU or FPGA
accelerators and perform data-transfers could also be
created in our environment. This is subject to on-going
work.

7. *

Acknowledgements To CAPES and Euro-Brazilian
Windows consortium for the financial support given to
the authors of this work.

References

[1] Graphviz web-site. http://www.graphviz.org.
[2] T. A. Alves, L. A. Marzulo, F. M. Franca, and V. S.

Costa. Trebuchet: exploring TLP with dataflow virtu-
alisation. International Journal of High Performance
Systems Architecture, 3(2/3):137, 2011.

[3] T. A. Alves, L. A. J. Marzulo, F. M. G. França, and
V. S. Costa. Trebuchet: Explorando TLP com Virtu-
alização DataFlow. In WSCAD-SSC’09, pages 60–67,
São Paulo, Oct. 2009. SBC.

[4] N. S. Arora, R. D. Blumofe, and C. G. Plaxton.
Thread Scheduling for Multiprogrammed Multiproces-
sors. Theory of Computing Systems, 34(2):115–144,
Jan. 2001.

[5] D. Beazley. PLY - Python Lex-Yacc.
http://www.dabeaz.com/ply/.

[6] C. Bienia. Benchmarking Modern Multiprocessors.
PhD thesis, Princeton University, Jan. 2011.

[7] D. Burger, S. Keckler, K. McKinley, M. Dahlin,
L. John, C. Lin, C. Moore, J. Burrill, R. McDonald,
andW. Yoder. Scaling to the end of silicon with EDGE
architectures. Computer, 37(7):44–55, July 2004.

[8] D. R. Butenhof. Programming with POSIX threads.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1997.

[9] L. Dagum and R. Menon. OpenMP: an industry stan-
dard API for shared-memory programming. IEEE
Computational Science and Engineering, 5(1):46–55,
1998.

[10] R. Dolbeau, S. Bihan, and F. Bodin. HMPP: a hybrid
multi-core parallel programming environment. In First
Workshop on General Purpose Processing on Graphics
Processing Units, 2007.

[11] A. Dorta, C. Rodriguez, F. de Sande, and A. Gonzalez-
Escribano. The OpenMP Source Code Repository. In
13th Euromicro Conference on Parallel, Distributed
and Network-Based Processing, pages 244–250, Wash-
ington, DC, USA, 2005. IEEE.

[12] J. R. Gurd, C. C. Kirkham, and I. Watson. The
Manchester prototype dataflow computer. Commu-
nications of the ACM, 28(1):34–52, Jan. 1985.

[13] K. M. Kavi, R. Giorgi, and J. Arul. Scheduled
Dataflow: Execution Paradigm, Architecture, and
Performance Evaluation. IEEE Transactions on Com-
puters, 50(8):834–846, 2001.

[14] M. Kulkarni, P. Carribault, K. Pingali, G. Rama-
narayanan, B. Walter, K. Bala, and L. P. Chew.
Scheduling strategies for optimistic parallel execution
of irregular programs. In Proceedings of the twentieth
annual symposium on Parallelism in algorithms and
architectures - SPAA ’08, SPAA ’08, page 217, New
York, New York, USA, 2008. ACM Press.

[15] M. Kulkarni, K. Pingali, G. Ramanarayanan, B. Wal-
ter, K. Bala, and L. P. Chew. Optimistic parallelism
benefits from data partitioning. In Proceedings of the
13th international conference on Architectural support
for programming languages and operating systems, AS-
PLOS XIII, pages 233–243, New York, NY, USA,
2008. ACM.

[16] M. Kulkarni, K. Pingali, B. Walter, G. Rama-
narayanan, K. Bala, and L. P. Chew. Optimistic paral-
lelism requires abstractions. In Proceedings of the 2007
ACM SIGPLAN conference on Programming language
design and implementation - PLDI ’07, PLDI ’07, page
211, New York, New York, USA, 2007. ACM Press.

[17] C. Kyriacou, Paraskevas Evripodou, and P. Trancoso.
Data-Driven Multithreading Using Conventional Mi-
croprocessors. IEEE Transactions on Parallel and Dis-
tributed Systems, 17(10):1176–1188, Oct. 2006.

[18] L. A. Marzulo, F. M. Franca, and V. S. Costa. Trans-
actional WaveCache: Towards Speculative and Out-
of-Order DataFlow Execution of Memory Operations.
2008 20th International Symposium on Computer Ar-
chitecture and High Performance Computing, 0:183–
190, Oct. 2008.

http://www.graphviz.org
http://www.dabeaz.com/ply/

[19] L. A. J. Marzulo, T. A. Alves, F. M. G. Franca, and
V. S. Costa. TALM: A Hybrid Execution Model with
Distributed Speculation Support. Computer Archi-
tecture and High Performance Computing Workshops,
International Symposium on, 0:31–36, 2010.

[20] A. Navarro, R. Asenjo, S. Tabik, and C. Ca\cscaval.
Load balancing using work-stealing for pipeline paral-
lelism in emerging applications. In Proceedings of the
23rd international conference on Supercomputing, ICS
’09, pages 517–518, New York, NY, USA, 2009. ACM.

[21] R. Nikhil. Executing a program on the MIT tagged-
token dataflow architecture. IEEE Transactions on
Computers, 39(3):300–318, Mar. 1990.

[22] J. Reinders. Intel threading building blocks : outfitting
C++ for multi-core processor parallelism. O’Reilly,
2007.

[23] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin.
WaveScalar. In Microarchitecture, 2003. MICRO-36.
Proceedings. 36th Annual IEEE/ACM International
Symposium on, pages 291–302. IEEE Comput. Soc,
2003.

[24] P. Trancoso, K. Stavrou, and P. Evripidou. DDMCPP:
The Data-Driven Multithreading C Pre-Processor. In
The 11th Workshop on Interaction between Compilers
and Computer Architectures, page 32. Citeseer, 2007.

	1 . Introduction
	2 . TALM and Trebuchet
	3 . Compilation
	3.1 . Front-end
	3.1.1 Blocks and Super-Instructions
	3.1.2 Variables

	3.2 . Back-end
	3.3 . Auxiliary Functions and Command Line Arguments
	3.4 . Illustrative Examples

	4 . Experiments and Results
	5 . Related Work
	6 . Conclusions and Future Work
	7 . *

