Parallelizing with BDSC, a Resource-Constrained
Scheduling Algorithm for Shared and Distributed
Memory Systems

Dounia Khaldi®*, Pierre Jouvelot?, Corinne Ancourt®

“CRI, Mathématiques et systéemes, MINES ParisTech
85 rue Saint-Honoré, 77805 Fontainebleau

Abstract

We introduce a new parallelization framework for scientific computing based
on BDSC, an efficient automatic scheduling algorithm for parallel programs in
the presence of resource constraints on the number of processors and their local
memory size. BDSC extends Yang and Gerasoulis’s Dominant Sequence Clus-
tering (DSC) algorithm; it uses sophisticated cost models and addresses both
shared and distributed parallel memory architectures. We describe BDSC, its
integration within the PIPS compiler infrastructure and its application to the
parallelization of four well-known scientific applications: Harris, ABF, equake
and IS. Our experiments suggest that BDSC’s focus on efficient resource man-
agement leads to significant parallelization speedups on both shared and dis-
tributed memory systems, improving upon DSC results, as shown by the com-
parison of the sequential and parallelized versions of these four applications
running on both OpenMP and MPI frameworks.

Keywords: Task parallelism, Static scheduling, DSC algorithm, Shared mem-
ory, Distributed memory, PIPS

1. Introduction

“Anyone can build a fast CPU. The trick is to build a fast system.” At-
tributed to Seymour Cray, this quote is even more pertinent when looking at
multiprocessor systems that contain several fast processing units; parallel system
architectures introduce subtle system constraints to achieve good performance.
Real world applications, which operate on a large amount of data, must be able
to deal with limitations such as memory requirements, code size and processor
features. These constraints must also be addressed by parallelizing compilers

*Corresponding author, phone: +33 (1) 6469 4708
Email addresses: khaldi.dounia@gmail.com (Dounia Khaldi),
pierre.jouvelot@mines-paristech.fr (Pierre Jouvelot),
corinne.ancourt@mines-paristech.fr (Corinne Ancourt)

Preprint submitted to Elsevier December 23, 2013

that target such applications and translate sequential codes into efficient parallel
ones.

One key issue when attempting to parallelize sequential programs is to find
solutions to graph partitioning and scheduling problems, where vertices repre-
sent computational tasks and edges, data exchanges. Each vertex is labeled
with an estimation of the time taken by the computation it performs; similarly,
each edge is assigned a cost that reflects the amount of data that need to be
exchanged between its adjacent vertices. Task scheduling is the process that
assigns a set of tasks to a network of processors such that the completion time
of the whole application is as small as possible while respecting the dependence
constraints of each task. Usually, the number of tasks exceeds the number of
processors; thus some processors are dedicated to multiple tasks. Since finding
the optimal solution of a general scheduling problem is NP-complete [1], provid-
ing an efficient heuristic to find a good solution is needed. Efficiency is strongly
dependent here on the accuracy of the cost information encoded in the graph
to be scheduled. Gathering such information is a difficult process in general, in
particular in our case where tasks are automatically generated from program
code.

Scheduling approaches that use static predictions of task characteristics
such as execution time and communication cost can be categorized in many
ways, such as static/dynamic and preemptive/non-preemptive. Dynamic (on-
line) schedulers make run-time decisions regarding processor mapping whenever
new tasks arrive. These schedulers are able to provide good schedules even while
managing resource-constraints (see for instance Tse [2]) and are particularly well
suited when task time information is not perfect, even though they introduce
run-time overhead. In this class of dynamic schedulers, one can even distinguish
between preemptive and non-preemptive techniques. In preemptive schedulers,
the current executing task can be interrupted by an other higher-priority task,
while, in a non-preemptive scheme, a task keeps its processor until termination.
Preemptive scheduling algorithms are instrumental in avoiding possible dead-
locks and for implementing real-time systems, where tasks must adhere to spec-
ified deadlines. EDF (Earliest-Deadline-First) [3] and EDZL (Earliest Deadline
Zero Laxity) [4] are examples of preemptive scheduling algorithms for real-time
systems. Preemptive schedulers suffer from possible loss of predictability, when
overloaded processors are unable to meet the tasks’ deadlines.

In the context of the automatic parallelization of scientific applications we
focus on in this paper, for which task time can be assessed with rather good pre-
cision (see Section 4.2), we decide to focus on (non-preemptive) static schedul-
ing policies'. Even though the subject of static scheduling is rather mature (see
Section 6.1), we believe the advent and widespread market use of multi-core ar-
chitectures, with the constraints they impose, warrant to take a fresh look at its
potential. Indeed, static scheduling mechanisms have, first, the strong advan-

INote that more expensive preemptive schedulers would be required if fairness concerns
were high, which is not frequently the case in the applications we address here.

tage of reducing run-time overheads, a key factor when considering execution
time and energy usage metrics. One other important advantage of these sched-
ulers over dynamic ones, at least over those not equipped with detailed static
task information, is that the existence of efficient schedules is ensured prior to
program execution. This is usually not an issue when time performance is the
only goal at stake, but much more so when memory constraints might impede
a task to be executed at all on a given architecture. Finally, static schedules
are predictable, which helps both at the specification (if such a requirement has
been introduced by designers) and debugging levels.

We introduce thus a new non-preemptive static scheduling heuristic that
strives to give as small as possible schedule lengths, i.e., parallel execution time,
in order to extract the task-level parallelism possibly present in sequential pro-
grams, while enforcing architecture-dependent constraints. Our approach takes
into account resource constraints, i.e., the number of processors, the computa-
tional cost and memory use of each task and the communication cost for each
task exchange?, to provide hopefully significant speedups on realistic shared and
distributed computer architectures. Our technique, called BDSC, is based on
an existing best-of-breed static scheduling heuristic, namely Yang and Gera-
soulis’s DSC (Dominant Sequence Clustering) list-scheduling algorithm [5] [6],
that we equip to deal with new heuristics that handle resource constraints. One
key advantage of DSC over other scheduling policies (see Section 6), besides
its already good performance when the number of processors is unlimited, is
that it has been proven optimal for fork/join graphs: this is a serious asset
given our focus on the program parallelization process, since task graphs repre-
senting parallel programs often use this particular graph pattern. Even though
this property may be lost when constraints are taken into accounts, our exper-
iments on scientific benchmarks suggest that our extension still provides good
performance speedups (see Section 5).

If scheduling algorithms are key issues in sequential program parallelization,
they need to be properly integrated into compilation platforms to be used in
practice. These environments are in particular expected to provide the data
required for scheduling purposes, a difficult problem we already mentioned. Be-
side BDSC, our paper introduces also new static program analysis techniques
to gather the information required to perform scheduling while ensuring that
resource constraints are met, namely a static instruction and communication
cost models, a data dependence graph to enforce scheduling constraints and
static information regarding the volume of data exchanged between program
fragments.

The main contributions of this paper, which introduces a new task-based
parallelization approach that takes into account resource constraints during the
static scheduling process, are:

2Note that processors are usually not considered as a resource in the literature dealing with
scheduling theory. One originality of the approach used in this paper is to suggest to consider
this factor as a resource among others, such as memory limitations.

e “Bounded DSC” (BDSC), an extension of DSC that simultaneously han-
dles two resource constraints, namely a bounded amount of memory per
processor and a bounded number of processors, which are key parameters
when scheduling tasks on actual parallel architectures;

e a new BDSC-based hierarchical scheduling algorithm (HBDSC) that uses
a new data structure, called the Sequence Data Dependence Graph (SDG),
to represent partitioned parallel programs;

e an implementation of HBDSC-based parallelization in the PIPS [7] source-
to-source compilation framework, using new cost models based on time
complexity measures, convex polyhedral approximations of data array
sizes and code instrumentation for the labeling of SDG vertices and edges;

e performance measures related to the BDSC-based parallelization of four
significant programs, targeting both shared and distributed memory ar-
chitectures: the image and signal processing applications Harris and ABF,
the SPEC2001 benchmark equake and the NAS parallel benchmark IS.

This paper is organized as follows. Section 2 presents the original DSC al-
gorithm that we intend to extend. We detail our algorithmic extension, BDSC,
in Section 3. Section 4 introduces the partitioning of a source code into a Se-
quence Dependence Graph (SDG), our cost models for the labeling of this SDG
and a new BDSC-based hierarchical scheduling algorithm (HBDSC). Section 5
provides the performance results of four scientific applications parallelized on
the PIPS platform: Harris, ABF, equake and IS. We also assess the sensitivity
of our parallelization technique on the accuracy of the static approximations of
the code execution time used in task scheduling. Section 6 compares the main
existing scheduling algorithms and parallelization platforms with our approach.
Finally Section 7 concludes the paper and addresses future work.

2. List Scheduling: the DSC Algorithm

In this section, we introduce the notion of list-scheduling heuristics and
present the list-scheduling heuristic called DSC [5].

2.1. List-Scheduling Processes

A labelled direct acyclic graph (DAG) G is defined as G = (T, E, D),
where (1) T' = vertices(G) is a set of n tasks (vertices) T annotated with
an estimation of their execution time task_time(r), (2) E, a set of m edges
e = (73, 7;) between two tasks, and (3) D, a n x n communication edge cost
matrix edge_cost(e); task_time(7) and edge_cost(e) are assumed to be numeri-
cal constants, although we show how we lift this restriction in Section 4.2. The
functions successors(t, G) and predecessors(r, G) return the list of immediate
successors and predecessors of a task 7 in the DAG G. Figure 1 provides an
example of a simple graph, with vertices 7;; vertex times are listed in the vertex
circles while edge costs label arrows.

0
0
@ step | task | tlevel | blevel | DS || scheduled tlevel
Ko K1 K2
T4 0*
1 T3 2 3*
2 T1 0>|<

W ot N
~N Ot Ut

IENEGCRE N
= O W o

2

1
2% 4
0
‘ O

Figure 1: A Directed Acyclic Graph (left) and its scheduling (right); starred tlevels (*) corre-
spond to the selected clusters

A list scheduling process provides, from a DAG G, a sequence of its vertices
that satisfies the relationship imposed by E. Various heuristics try to minimize
the schedule total length, possibly allocating the various vertices in different
clusters, which ultimately will correspond to different processes or threads. A
cluster & is thus a list of tasks; if 7 € k, we note cluster(r) = k. List scheduling
is based on the notion of vertex priorities. The priority for each task 7 is
computed using the following attributes:

e The top level tlevel(T,G) of a vertex 7 is the length of the longest path
from the entry vertex of G to 7. The length of a path is the sum of the com-
munication cost of the edges and the computational time of the vertices
along the path. Tlevels are used to estimate the start times of vertices on
processors: the tlevel is the earliest possible start time. Scheduling in an
ascending order of tlevel tends to schedule vertices in a topological order.
The algorithm for computing the top level of a vertex 7 in a graph is given
in Algorithm 1.

e The bottom level blevel(r,G) of a vertex 7 is the length of the longest
path from 7 to the exit vertex of G. The maximum of the blevel of
vertices is the length ¢pl(G) of a graph’s critical path, which has the longest
path in the DAG G. The latest start time of a vertex 7 is the difference
(cpl(G) — blevel(T,G)) between the critical path length and the bottom
level of 7. Scheduling in a descending order of blevel tends to schedule
critical path vertices first. The algorithm for computing the bottom level
of 7 in a graph is given in Algorithm 2.

To illustrate these notions, the tlevels and blevels of each vertex of the graph

ALGORITHM 1: The tlevel of Task 7 in Graph G

function tlevel(r, G)
tl = 0;
foreach 7, € predecessors(7, G)
level = tlevel(r;, G)+task_time(7;)+edge_cost(m, 7);
if (tl < level) then tl = level;
return tl;
end

ALGORITHM 2: The blevel of Task 7 in Graph G

function blevel (7, G)
bl = 0;
foreach 7; € successors(7, G)
level = blevel(7;, G)4edge_cost(T, 75);
if (bl < level) then bl = level;
return bl+task_time(7);
end

presented in the left of Figure 1 are provided in the adjacent table (we discuss
the other entries in this table later on).

The general algorithmic skeleton for list scheduling a graph G on P clusters
(P can be infinite and is assumed to be always strictly positive) is provided
in Algorithm 3: first, priorities priority(r) are computed for all currently un-
scheduled vertices; then, the vertex with the highest priority is selected for
scheduling; finally, this vertex is allocated to the cluster that offers the earliest
start time. Function f characterizes each specific heuristic, while the set of clus-
ters already allocated to tasks is clusters. Priorities need to be computed again
for (a possibly updated) graph G after each scheduling of a task: task times
and communication costs change when tasks are allocated to clusters. This is
performed by the update_priority values function call.

2.2. The DSC Algorithm

DSC (Dominant Sequence Clustering) is a list-scheduling heuristic for an
unbounded number of processors. The objective is to minimize the top level of
each task. A DS (Dominant Sequence) is a path that has the longest length in
a partially scheduled DAG; a graph critical path is thus a DS for the totally
scheduled DAG. The DSC heuristic computes a Dominant Sequence (DS) after
each vertex is processed, using tlevel(r, G)+blevel(r, G) as priority(r). A ready

ALGORITHM 3: List scheduling of Graph G on P processors

procedure list_scheduling(G, P)
clusters = 0;
foreach 7; € vertices(G)
priority(m) = f(tlevel(7, G), blevel(w, G));
UT = vertices(G); // unscheduled tasks
while UT #0
7 = select_task_with_highest_priority(UT);
k = select_cluster(r, G, P, clusters);
allocate_task_to_cluster(T7 K, G);
update_graph(G);
update_priority_values(G);
UT = UT—{7};
end

vertex T, i.e., for which all predecessors have already been scheduled?®, on one of
the current DSs, i.e., with the highest priority, is clustered with a predecessor
Tp when this reduces the tlevel of 7 by zeroing, i.e., setting to zero, the cost of
the incident edge (7, 7).

To decide which predecessor 7, to select, DSC applies the minimization pro-
cedure tlevel_decrease, which returns the predecessor that leads to the highest
reduction of tlevel for 7 if clustered together, and the resulting tlevel; if no ze-
roing is accepted, the vertex 7 is kept in a new single vertex cluster?. More pre-
cisely, the minimization procedure tlevel_decrease for a task 7, in Algorithm 4,
tries to find the cluster cluster(min_r) of one of its predecessors 7, that reduces
the tlevel of 7 as much as possible by zeroing the cost of the edge (min_r, 7). All
clusters start at the same time, and each cluster is characterized by its running
time, cluster_time(k), which is the cumulated time of all tasks 7 scheduled into
k; idle slots within clusters may exist and are also taken into account in this
accumulation process. The condition cluster(7,) # cluster_undefined is tested
on predecessors of 7 in order to make it possible to apply this procedure for
ready and unready 7 vertices; an unready vertex has at least one unscheduled
predecessor.

DSC is the instance of Algorithm 3 where select_cluster is replaced by the
code in Algorithm 5 (new_cluster extends clusters with a new empty cluster;
its cluster time is set to 0). Note that min_tlevel will be used in Section 2.3.
Since priorities are updated after each iteration, DSC computes dynamically the
critical path based on both tlevel and blevel information. The table in Figure 1

3Part of the allocate_task_to_cluster procedure is to ensure that cluster(r) = s, which
indicates that Task 7 is now scheduled on Cluster k.

4In fact, DSC implements a somewhat more involved zeroing process, by selecting multiple
predecessors that need to be clustered together with 7. We implemented this more sophisti-
cated version, but left these technicalities outside of this paper for readability purposes.

represents the result of scheduling the DAG in the same figure using the DSC
algorithm.

ALGORITHM 4: Minimization DSC procedure for Task 7 in Graph G

function tlevel_decrease(7, G)
min_tlevel = tlevel(r, G);
min_7 = T;
foreach 7, € predecessors(7, G)
where cluster(rp) # cluster_undefined
start_time = cluster_time(cluster(7,))),
foreach 7, € predecessors(7, G) where
cluster(r,) # cluster_undefined
if(7, # 7,) then
level = tlevel(7,, G)+task_time(7,)+edge_cost(r,, 7);

start_time = max(level, start_time);
if(min_tlevel > start_time) then
min_tlevel = start_time;
min_7 = Tp;
return (min_7, min_tlevel);

end

ALGORITHM 5: DSC cluster selection for Task 7 for Graph G on P processors

function select_cluster (7, G, P, clusters)

(min_7, min_tlevel) = tlevel_decrease(7, G);
return (cluster (min_7) # cluster_undefined) ?
cluster(min_7) : new_cluster(clusters);
end

2.3. Dominant Sequence Length Reduction Warranty (DSRW)

DSRW is an additional greedy heuristic within DSC that aims to further
reduce the schedule length. A vertex on the DS path with the highest priority
can be ready or not ready. With the DSRW heuristic, DSC schedules the ready
vertices first, but, if such a ready vertex 7, is not on the DS path, DSRW
verifies, using the procedure in Algorithm 6, that the corresponding zeroing
does not affect later the reduction of the tlevels of the DS vertices 7, that are
partially ready, i.e., such that there exists at least one unscheduled predecessor
of 7,,. To do this, we check if the “partial top level” of 7, which does not take
into account unexamined (unscheduled) predecessors and is computed using
tlevel_decrease, is reducible, once 7, is scheduled.

The table in Figure 1 illustrates an example where it is useful to apply the
DSRW optimization. There, the DS column provides, for the task scheduled

ALGORITHM 6: DSRW optimization for Task 7, when scheduling Task 7. for
Graph G

function DSRW(7., 7., clusters, G)
(min_7, min_tlevel) = tlevel_decrease (7., G);

// before scheduling 7
(7o ,ptlevel_before) = tlevel_decrease(T,, G);

// scheduling 7,

allocate_task_to_cluster (7., cluster(min_7), G);
saved_edge_cost = edge_cost (min_7, 7);
edge_cost (min_7,7.) = 0;

// after scheduling 7
(7o ,ptlevel _after) = tlevel_decrease(7u, G);
if (ptlevel_after > ptlevel_before) then

// (min_7,7.) zeroing not accepted
edge_cost(min_r, 7'7«) = saved_edge_cost;
return false;
return true;
end

Ko K1 Ko K1 K2
T4 T1 T4 T1
73 72 T2 73

Figure 2: Result of DSC on the graph in Figure 1 without (left) and with (right) DSRW

at each step, its priority, i.e., the length of its dominant sequence, while the
last column represents, for each possible zeroing, the corresponding task tlevel;
starred tlevels (*) correspond to the selected clusters. Task 74 is mapped to
Cluster k¢ in the first step of DSC. Then, 73 is selected because it is the ready
task with the highest priority. The mapping of 75 to Cluster k¢ would reduce
its tlevel from 3 to 2. But the zeroing of (74, 73) affects the tlevel of 1o, T being
the unready task with the highest priority. Since the partial tlevel of 75 is 2
with the zeroing of (74,72) but 4 after the zeroing of (74,73), DSRW will fail, and
DSC allocates 73 to a new cluster, k1. Then, 71 is allocated to a new cluster,
Ko, since it has no predecessors. Thus, the zeroing of (74,72) is kept thanks to
the DSRW optimization; the total schedule length is 5 (with DSRW) instead of
7 (without DSRW) (Figure 2).

3. BDSC: A Memory-Constrained, Number of Processor-Bounded
Extension of DSC

This section details the key ideas at the core of our new scheduling process
BDSC, which extends DSC with a number of important features, namely (1)
verifying predefined memory constraints, (2) targeting a bounded number of
processors and (3) trying to make this number as small as possible.

3.1. DSC Weaknesses

A good scheduling solution is a solution that is built carefully, by having
knowledge about previous scheduled tasks and tasks to arrive in the future.
Yet, as stated in [8], “an algorithm that only considers blevel or only tlevel
cannot guarantee optimal solutions”. Even though DSC is a policy that uses
the critical path for computing dynamic priorities based on both the blevel and
the tlevel for each vertex, it has some limits in practice.

The key weakness of DSC for our purpose is that the number of proces-
sors cannot be predefined; DSC yields blind clusterings, disregarding resource
issues. Therefore, in practice, a thresholding mechanism to limit the number
of generated clusters should be introduced. When allocating new clusters, one
should verify that the number of clusters does not exceed a predefined thresh-
old P (Section 3.3). Also, zeroings should handle memory constraints, i.e., by
verifying that the resulting clustering does not lead to cluster data sizes that
exceed a predefined cluster memory threshold M (Section 3.3).

Finally, DSC may generate a lot of idle slots in the created clusters. It
adds a new cluster when no zeroing is accepted without verifying the possible
existence of gaps in existing clusters. We handle this case in Section 3.4, adding
an efficient idle cluster slot allocation routine in the task-to-cluster mapping
process.

3.2. Resource Modeling

Since our extension deals with computer resources, we assume that each
vertex in a DAG is equipped with an additional information, task_data(r),
which is an over-approximation of the memory space used by Task 7; its size
is assumed to be always strictly less than M. A similar cluster_data function
applies to clusters, where it represents the collective data space used by the
tasks scheduled within it. Since BDSC, as DSC, needs execution times and
communication costs to be numerical constants, we discuss in Section 4.2 how
this information is computed.

Our improvement to the DSC heuristic intends to reach a tradeoff between
the gained parallelism and the communication overhead between processors, un-
der two resource constraints: finite number of processors and amount of mem-
ory. We track these resources in our implementation of allocate_task_to_cluster
given in Algorithm 7; note that the aggregation function data_merge is defined
in Section 4.2.

10

ALGORITHM 7: Task allocation of Task 7 in Graph G to Cluster s, with resource
management

procedure allocate_task_to_cluster (7, k, G)
cluster(7) = kK;
cluster_time (k) = max(cluster_time(k), tlevel(r, G)) +
task_time(7);
cluster_data(k) = regions_union(cluster_data(k),
task_data(7));
end

Efficiently allocating tasks on the target architecture requires reducing the
communication overhead and transfer cost for both shared and distributed mem-
ory architectures. If zeroing operations, that reduce the start time of each task
and nullify the corresponding edge_cost, are obviously meaningful for distributed
memory systems, they are also worthwhile on shared memory architectures.
Merging two tasks in the same cluster keeps the data in the local memory, and
even possibly cache, of each thread and avoids their copying over the shared
memory bus. Therefore, transmission costs are decreased and bus contention is
reduced.

3.8. Resource Constraint Warranty

Resource usage affects speed. Thus, parallelization algorithms should try to
limit the size of the memory used by tasks. BDSC introduces a new heuristic to
control the amount of memory used by a cluster, via the user-defined memory
upper bound parameter M. The limitation of the memory size of tasks is impor-
tant when (1) executing large applications that operate on large amount of data,
(2) M represents the processor local (or cache) memory size, since, if the mem-
ory limitation is not respected, transfer between the global and local memories
may occur during execution and may result in performance degradation, and
(3) targeting embedded systems architecture. For each task 7, BDSC computes
an over-approximation of the amount of data that 7 allocates to perform read
and write operations; it is used to check that the memory constraint of Cluster
k is satisfied whenever 7 is included in . Algorithm 8 implements this mem-
ory constraint warranty MCW; data_merge and data_size are functions that
respectively merge data and yield the size (in bytes) of data (see Section 4.2).

The previous line of reasoning is well adapted to a distributed memory archi-
tecture. When dealing with a multicore equipped with a purely shared memory,
such per-cluster memory constraint is less meaningful. We can nonetheless keep
the MCW constraint check within the BDSC algorithm even in this case, if we
set M to the size of the global shared memory. A positive by-product of this
design choice is that BDSC is able, in the shared memory case, to reject com-
putations that need more memory space than available, even within a single
cluster.

11

ALGORITHM 8: Resource constraint warranties, on memory size M and processor
number P

function MCW(7, k, M)
merged_data = data_merge(cluster_data(k), task_data(7));
return data_size(merged_data) < M;

end

function PCW(clusters, P)
return |clusters| < P;

end

Another scarce resource is the number of processors. In the original policy of
DSC, when no zeroing for 7 is accepted, i.e. that would decrease its start time,
7 is allocated to a new cluster. In order to limit the number of created clusters,
we propose to introduce a user-defined cluster threshold P. This processor
constraint warranty PCW is defined in Algorithm 8.

3.4. Efficient Task-to-Cluster Mapping

In the original policy of DSC, when no zeroings are accepted — because none
would decrease the start time of Vertex 7 or DSRW failed —, 7 is allocated to a
new cluster. This cluster creation is not necessary when idle slots are present
at the end of other clusters; thus, we suggest to select instead one of these idle
slots, if this can decrease the start time of 7, without affecting the scheduling
of the successors of the vertices already in these clusters. To insure this, these
successors must have already been scheduled or they must be a subset of the
successors of 7. Therefore, in order to efficiently use clusters and not introduce
additional clusters without needing it, we propose to schedule 7 to the cluster
that verifies this optimizing constraint, if no zeroing is accepted.

This extension of DSC we introduce in BDSC amounts thus to replacing
each definition of the cluster of 7 to a new cluster by a call to end_idle_clusters.
The end_idle_clusters function given in Algorithm 9 returns, among the idle
clusters, the ones that finished the most recently before 7’s top level or the
empty set, if none is found. This assumes, of course, that 7’s dependencies are
compatible with this choice.

To illustrate the importance of this heuristic, suppose we have the DAG
presented in Figure 3. Table 4 exhibits the difference in scheduling obtained
by DSC and our extension on this graph. We observe here that the number of
clusters generated using DSC is 3, with 5 idle slots, while BDSC needs only 2
clusters, with 2 idle slots. Moreover, BDSC achieves a better load balancing
than DSC, since it reduces the variance of the clusters’ execution loads, defined,
for a given cluster, as the sum of the costs of all its tasks: 0.25, for BDSC, vs.
6, for DSC. Finally, with our efficient task-to-cluster mapping, in addition to
decreasing the number of generated clusters, we gain also in the total execution
time. Indeed, our approach reduces communication costs by allocating tasks to

12

ALGORITHM 9: Efficiently mapping Task 7 in Graph G to clusters, if possible

function end_idle_clusters(7, G, clusters)
idle_clusters = clusters;
foreach x € clusters
if (cluster_time(k) < tlevel(7r, G)) then
end_idle_p = TRUE;
foreach 7, € vertices(G) where cluster(7.) = &k
foreach 7, € successors(7:, G)
end_idle_p A= cluster(7s) # cluster_undefined V
Ts € successors (7, G);
if (mend_idle_p) then

idle_clusters = idle_clusters—{x};
last_clusters = argmaXucidleclusters Cluster_time (k) ;
return (idle_clusters != () ? last_clusters : {;
end
1 step | task | tlevel | blevel | DS || scheduled tlevel
1 Ko K1
1 51 0 15 15 0*
e 9 2 | m | 2 13 |15 | 1%
1 =1 9 3 | m 2 12 |14 | 3 2%
@ 4 n 8 6 14 *
1 5 T 8 5 13 8* 10
. 6 | 7 | 13 2 | 15 || 11* 12

Figure 3: A DAG amenable to cluster minimization (left) and its BDSC step-by-step schedul-
ing (right)

the same cluster; for example, as shown in Figure 4, the total execution time
with DSC is 14, but is equal to 13 with BDSC.

To get a feeling for the way BDSC operates, we detail the steps taken to
get this better scheduling in the table of Figure 3. BDSC is equivalent to
DSC until Step 5, where kg is chosen by our cluster mapping heuristic, since
successors(rs, G) C successors(ts, G); no new cluster needs to be allocated.

3.5. The BDSC Algorithm

BDSC extends the list scheduling template provided in Algorithm 3 by taking
into account the various extensions discussed above. In a nutshell, the BDSC
select_cluster function, which decides in which cluster x a task 7 should be
allocated, tries successively the four following strategies:

13

Ko | K1 | ko | total time Ko | k1 | total time
T1 1 T1 1
T3 T2 7 T3 T2 7
T4 | Ts 10 T5 | T4 10
T6 14 T6 13

Figure 4: DSC (left) and BDSC (right) cluster allocations and execution times

1. choose k among the clusters of 7’s predecessors that decrease the start
time of 7, under MCW and DSRW constraints;

2. or, assign x using our efficient task-to-cluster mapping strategy, under the
additional constraint MCW;

3. or, create a new cluster if the PCW constraint is satisfied;

4. otherwise, choose the cluster among all clusters in M CW _clusters_min
under the constraint MCW. Note that, in this worst case scenario, the
tlevel of 7 can be increased, leading to a decrease in performance since the
length of the graph critical path is also increased.

BDSC is described in Algorithms 10 and 11; the entry graph G, is the
whole unscheduled program DAG, P, the maximum number of processors, and
M, the maximum amount of memory available in a cluster. UT denotes the set
of unexamined tasks at each BDSC iteration, RL, the set of ready tasks and
URL, the set of unready ones. We schedule the vertices of G according to the
four rules above in a descending order of the vertices’ priorities. Each time a
task 7. has been scheduled, all the newly readied vertices are added to the set
RL (ready list) by the update_ready_set function.

BDSC returns a scheduled graph, i.e., an updated graph where some zeroings
may have been performed and for which the clusters function yields the clusters
needed by the given schedule; this schedule includes, beside the new graph, the
cluster allocation function on tasks, cluster. If not enough memory is available,
BDSC returns the original graph, and signals its failure by setting clusters to
the empty set.

We suggest to apply here an additional heuristic, in that, if multiple vertices
have the same priority, the vertex with the greatest bottom level is chosen for 7.
(likewise for 7,) to be scheduled first to favor the successors that have the longest
path from 7, to the exit vertex. Also, an optimization could be performed when
calling update_priority values(G); indeed, after each cluster allocation, only
the tlevels of the successors of 7. need to be recomputed instead of those of the
whole graph.

Theorem 1. The time complexity of Algorithm 10 (BDSC) is O(n?), n being
the number of vertices in Graph G.

Proof. In the “while” loop of BDSC, the most expensive computation is the
function end_idle_cluster used in find_cluster that locates an existing cluster
suitable to allocate there Task 7; such reuse intends to optimize the use of the

14

ALGORITHM 10: BDSC scheduling Graph G,, under processor and memory
bounds P and M

function BDSC(G,, P, M)
if (P < 0) then
return error ('Not enough processors’, G,) ;
G = graph_copy (Gu);
foreach 71; € vertices(G)
priority(7;) = tlevel(m, G) + blevel(r;, G);
UT = vertices(G);
RL = {7 € UT / predecessors(r, G) = 0};
URL = UT — RL;
clusters = (;
while UT #0
7 = select_task_with_highest_priority(RL);
(Tm , min_tlevel) = tlevel_decrease (7., G);
if (7 # 7 A MCW(7,, cluster(7p,), M)) then
Tu = select_task_with_highest_priority(URL);
if (priority(7) < priority(7.)) then
if (—-DSRW(7r, 7Tu, clusters, G)) then
if (PCW(clusters, P)) then

k = new_cluster(clusters);
allocate_task_to_cluster (7., K, G);
else

if (—-find_cluster (7., G, clusters, P, M)) then
return error ('Not enough memory’, G,);
else
allocate_task_to_cluster (7., cluster(7m), G);
edge_cost(mm, 7) = 0;
else if (—-find_cluster(7., G, clusters, P, M)) then
return error ('Not enough memory’, Gy);
update_priority_values(G);
UT = UT—{7};
RL = update_ready_set(RL, 7., G);
URL = UT-RL;
clusters(G) = clusters;
return G;
end

limited of processors. Its complexity is proportional to

Z |successors(ty, G)|,

T Evertices(G)

which is of worst case complexity O(n?). Thus the total cost for n iterations of
the “while” loop is O(n?®). O

15

ALGORITHM 11: Attempt to allocate cluster in clusters for Task 7 in Graph G,
under processor and memory bounds P and M, returning true if successful

function find_cluster (7, G, clusters, P, M)
MCW_idle_clusters =
{k € end_idle_clusters (7, G, clusters, P) /
MCW (T, K, M)};
if (MCW_idle_clusters # () then
k = choose_any (MCW_idle_clusters);
allocate_task_to_cluster (7, k, G);
else if (PCW(clusters, P)) then
allocate_task_to_cluster (7, new_cluster(clusters), G);
else
MCW_clusters = {k € clusters / MCW(7, sk, M)};
MCW_clusters_min = argminu c wcu.clusters Cluster_time (k) ;
if (MCW_clusters_min # () then
k = choose_any(MCW_clusters_min);
allocate_task_to_cluster (7, k, G);
else
return false;
return true;
end
function error(m, G)
clusters(G) =
return G;
end

0;

Even though BDSC’s worst case complexity is larger than DSC’s, which is
O(n?log(n)) [5], it remains polynomial, with a small exponent. Our experiments
(see Section 5) showed this theoretical slowdown is indeed not a significant factor
in practice.

4. BDSC-Based Hierarchical Parallelization

In this section, we detail how BDSC can be used, in practice, to schedule
applications. We show how to build from an existing program source code what
we call a Sequence Dependence Graph (SDG), which will play the role of DAG
G above, how to then generate the numerical cost of vertices and edges in SDGs
and how to perform what we call Hierarchical Scheduling (HBDSC) for SDGs.
We use PIPS to illustrate how these new ideas can be integrated in an optimizing
compilation platform.

PIPS [7] is a powerful, source-to-source compilation framework initially de-
veloped at MINES ParisTech in the 1990s. Thanks to its open-source nature,
PIPS has been used by multiple partners over the years for analyzing and trans-
forming C and Fortran programs, in particular when targeting vector, parallel

16

and hybrid architectures. Its advanced static analyses provide sophisticated in-
formation about possible program behaviors, including use-def chains, precondi-
tions, transformers, in-out array regions and worst-case code complexities. All
information within PIPS is managed via specific APIs that are automatically
provided from data structure specifications written with the Newgen domain
specific language [9].

4.1. Hierarchical Sequence Dependence DAG Mapping

PIPS represents user code as abstract syntax trees. We define a subset of
its grammar in Figure 5, limited to the statements S at stake in this paper.
Econd, Elower a0d Eypper are expressions, while I is an identifier. The semantics
of these constructs is straightforward. Note that, in PIPS, assignments are seen
as function calls, where left hand sides are parameters passed by reference. We
use the notion of control flow graph CFG to represent parallel code.

S € Statement ::= sequence(Sy;....;S,) |
teSt(Econd:St:Sf) |
fOflOOP(I, Elower Eupper: Sbody) |

call |
CFG (Centry s Cea:it)
C € Control ::= control(S, Ly, Lpred)

L € Controlx

Figure 5: Abstract syntax tree Statement syntax

We assume that each task 7 includes a statement S = task_statement(r), which
corresponds to the code it runs when scheduled.

In order to partition into tasks real applications, which include loops, tests
and other structured constructs®, into dependence DAGs, our approach is to
first build a Sequence Dependence DAG (SDG) which will be the input for the
BDSC algorithm. Then, we use the code presented in form of an AST to define a
hierarchical mapping function, that we call H, to map each sequence statement
of the code to its SDG. H is used for the input of the HBDSC algorithm. We
present in this section what SDGs are and how an H is built upon them.

4.1.1. Sequence Dependence DAG

A Sequence Dependence DAG (SDG) G is a data dependence DAG where
task vertices 7 are labeled with statements, while control dependences are en-
coded in the abstract syntax trees of statements. Any statement S can label
a DAG vertex, i.e. each vertex 7 contains a statement S, which corresponds

5In this paper, we only handle structured parts of a code, i.e., the ones that do not contain
goto statements. Therefore, within this context, PIPS implements control dependences in its
IR since it is equivalent to an AST (for structured programs, CDG and AST are equivalent).

17

to the code it runs when scheduled. We assume that there exist two functions
verter_statement and statement_vertex such that, on their respective domains of
definition, they satisfy S = vertez_statement(r) and statement_vertex(S,G) = .
In contrast to the usual program dependence graph defined in [10], an SDG is
thus not built only on simple instructions, represented here as call statements;
compound statements such as test statements (both true and false branches)
and loop nests may constitute indivisible vertices of the SDG.

To compute the SDG G for a sequence S = sequence(S;;Ss;.....; Sy, one
may proceed as follows. First, a vertex 7; for each statement S; in S is created;
for loop and test statements, their inner statements are recursively traversed
and transformed into SDGs. Then, using the Data Dependence Graph D, de-
pendences coming from all the inner statements of each S; are gathered to form
cumulated dependences. Finally, for each statement S;, we search for other
statements S; such that there exists a cumulated dependence between them
and add a dependence edge (7;,7;) to G. G is thus the quotient graph of D with
respect to the dependence relation.

Figure 7 illustrates the construction, from the DDG given in Figure 6 (right),
the SDG of the C code (left). The figure contains two SDGs corresponding to
the two sequences in the code; the body S0 of the first loop (in blue) has also an
SDG GO. Note how the dependences between the two loops have been deduced
from the dependences of their inner statements (their loop bodies). These SDGs
and their printouts have been generated automatically with PIPS.

4.1.2. Hierarchical SDG Mapping

We presented above how sequences of statements can be transformed into
SDGs. This section suggests to handle the other types of statements, such as
loops and tests, by adopting a hierarchical view of the source code, encoded
in a new data structure. A hierarchical SDG mapping function H maps each
statement S to an SDG G = H(S) if S is a sequence statement; otherwise G
is equal to L. In the figure 7 we already saw, a hierarchical SDG mapping H
is illustrated. Here, H(S) is G, while, for the SDG GO corresponding to the
body S0 of the loop, one has GO = H(S0). These SDGs have been generated
automatically with PIPS; we use the Graphviz tool for pretty printing [11].

Our introduction of the notions of SDGs and hierarchical mappings is moti-
vated by the following observations, which also support our design decisions:

1. The true and false statements of a test are control dependent upon the
condition of the test statement, while every statement within a loop (i.e.,
statements of its body) is control dependent upon the loop statement
header. If we define a control area as a set of statements transitively
linked by the control dependence relation, our SDG construction process
insures that the control area of the statement of a given vertex is in the
vertex. This way, we keep all the control dependences of a task in our
SDG within itself.

2. We decided to consider test statements as single vertices in the SDG to

18

c = 42;
for(i = 1; i <= 10; i += 1) ‘
void main ()
{ W <i>
int a[10], b[10]; abl = O =
int i,d,c; NI
//S R <i>
W <i>
{
c=42; W <alil> \W <afi
. . . <all]> <all]>
for(i=1;i<=10;i++){ for(i = 1; 4 <= 10; 1 += 1) {| <alil> |R <ali]>
al[i]l = 0;
} W <i>
for(i=1;i<=10;i++){ R <i>
//S0
ali]l = bar(alil); <alil>
d = foo(c); ali] = bar(alil); R <a[i]>
b[i] = al[il+d;
}
} <ali]>
return; d = foole); | |R<alil>
}
W <d>
R <d>
bli] = alil+d;

Figure 6: Example of a C code (left) and the DDG D of its internal S sequence (right, where red
denotes true data-flow dependences, blue, output dependences, and green, anti-dependences)

ensure that they are scheduled on one cluster®, which guarantees the ex-
ecution of the inner code (true or false statements), whichever branch is
taken, on this cluster.

3. We do not group successive simple call instructions into a single “basic
block” vertex in the SDG in order to let BDSC fuse the corresponding
statements so as to maximize parallelism and minimize communications.
Note that PIPS performs interprocedural analyses, which will allow call
sequences to be efficiently scheduled whether these calls represent trivial
assignments or complex function calls.

4.2. Cost Models Generation
Since the volume of data used or communicated by SDG tasks are key fac-
tors in the BDSC scheduling process, we need to as precisely as possible assess

S A cluster is a logical entity which will correspond to one process or thread.

19

W <c>
R <c>

GO = H(S0)

Figure 7: SDGs of S (top) and SO (bottom) computed from the DDG (see the right of
Figure 6); S and SO are specified in the left of Figure 6

this information. PIPS provides an intra- and inter-procedural analysis of array
data flow called regions analysis [12] that computes dependences for each array
element access. Sets of array elements are gathered into array regions, which
are represented by convex polyhedra expressions over the variables values in the
current memory store. For each statement S, two types of sets R of regions
r are considered in this paper: read_regions(S) and write_regions(S) contain
the array elements respectively read and written by S. The two types of regions
are distinguished by a label, either R or W. For instance, in Figure 8, PIPS is
able to infer sets of regions such as:

Rua = {W,a(¢1)/1 < ¢1,¢1 < 10}
Rro = {R,a(¢1)/6 < ¢1,¢1 < 21}

where the write regions Ry, of Array a, modified in the first loop, are the array

elements of a with indices in the interval [1,10]. The read regions R,, of Array
a in the second loop represents the elements with indices in [6,21].

20

// {R,a(¢1)/1 < ¢1, 01 < 10}
/7 AW, a(¢1)/1 < ¢1,¢1 < 10}

// {W,b(¢1)/1 < ¢1, 01 < 10}
for(i = 1; i <= 10; i++) {
alil = f(alil);
b[i]l = 42;

// {R,a(¢1)/6 < ¢1,¢1 < 21}
/7 {W,b(¢1)/6 < 1,91 < 20}
for(j = 6; j <= 20; j++)
bljl=g(aljl,alj+11);

Figure 8: Example of array region analysis

4.2.1. From Convex Polyhedra to Ehrhart Polynomials
Our analysis uses the following operations on sets R; of regions (convex
polyhedra)7:

1. regions_intersection(R1,Rs) is a set of regions; each region r in this set is
the intersection of two regions r; € Ry and ry € Ry referencing the same
array. The convex polyhedron of r is the intersection of the two convex
polyhedra of r; and 79, which is also a convex polyhedron.

2. regions_union(R1,Rs) is a set of regions; each region r in this set is the
union of two regions r; € R; and ry € Ry with the same reference. The
convex polyhedron of r is the union of the two convex polyhedra of 7
and ry, which is not necessarily a convex polyhedron. An approximated
convex hull is thus computed in order to return the smallest enclosing
polyhedron.

Since we are interested in the size of these regions to precisely assess communi-
cation costs and memory requirements, we compute Ehrhart polynomials [13],
which represent the number of integer points contained in a given parameterized
polyhedron, from this region. To manipulate these polynomials, we use various
operations using the Ehrhart API provided by the polylib library [14].

Communication Edge Cost To assess the communication cost between two
SDG vertices, 7; as source and 7o as sink vertices, we rely on the number of
bytes involved in true data-flow dependences, of type “read after write” (RAW),
using the read and write regions as follows:

R,1 = write_regions(vertex_statement (T,))
R.2 = read_regions(vertez_statement (s))

"Note that regions must be defined with respect to a common memory store for these
operations to be properly defined.

21

edge_cost_bytes(t, 72) = Y ehrhart(r)

reregions_intersection(Ry1,Rr2)

In practice, in our experiments (see Section 5), in order to compute commu-
nication times, this polynomial, which represents the message size to commu-
nicate, expressed in number of bytes, is multiplied by the transfer time of one
byte (3), to which is then added the latency time («). These two coefficients
are dependent on the specific target machine. We note:

edge_cost(Ty, To)= a + 8 x edge_cost_bytes(T1, T2)

Local Storage Task Data To provide an estimation of the volume of data
used by each vertex 7, we use the number of bytes of data read and written by
the task statement, via the following definitions :

S = task_statement (T);
task_data(T) = data-merge(read_regions(S), write_regions(S))

where we define data_merge and data_size as follows:

data-merge(Ry, Ra) = regions_union(Ry, Ra)
data_size(R) =) . ehrhart(r)

Execution Task Time In order to determine an average execution time for
each vertex in the SDG, we use a static execution time approach based on a
program complexity analysis provided by PIPS. There, each statement S is
automatically labeled with an expression, represented by a polynomial over
program variables complexity_estimation(S), that denotes an estimation of the
execution time of this statement, assuming that each basic operation (addition,
multiplication...) has a fixed, architecture-dependent execution time. This so-
phisticated static complexity analysis is based on inter-procedural information
such as preconditions. Using this approach, one can define task_time as:

task_time(T) = complexity_estimation(task_statement(t))

4.2.2. From Polynomials to Values

We have just seen how to represent cost, data and time information in terms
of polynomials; yet, running BDSC requires actual values. This is particularly a
problem when computing tlevels and blevels, since cost and time are cumulated
there. We decided to convert cost information into time by assuming that
communication times are proportional to costs, which amounts in particular to
setting communication latency to zero®.

When program variables used in the above-defined polynomials are numer-
ical values, each polynomial is a constant; this happens to be the case for one
of our applications, ABF. However, when input data are unknown at compile
time (as for the Harris application), we suggest to use a very simple heuristic to

8This assumption is validated by our experimental results, and the fact that our data arrays
are large.

22

approximate the values of the polynomials. When all polynomials at stake are
monomials on the same base, we simply keep the coefficient of these monomials.
Even though this heuristics appears naive at first, it actually is quite useful
in the Harris application: Table 1 shows the complexities and time estimation
generated for each function of Harris using PIPS default operation cost model,
where the sizeN and sizeM variables represent the input image size.

Function Complexity (polynomial) | Time estimation
InitHarris 9 X sizeN X sizeM 9
SobelX 60 X sizeN X sizeM 60
SobelY 60 x sizeN x sizeM 60
MultiplY 20 x sizeN x sizeM 20
Gauss 85 x sizeN X sizeM 85
CoarsitY 34 X sizeN X sizeM 34
One image transfer 4 x sizeN X sizeM 4

Table 1: Execution and communication time estimations for Harris using PIPS default cost
models

The general case deals with polynomials that are functions of many variables,
as is the case in equake, where they depend on variables such as ARCHelems or
ARCHnodes. In such cases, we suggest to first instrument the input sequential
code and run it once in order to obtain the numerical values of the polynomi-
als. The instrumented code contains the initial user code plus instructions that
compute the values of the cost polynomials for each statement. BDSC is then
applied, using this cost information, to yield the final parallel program. Note
that this approach is sound since BDSC ensures that the value of a variable
(and thus a polynomial) is the same, whichever scheduling is used. Of course,
this approach will work well, as our experiments suggest, when a program per-
formance does not change when some part of its input parameters are modified;
this is the case for many signal processing applications, where performance is
mostly a function of structure parameters such as image size, and is independent
of the actual signal (pixel) values upon which the program acts.

We show an example of this final case using a part of the instrumented
equake code® in Figure 9. The added instrumentation instructions are fprintf
statements, the second parameter of which represents the statement number of
the following statement, and the third, the value of its execution time for task
time instrumentation. For edge cost instrumentation, the second parameter is
the number of the incident statements of the edge, and the third, the edge cost
polynomial. After execution of the instrumented code, the numerical results of
the polynomials are printed in the file instrumented_equake.in. This file will
be an entry for the PIPS implementation of BDSC.

9We do not show the instrumentation on the statements inside the loops for readability
purposes.

23

FILE x finstrumented = fopen("instrumented_equake.in", "w");
fprintf (finstrumented,
"task_time 62 = %ld\n",179 +* ARCHelems + 3);
for (i = 0; i < ARCHelems; i++){
for (j = 0; j < 4; j++)
cor[j] = ARCHvertex[i]l[j];
}
fprintf(finstrumented,
"task_time 163 = %ld\n", 20 x ARCHnodes + 3);
for(i = 0; i <= ARCHnodes-1; i += 1)
for(j = 0; j <= 2; j += 1)
disp[disptplus][il[j] = 0.0;
fprintf(finstrumented,
"edge_cost 163 — 166 = %ld\n", ARCHnodes * 9);
fprintf (finstrumented,
"task_time 166 = %ld\n",110 * ARCHnodes + 106);
smvp_opt (ARCHnodes, K,
ARCHmatrixcol, ARCHmatrixindex,
displ[dispt], displ[disptplus]);

Figure 9: Excerpt of instrumented equake (S0 is the inner loop sequence)

4.8. Hierarchical Scheduling (HBDSC)

Now that all the information needed by the basic version of BDSC presented
above has been gathered, we detail in Algorithm 12 how we suggest to adapt it
to different SDGs linked hierarchically via the mapping function H introduced
above in order to eventually generate nested parallel code when possible. We
adopt in this section the graph-based parallel programming model since it offers
the freedom to implement arbitrary parallel patterns and since SDGs implement
this model. Therefore, we use the CFG construct of the PIPS IR to encode the
generated parallel code.

4.83.1. Recursive Top-Down Scheduling

Hierarchically scheduling a given statement S of SDG H(S) in a cluster
is seen here as the definition of a hierarchical schedule o which maps each inner
statement s of S to o(s) = (s, k,n). If there are enough processor and memory
resources to schedule S using BDSC, (s',k,n) is a triplet made of a parallel
statement s’ = parallel(o(s)), the cluster k = cluster(o(s)) where s is being
allocated and the number n = nbclusters(o(s)) of clusters the inner scheduling
of s’ requires. Otherwise, scheduling is impossible, and the program stops. In a
scheduled statement, all sequences are replaced by parallel CFG statements.

A successful call to the HBDSC(S, H, k, P, M, o) function defined in Algo-
rithm 12, which assumes that P is strictly positive, yields a new version of
o that schedules S into x and takes into account all inner statements of S;

24

only P clusters, with a data size at most M each, can be used for scheduling.
oS — (5',k,n)] is the function equal to o except for S, where its value is
(S8',k,n). H is the function that yields an SDG for each S to be scheduled
using BDSC.

ALGORITHM 12: BDSC-based update of Schedule o for Statement S of SDG
H(S), with P and M constraints

function HBDSC(S, H, x, P, M, o)
switch (8)
case call:
return o[S — (S, &, 0)];
case sequence(S1;...;S,):
Gseq = closure(S, H(S))
G’ = BDSC(Gseq, P, M, 0);

iter = 0;
do
o' = HBDSC_step(G', H, x, P, M, 0);
G = G,
G’ = BDSC(Gseq, P, M, o');
if (clusters(G') = 0) then
abort (‘Unable to schedule’);
iter++;
o =o0;

while (completion_time(G') < completion_time(G) A
| clusters(G')| < |clusters(G)| A
iter < MAX_ITER)
return o[S —(dag_to_cfg(G), k, |clusters(G)]|)];
case forloop(I, Ejower, Eupper, Sbody):
o' = HBDSC(Spoay, H, £, P, M, 0);
(Sfmdy7 Kbody s nbclusterspody) = 0 (Spody) ;
return o'[S — (forloop(I, Eiower, Euppers Shody) >
K, nbclusterspody) |;
case test(Econa, St, Ss):
o = HBDSC(S:, H, k, P, M, o');
o = HBDSC(Sy, H, x, P, M, o');
(St, k¢, nbclusters;) = 0" (S:);
(8%, kg, nbclustersy) = 0" (Sy);
return ¢”[S — (test(Econa, Si, S}),
%k, max(nbclusters;, nbclustersy))];
end

Our approach is top-down in order to yield tasks that are as coarse grained
as possible when dealing with sequences. In the HBDSC function, we distin-

25

guish four cases of statements. First, the constructs of loops'® and tests are
simply traversed, scheduling information being recursively gathered in different
SDGs. Then, for a call statement, there is no descent in the call graph, the
call statement is returned. In order to handle the corresponding call function,
one has to treat separately the different functions. Next, for a sequence S, one
first accesses its SDG and computes a closure of this DAG, G4, using the
function closure. The purpose of the closure function (see [15]) is to provide a
self-contained version of H(S): H(S) is completed with a set of entry vertices
and edges in order to represent the dependences coming from outside .S, yield-
ing the closed SDG Ggeq. Finally, G4eq is scheduled using BDSC to generate a
scheduled SDG G’.

The hierarchical scheduling process is then recursively performed, to take
into account inner statements of S, within Function HBDSC_step defined in
Algorithm 13 on each statement s of each task of G’. There, G’ is traversed
along a topological sort-ordered descent using the function topsort(G') yields a
list of stages of computation, each cluster_stage being a list of independent lists
L of tasks 7, one L for each cluster x generated by BDSC for this particular
stage in the topological order.

The recursive hierarchical scheduling via the function HBDSC, within the
function HBDSC_step, of each statement s = vertez_statement () may take ad-
vantage of at most P’ available clusters, since |cluster_stage| clusters are already
reserved to schedule the current stage cluster_stage of tasks for Statement S.
It yields a new scheduling function o5. Otherwise, if no clusters are available,
all inner statements of s are scheduled on the same cluster as their parent, k.
We use the straightforward function same_cluster_mapping (not provided here)
to affect recursively (s, &, 0) to o(s.) for each inner s, of s.

Figure 10 illustrates the various entities involved in the computation of such
a scheduling function. Note that one needs to be careful in HBDSC_step to
ensure that each rescheduled inner statement s is allocated a number of clusters
consistent with the one used when computing its parallel execution time; we
check the condition nbclustersl, > nbclusterss, which ensures that the paral-
lelism assumed when computing time complexities within s remains available.

Cluster allocation information for each inner statement s whose vertex in
G’ is T is maintained in o via the recursive call to HBDSC, this time with the
current cluster k = cluster(r). For the non-sequence constructs in Function
HBDSC, cluster information is set to &, the current cluster.

The scheduling of a sequence yields a parallel CFG statement; we use the
function dag_to_cfg(G) that returns a PIPS control flow graph statement S.¢,
from the SDG G, where the vertices of G are the statement control vertices
Scfg Of Scpg, and the edges of G constitute the list of successors Lgyce of scfg

10Regarding parallel loops, since we adopt the task parallelism paradigm, note that, initially,
it may be useful to apply the tiling transformation and then perform full unrolling of the outer
loop (we give more details in the protocol of our experiments in Section 5.1). This way, the
input code contains more potentially parallel tasks resulting from the initial (parallel) loop.

26

ALGORITHM 13: Iterative hierarchical scheduling step for DAG fixpoint compu-
tation

function HBDSC_step(G', H, k, P, M, o)
foreach cluster_stage € topsort(G’)

P/ = P — |cluster_stage |;
foreach L € cluster_stage
nbclusters; = 0;
foreach 7 € L
s = vertex_statement (7);
if (P’ < 0) then
0 = o[s — same_cluster_mapping(s, k, 0)];
else
nbclusters; = (s € domain(o)) 7

nbclusters(o(s)) : 0;
os = HBDSC(s, H, cluster(r), P', M, o);
nbclusters, = nbclusters(os(s));
if (nbclusters’s > nbclusterss A

task_time(7, o) > task_time(7, os) then

nbclusters; = nbclustersy,;
0 = Os;
nbclusters; = max(nbclusters;, nbclusterss);
P —= nbclustersy;
return o;
end

cluster_stage

K=0 K=1 K=2

@ stage 0
L=[T;T,]

stage 1

Figure 10: topsort(G) for the hierarchical scheduling of sequences

while the list of predecessors Ly,eq of s.rq is deduced from Lgyc.. Note that
vertices and edges of G are not changed before and after scheduling; however,
information of scheduling is saved in o

4.8.2. Iterative Scheduling for Resource Optimization

BDSC is called in HBDSC' before inner statements are hierarchically sched-
uled. However, a unique pass over inner statements could be suboptimal, since
parallelism may exist within inner statements. It may be discovered by later
recursive calls to HBDSC. Yet, if this parallelism had been known ahead of
time, previous values of task_time used by BDSC would have been possibly
smaller, which could have had an impact on the higher-level scheduling. In or-
der to address this issue, our hierarchical scheduling algorithm iterates the top
down pass HBDSC_step on the new DAG G’ in which BDSC takes into account
these modified task complexities; iteration continues while G’ provides a smaller
DAG schedule length than G and the iteration limit MAX_ITER has not been
reached. We compute the completion time of the DAG G, as follows:

completion_time(G) = MaX,.cciusters(q) cluster_time(k)

One constraint due to the iterative nature of the hierarchical scheduling is
that, in BDSC, zeroing cannot be made between the entry vertices and their
successors. This keeps an independence in terms of allocated clusters between
the different levels of the hierarchy. Indeed, at a higher level, for S, if we assume
that we have scheduled the parts S, inside (hierarchically) S; attempting to
reschedule S iteratively cancels the precedent schedule of S but maintains the
schedule of S, and vice versa. Therefore, for each sequence, we have to deal
with a new set of clusters; and thus, zeroing cannot be made between these
entry vertices and their successors.

Note that our top-down, iterative, hierarchical scheduling approach also
helps dealing with limited memory resources. If BDSC fails at first because
not enough memory is available for a given task, the HBDSC_step function
is nonetheless called to schedule nested statements, possibly loosening up the
memory constraints by distributing some of the work on less memory-challenged
additional clusters. This might enable the subsequent call to BDSC to succeed.

4.3.8. Parallel Cost Models

In Section 4.2, we present the sequential cost models usable in the case of
sequential codes, i.e, for each first call to BDSC. When an inner statement
S. of S is parallelized, the parameters task_time, task_data and edge_cost are
modified for S, and thus for S. Thus, hierarchical scheduling must use extended
definitions of task_time, task_data and edge_cost for tasks 7 using statements S =
vertex_statement(7) that are CFG statements, extending the definitions provided
in Section 4.2, which still apply to non-CFG statements. For such a case,
we assume that BDSC and other relevant functions take o as an additional
argument to access the scheduling result associated to statement sequences and
handle the modified definitions of task_time, edge_cost and task_data. These
functions can be found in [15].

4.8.4. Complexity of HBDSC Algorithm
Theorem 2. The time complexity of Algorithm 12 (HBDSC) over Statement
S is O(k™), where n is the number of call statements in S and k a constant

28

greater than 1.

Proof. Let t(l) be the worst-case time complexity for our hierarchical scheduling
algorithm on the structured statement S of hierarchical level'! I. Time com-
plexity increases significantly only in sequences, loops and tests being simply
managed by straightforward recursive calls of HBDSC' on inner statements. For
a sequence S, t(1) is proportional to the time complexity of BDSC followed by a
call to HBDSC_step; the proportionality constant is k =MAX_ITER (supposed
to be greater than 1).

The time complexity of BDSC for a sequence of m statements is at most
O(m?) (see Theorem 1). Assuming that all subsequences have a maximum
number m of (possibly compound) statements, the time complexity for the
hierarchical scheduling step function is the time complexity of the topological
sort algorithm followed by a recursive call to HBDSC, and is thus O(m? +
mt(l — 1)). Thus t(I) is at most proportional to k(m3 + m? + mt(l — 1)) ~
km3 + kmt(l — 1). Since t(I) is an arithmetico-geometric series, its analytical
value £(1) is (km)L(ka:ﬁ’lhl)fkms ~ (km)'m?. Let lg be the level for the whole
Statement S. The worst performance occurs when the structure of S is flat, i.e.,
when lg ~ n and m is O(1); hence t(n) = t(ls) ~ k™. O

Even though the worst case time complexity of HBDSC is exponential, we
expect and our experiments suggest that it behaves more tamely on actual,
properly structured code. Indeed, note that lg ~ log,,(n) if S is balanced for
some large constant m; in this case, t(n) ~ (km)*9(") showing a subexponential
time complexity.

5. Experiments

The BDSC algorithm presented in this paper has been designed to offer
better task parallelism extraction performance for parallelizing compilers than
traditional list-scheduling techniques such as DSC. To verify its effectiveness,
BDSC has been implemented in PIPS and tested on actual applications written
in C. In this section, we provide preliminary experimental BDSC-vs-DSC com-
parison results based on the parallelization of four such applications, namely
ABF, Harris, equake and IS. We chose these particular applications since they
are well-known benchmarks and exhibit task parallelization that we hope our
approach will be able to take advantage of. They are: (1) ABF (Adaptive Beam
Forming), a 1,065-line program that performs adaptive spatial radar signal pro-
cessing [16]; (2) Harris, a 105-line image processing corner detector [17]; (3)
the 1,432-line SPEC benchmark equake [18], which is used in the finite element
simulation of seismic wave propagation; and (4) Integer Sort (IS), one of the
eleven benchmarks in the NAS Parallel Benchmarks suite [19], with 1,076 lines.

11T evels represent the hierarchy structure between statements of the AST and are counted
up from leaves to the root.

29

5.1. Protocol

We have extended PIPS with our implementation in C of BDSC-based hierar-
chical scheduling. To compute the static execution time and communication cost
estimates needed by BDSC, we relied upon the PIPS run time complexity anal-
ysis and a more realistic, architecture-dependent communication cost matrix
(Table 1 was computed using the simpler PIPS default cost models). For each
code S of our four test application, PIPS performed automatic parallelization,
applying our hierarchical scheduling process hierarchical_schedule(S, P, M, L)
(using either BDSC or DSC) on these sequential programs to yield o. PIPS
automatically generated an OpenMP [20] version from the scheduled SDGs in
o(S), using omptask directives; another version, in MPI [21], was generated
from the scheduled SDGs. We also applied DSC in the hierarchical schedul-
ing process of these applications and generated the corresponding OpenMP and
MPI codes. Compilation times for these applications were quite reasonable, the
longest (equake) being 84 seconds. In this last instance, most of the time (79
seconds) was spent by PIPS to gather semantic information such as regions,
complexities and dependences; our prototype implementation of BDSC is only
responsible for the remaining 5 seconds.

We ran all these parallelized codes on two shared and distributed memory
computing systems. To increase available coarse-grain task parallelism in our
test suite, we have used both unmodified and modified versions of our applica-
tions. We tiled and fully unrolled the four most costly loops in ABF and equake;
the tiling factor for the BDSC version is the number of available processors,
while we had to find the proper one for DSC, since DSC puts no constraints
on the number of needed processors but returns the number of processors its
scheduling requires. For Harris and IS, our experiments have looked at both
tiled and untiled versions of the applications.

5.2. Experiments on Shared Memory Systems

We measured the execution time of the parallel OpenMP codes on the P
=1, 2,4, 6 and 8 cores of a host Linux machine with a 2-socket AMD quad-
core Opteron with 8 cores, with M = 16 GB of RAM, running at 2.4 GHz.
Figure 11 shows the performance results of the generated OpenMP code on the
two versions scheduled using DSC and BDSC on ABF and equake. The speedup
data show that the DSC algorithm is not scalable, when the number of cores is
increased; this is due to the generation of more clusters with empty slots than
with BDSC, a costly decision given that, when the number of clusters exceeds
P, they have to share the same core as multiple threads.

Figure 11 shows the performance results of the generated OpenMP code on
the two versions scheduled using DSC and BDSC on ABF and equake. The
speedup data show that the DSC algorithm is not scalable on these examples,
when the number of cores is increased; this is due to the generation of more
clusters (task creation overhead) with empty slots (poor potential parallelism
and bad load balancing) than with BDSC, a costly decision given that, when
the number of clusters exceeds P, they have to share the same core as multiple
threads.

30

Speedup

6 m ABF-DSC
ABF-BDSC

5 M equake-DSC
M equake-BDSC

2 4 6 8

1
(ABF:0.35 s
equake: 230 s) Number of cores

Figure 11: ABF and equake speedups with OpenMP

Figure 12 shows the hierachically scheduled SDG for Harris, generated auto-
matically with PIPS using the Graphviz tool for three cores without tiling any
loops (we used three cores because the maximum parallelism in Harris is three,

as can be seen in the graph).

in = InitHarris();
(cluster 0)

SobelY(Gy, in); SobelX(Gx, in);
(cluster 1) (cluster 0)

MultiplY(Ixy, Gx, Gy); MultiplY(lyy, Gy, Gy); MultiplY(Ixx, Gx, Gx);
(cluster 1) (cluster 2) (cluster 0)
Gauss(Sxy, Ixy); Gauss(Sxx, I1xx);
(cluster 1) (cluster 0)
CoarsitY(out, Sxx, Syy, Sxy);
(cluster 0)

Figure 12: Hierarchically scheduled SDG for Harris, using P=3 cores

Gauss(Syy, lyy);
(cluster 2)

Figure 13 presents the speedup obtained using P = 3, since the maximum
parallelism in Harris is three, assuming no exploitation of data parallelism,
for two parallel versions: BDSC with and BDSC without tiling of the kernel
CoarsitY (we tiled by 3). The performance is given using three different input
image sizes: 1024 x 1024, 2048 x 1024 and 2048 x 2048. The best speedup
corresponds to the tiled version with BDSC because, in this case, the three
cores are fully loaded. The DSC version (not shown in the figure) yields the
same results as our versions because the code can be scheduled using three cores.

31

Speedup 3 threads vs. sequential

Harris-OpenMP
M Harris-tiled-OpenMP

1024x1024 2048x1024 2048x2048 |mage size
sequential = 183 ms sequential = 345 ms sequential = 684 ms

Figure 13: Speedups with OpenMP: impact of tiling (P=3)

Figure 14 shows the performance results of the generated OpenMP code on

the NAS benchmark IS after applying BDSC. The maximum task parallelism
without tiling in IS is two, which is shown in the first subchart; the other
subcharts are obtained after tiling. The program has been run with three IS
input classes (A, B and C [19]). The bad performance of our implementation
for Class A programs is due to the large task creation overhead, which dwarfs
the potential parallelism gains, even more limited here because of the small size
of Class A data.

Speedup OpenMP vs. sequential

35 B Class A (sequential = 1.68 s)

3 M Class B (sequential = 4.55 s)
Class C (sequnetial = 28 s)

OMP (2 tasks) OMP-tiled-2 OMP-tiled-4 OMP-tiled-6 OMP-tiled-8
Benchmark version

Figure 14: Speedups with OpenMP for different class sizes (IS)

5.8. Experiments on Distributed Memory Systems

We measured the execution time of the parallel codes on P = 1, 2, 4 and 6

processors of a host Linux machine with 6 bicore processors Intel(R) Xeon(R),

32

with M = 32 GB of RAM per processor, running at 2.5 GHz. Figure 15 presents
the speedups of the parallel MPI vs. sequential versions of ABF and equake us-
ing P = 2, 4 and 6 processors. As before, the DSC algorithm is not scalable,
when the number of processors is increased, since the generation of more clus-
ters with empty slots leads to higher process scheduling cost on processors and
communication volume between them.

Figure 15 presents the speedups of the parallel MPI vs. sequential versions of
ABF and equake using P = 2, 4 and 6 processors. As before, the DSC algorithm
is not scalable, when the number of processors is increased, since the generation
of more clusters with empty slots leads to higher process scheduling cost on
processors and communication volume between them.

Speedup

35 mABF-DSC
ABF-BDSC
3 M equake-DSC
M equake-BDSC

25

2
1.5

1
0.5

0

1 2 4 6
(ABF:0.25s Number of processors

equake: 160 s)

Figure 15: ABF and equake speedups with MPI

Figure 16 presents the speedups of the parallel MPI vs. sequential versions
of Harris using three processors. The tiled version with BDSC gives the same
result as the non-tiled version since the communication overhead is so important
when the three tiled loops are scheduled on three different processors that BDSC
scheduled them on the same processor; this led thus to a schedule equivalent to
the one of the non-tiled version. Compared to OpenMP, the speedups decrease
when the image size is increased because the amount of communication between
processors increases. The DSC version (not shown on the figure) gives the same
results as the BDSC version because the code can be scheduled using three
processors.

Figure 17 shows the performance results of the generated MPI code on the
NAS benchmark IS after application of BDSC. The same analysis as the one for
OpenMP applies here, in addition to communication overhead issues.

33

Harris-MPI
M Harris-tiled-MPI

1024x1024 2048x1024 2048x2048 Image size
sequential = 97 ms Sequential = 244 ms sequential = 442 ms

Speedup 3 processes vs. sequential
o
[e]

Figure 16: Speedups with MPI: impact of tiling (P=3)

3 M Class A (sequential = 0.26 s)
M Class B (sequential = 1.69 s)
25 Class C (sequential = 13.57 s)

Speedup MPI vs. sequential

MPI (2 tasks) MPI-tiled-2 MPI-tiled-4 MPI-tiled-6
Benchmark version

Figure 17: Speedups with MPI for different class sizes (IS)

5.4. Scheduling Robustness

Since our BDSC scheduling heuristic relies on the numerical approximations
of the execution time and communication costs of tasks, one needs to assess its
sensitivity over the accuracy of these estimations. Since a mathematical analysis
of this issue is made difficult by the heuristic nature of BDSC and, in fact, of
scheduling processes in general, we provide below experimental data that show
that our approach is rather robust.

In practice, we ran multiple versions of each application using various static
execution and communication cost models:

e the naive variant, in which all execution times and communications costs
are supposed constant (only data dependence is enforced during the schedul-
ing process);

34

Application | Language | BDSC | Naive | A =50(%) | 80 | 100 | 200 | 1000 | 3000
Horris OpenMP | 153 277 153 153 | 153 | 153 | 153 | 277
MPI 303 378 303 303 | 303 | 303 | 303 | 378
AR OpenMP | 214 321 214 230 | 230 | 246 | 246 | 297
MPI 240 310 240 260 | 260 | 287 | 287 | 310
equake OpenMP 58 134 58 58 | 80 | 80 | 80 | 102
MPI 106 206 106 106 | 162 | 162 | 162 | 188
s OpenMP 16 35 20 20 | 20 | 25 | 25 29
MPI 25 50 32 32 | 32 | 39 | 39 46

Table 2: Run-time sensitivity of BDSC with respect to static cost estimation (in ms for Harris
and ABF; in s for equake and IS).

e the default BDSC cost models described above;

e a biased BDSC cost models, where we modulated each execution time and
communication cost value randomly by at most A% (the default BDSC
cost models would thus correspond to A = 0).

Our intent, with introduction of different cost models, is to assess how small to
large differences to our estimation of task times and communication costs im-
pact the performance of BDSC-scheduled parallel code. We would expect that
parallelization based on the naive variant cost models would yield the worst
schedules, thus motivating our use of complexity analysis for parallelization
purposes if the schedules that use our default cost models are indeed better.
Adding small random biases to task times and communication costs should not
modify too much the schedules (to demonstrate stability), while adding larger
ones might, showing the quality of the default cost models used for paralleliza-
tion.

Table 2 provides, for each application (Harris, ABF, equake and IS) and
execution environment (OpenMP and MPI), the worst execution time obtained
within batches of about 20 runs of programs scheduled using the naive, default
and biased cost models. For this last case, we only kept in the table the entries
corresponding to significant values of A, namely those at which, for at least one
application, the running time changed. So, for instance, when running ABF on
OpenMP, the naive approach run time is 321 ms, while BDSC clocks at 214;
adding random increments to the task communication and execution estimations
provided by our cost models (Section 4.2) of up to, but not including, 80%
does not change the scheduling, and thus running time. At 80%, running time
increases to 230, and reaches 297 when A = 3, 000.

As expected, the naive variant always provides schedules that have the worst
execution times, thus motivating the introduction of performance estimation in
the scheduling process. Even more interestingly, our experiments show that one
needs to introduce rather large task time and communication cost estimation
errors, i.e., values of A, to make the BDSC-based scheduling process switch to
less efficient schedules. This set of experimental data thus suggests that BDSC is
a rather useful and robust heuristic, well adapted to the efficient parallelization
of scientific applications.

35

6. Related Work

In this section, we survey the main existing list-scheduling algorithms and
review the key approaches to automate the parallelization of programs using
different scheduling policies; we compare them to BDSC and our BDSC-based
parallelization process.

6.1. Scheduling Algorithms

Given the breadth of the literature on scheduling, we limit this presentation
to heuristics that implement static list-scheduling processes. We first compare
BDSC with six scheduling algorithms for a bounded number of clusters, namely
HLFET, ISH, MCP, HEFT, CEFT and ELT. Then, we compare BDSC with four
scheduling algorithms or techniques that regroup clusters on physical processors,
i.e., LPGS, LSGP, Triplet and PYRROS.

6.1.1. Bounded Number of Clusters

The Highest Level First with Estimated Times (HLFET) [22] and Inser-
tion Scheduling Heuristic (ISH) [23] algorithms use static blevels for ordering;
scheduling is performed according to a descending order of blevels. To schedule
a task, they select the cluster that offers the earliest execution time, using a
non-insertion approach, i.e., not taking into account idle slots within existing
clusters to insert that task. If scheduling a given task introduces an idle slot, ISH
adds the possibility of inserting from the ready list tasks that can be scheduled
to this idle slot. Since, in both algorithms, only blevels are used for scheduling
purposes, optimal schedules for fork/join graphs cannot be guaranteed.

The Modified Critical Path (MCP) algorithm [24] uses the latest start times,
i.e., the critical path length minus blevel, as task priorities. It constructs a list
of tasks in an ascending order of latest start times, and searches for the cluster
yielding the earliest execution using the insertion approach. As before, it cannot
guarantee optimal schedules for fork/join structures.

The Heterogeneous Earliest-Finish-Time (HEFT) algorithm [25] selects the
cluster that minimizes the earliest finish time using the insertion approach. The
priority of a task, its upward rank, is the task blevel. Since this algorithm
is based on blevels only, it cannot guarantee optimal schedules for fork/join
structures.

The Constrained Earliest Finish Time (CEFT) [26] algorithm schedules tasks
on heterogeneous systems. It uses the concept of constrained critical paths
(CCPs) that represent the tasks ready at each step of the scheduling process.
CEFT schedules the tasks in the CCPs using the finish time in the entire CCP.
The fact that CEFT schedules critical path tasks first cannot guarantee optimal
schedules for fork and join structures even if sufficient processors are provided.

Contrarily to the five proposals above, BDSC preserves, when no resource
constraints exist, the DSC characteristics of optimal scheduling for fork/join
structures, since it uses the critical path length for computing dynamic priorities,
based on blevels and tlevels. HLFET, ISH and MCP guarantee that the current
critical path will not increase, but they do not attempt to decrease the critical

36

path length; BDSC decreases the length of each task DS and starts with a
ready vertex to simplify the computation time of new priorities. When resource
scarcity is a factor, BDSC introduces a simple, two-step heuristics for task
allocation: to schedule tasks, it first searches for possible idle slots in already
existing clusters and, otherwise, picks a cluster with enough memory. Our
experiments suggest that such an approach provides good schedules.

Extended Latency Time (ELT) algorithm [27] assigns tasks to a parallel
machine with shared memory. It uses the attribute of synchronization time
instead of communication time because this does not exist in a machine with
shared memory. BDSC targets both shared and distributed memory systems.

Kwork and Ahmad [28] have implemented and compared 15 scheduling algo-
rithms. They found that, among the critical-path-based algorithms, dynamic-
list algorithms such as DSC perform better than static-list ones. The insertion
technique, which puts tasks within idle slots, improves scheduling. DSC does not
implement this technique, while, thanks to our efficient task-to-cluster mapping
strategy, which uses an insertion technique, BDSC yields better performance.

6.1.2. Cluster Regrouping on Physical Processors

The Locally Parallel-Globally Sequential (LPGS) [29] and Locally Sequential-
Globally Parallel (LSGP) [30] algorithms are two techniques that, from a sched-
ule for an unbounded number of clusters, remap the solutions to a bounded num-
ber of clusters. In LSGP, clusters are partitioned into blocks, each block being
assigned to one cluster (locally sequential). The blocks are handled separately
by different clusters, which can be run in parallel (globally parallel). LPGS links
each original one-block cluster to one processor (locally parallel); blocks are ex-
ecuted sequentially (globally sequential). BDSC computes a bounded schedule
on the fly and covers many more other possibilities of scheduling than LPGS
and LSGP.

Triplet [31] is a clustering algorithm for heterogeneous architectures. It
proceeds, first, by clustering tasks while assuming an unbounded number of
clusters and, then, a second clustering of these first clusters is performed to
merge them on actual processors. Here, the sorting of tasks is based on tlevel
estimates only, contrarily to BDSC, which uses better information.

PYRROS [32] is also based on a two-step method for scheduling. The first
step assumes an unbounded number of clusters and uses the DSC algorithm.
Then, in the second step, an other clustering, on P processors, is performed,
using cluster merging. This mapping sorts the clusters in the ascending order
of their loads and then maps each cluster to a processor in such a way that all
processors are as well balanced as possible. An another mapping is also used in
order to minimize the communication costs between the P processors, using a
pairwise interchange and task reordering heuristic. Note that, in this method,
each step may change the decisions taken in the precedent step. For example,
the ordering of tasks performed using DSC is modified during the second step.
Also, in this second step, load balancing may be lost when performing the
communication reduction heuristic.

37

The main difference between BDSC and the techniques that remap clusters
on physical processors is that BDSC computes, by design, a bounded schedule.
This is efficient in term of algorithmic complexity. Moreover, communication
minimization is done once, while load balancing is ensured by our efficient task-
to-cluster mapping heuristic. BDSC handles completion time and communica-
tion cost minimization and load balancing as parts of a single process.

Note that all the works surveyed here and in Section 6.1.1 do not explain
how information about costs of communication or execution times of tasks is
obtained; they also do not address the construction of the DAG; finally, BDSC
is the only scheduling algorithm that takes into account the memory parameter,
ignored in all these works. Our paper provides a much broader picture, from
analyzing sequential codes up to the generation of scheduled task graphs.

6.2. Parallelization Tools

In this section, we review several approaches that intend to automate the
parallelization of programs using different granularities and scheduling policies.
Given the breadth of literature on this subject, we limit this presentation to
approaches that focus on static list-scheduling methods.

Sarkar’s work on the partitioning and scheduling of parallel programs [33] for
multiprocessors introduced a compile-time method where a GR, (Graphical Rep-
resentation) program is partitioned into parallel tasks at compile time. A GR
graph has four kinds of vertices: “simple”, to represent an indivisible sequen-
tial computation, “function call”, “parallel”, to represent parallel loops, and
“compound”, for conditional instructions. Sarkar presents an approximation
parallelization algorithm. Starting with an initial fine granularity partition,
Py, tasks (chosen by heuristics) are iteratively merged till the coarsest parti-
tion P, (with one task containing all vertices), after n iterations, is reached.
The partition P,,;, with the smallest parallel execution time in the presence of
overhead (scheduling and communication overhead) is chosen. For scheduling,
Sarkar introduces the EZ (Edge-Zeroing) algorithm that uses blevels for order-
ing: it is based on edge weights for clustering; all edges are examined from the
largest edge weight to the smallest; it then proceeds by zeroing the highest edge
weight if the completion time decreases. While this algorithm is based only on
the blevel for an unbounded number of processors and does not recompute the
priorities after zeroings, BDSC adds resource constraints and is based on both
blevels and dynamic tlevels.

The OSCAR Fortran Compiler [34] is used as a preprocessor from Fortran
to parallelized OpenMP Fortran. OSCAR partitions a program into a macro-
task graph, where vertices represent macro-tasks of three kinds, namely basic,
repetition and subroutine blocks. The coarse grain task parallelization proceeds
as follows. First, the macro-tasks are generated by decomposition of the source
program. Then, a macro-flow graph is generated to represent data and control
dependences on macro-tasks. The macro-task graph is subsequently generated
via the analysis of parallelism among macro-tasks using an earliest executable
condition analysis that represents the conditions on which a given macro-task
may begin its execution at the earliest time, assuming precedence constraints. If

38

a macro-task graph has only data dependence edges, macro-tasks are assigned
to processors by static scheduling. If a macro-task graph has both data and
control dependence edges, macro-tasks are assigned to processors at run time by
a dynamic scheduling routine. In addition to dealing with a richer set of resource
constraints, BDSC targets both shared and distributed memory systems with
cost models based on communication, used data and time estimations.

Pedigree [35] is a compilation tool based on the program dependence graph
(PDG). The PDG is extended by adding a new type of vertex, a Par vertex,
which groups children vertices reachable via the same branch conditions. Pedi-
gree proceeds by estimating a latency for each vertex and data dependences
edge weights in the PDG. The scheduling process orders the children and as-
signs them to a subset of the processors. For scheduling, vertices with mini-
mum early and late times are given highest priority; the highest priority ready
vertex is selected for scheduling based on the synchronization overhead and la-
tency. While Pedigree operates on assembly code, PIPS and our extension for
task-parallelism using BDSC offer a higher-level, source-to-source parallelization
framework. Moreover, Pedigree generated code is specialized for only symmet-
ric multiprocessors, while BDSC targets many architecture types, thanks to its
resource constraints and cost models.

The SPIR (Signal Processing Intermediate Representation) compiler [36]
takes a sequential dataflow program as input and generates a multithreaded
parallel program for a multicore system. First, SPIR builds a stream graph
where a vertex corresponds to a kernel function call or to the condition of an “if”
statement; an edge denotes a transfer of data between two kernel function calls or
a control transfer by an “if” statement (true or false). Then, for task scheduling
purposes, given a stream graph and a target platform, the task scheduler assigns
each vertex to a processor in the target platform. It allocates stream buffers,
and generates DMAs under given memory and timing constraints. The degree
of automation of BDSC is larger than SPIR’s, because this latter system needs
several keywords extensions plus the C code denoting the streaming scope within
applications. Also, the granularity in SPIR is a function, whereas BDSC uses
several granularity levels.

7. Conclusion

This paper presents a new parallelization framework for scientific comput-
ing based on the resource-constrained, list-scheduling heuristic BDSC, which
extends the DSC (Dominant Sequence Clustering) algorithm, and its practi-
cal use, via hierarchical scheduling, when parallelizing scientific applications.
This extension improves upon DSC by dealing with memory- and number-
of-processors-constrained parallel architectures, while still yielding faster task
schedules thanks to efficient task-to-cluster mapping. The use of BDSC benefits
from a sophisticated execution and communication cost models, based on either
static code analysis or a dynamic-based instrumentation assessment tool.

Preliminary experimental results suggest that BDSC provides more efficient
schedules than DSC. We illustrate the positive impact of the integration of

39

BDSC within the PIPS automatic parallelization compiler infrastructure using
the signal processing application ABF (Adaptive Beam Forming), the image
processing application Harris, the SPEC benchmark equake and the NAS par-
allel benchmark IS on both shared and distributed memory systems.

Future work might address the analysis of the potential benefits that an
hybrid approach that would mix BDSC and dynamic scheduling could offer.

Acknowledgments

We thank Francois Irigoin for many insightful and helpful discussions, Fran-
cois Willot, for his help regarding our experiments on a distributed machine,
and the reviewers, for their thorough comments and suggestions.

References

[1] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman & Co., New York, NY, USA,
1990.

[2] S. Tse, Online Bounds on Balancing Two Independent Criteria with Repli-
cation and Reallocation, Computers, IEEE Transactions on 61 (11) (2012)
1601-1610.

[3] T. P. Baker, Multiprocessor EDF and Deadline Monotonic Schedulability
Analysis, in: Proceedings of the 24th IEEE International Real-Time Sys-
tems Symposium, RTSS ’03, IEEE Computer Society, Washington, DC,
USA, 2003, pp. 120-129.

[4] M. Cirinei, T. P. Baker, EDZL Scheduling Analysis, in: Proceedings of
the 19th Euromicro Conference on Real-Time Systems, IEEE Computer
Society, Washington, DC, USA, 2007, pp. 9-18.

[6] T. Yang, A. Gerasoulis, DSC: Scheduling Parallel Tasks on an Unbounded
Number of Processors., IEEE Trans. Parallel Distrib. Syst. 5 (9) (1994)
951-967.

[6] A. Gerasoulis, S. Venugopal, T. Yang, Clustering Task Graphs for Message
Passing Architectures, SIGARCH Comput. Archit. News 18 (3b) (1990)
447-456.

[7] F. Irigoin, P. Jouvelot, R. Triolet, Semantical Interprocedural Paralleliza-
tion: An Overview of the PIPS Project, in: Proceedings of the 5th Inter-
national Conference on Supercomputing, ICS '91, ACM, New York, NY,
USA, 1991, pp. 244-251.

[8] Y.-K. Kwok, I. Ahmad, Static Scheduling Algorithms for Allocating Di-
rected Task Graphs to Multiprocessors, ACM Comput. Surv. 31 (1999)
406-471.

40

[9]

P. Jouvelot, R. Triolet, Newgen: A Language Independent Program Gen-
erator, Tech. rep., CRI/A-191, MINES ParisTech (July 1989).

J. Ferrante, K. J. Ottenstein, J. D. Warren, The Program Dependence
Graph And Its Use In Optimization, ACM Trans. Program. Lang. Syst.
9 (3) (1987) 319-349.

Graphviz, Graph Visualization Software, http://wuw.graphviz.org.

B. Creusillet, F. Irigoin, Interprocedural Array Region Analyses, Interna-
tional Journal of Parallel Programming 24 (6) (1996) 513-546.

E. Ehrhart, Polyndomes arithmétiques et méthode de polyedres en combi-
natoire, International Series of Numerical Mathematics (1977) 35.

PolyLib, A Library of Polyhedral Functions, http://icps.u-strasbg.
fr/polylib/.

D. Khaldi, Automatic Resource-Constrained Static Task Parallelization: A
Generic Approach, Ph.D. thesis, MINES ParisTech, A/538/CRI (November
2013).

L. Griffiths, A Simple Adaptive Algorithm for Real-Time Processing in
Antenna Arrays, Proceedings of the IEEE 57 (1969) 1696 — 1704.

C. Harris, M. Stephens, A Combined Corner and Edge Detector, in: Pro-
ceedings of the 4th Alvey Vision Conference, 1988, pp. 147-151.

H. Bao, J. Bielak, O. Ghattas, L. F. Kallivokas, D. R. O’Hallaron, J. R.
Shewchuk, J. Xu, Large-scale Simulation of Elastic Wave Propagation in
Heterogeneous Media on Parallel Computers, Computer Methods in Ap-
plied Mechanics and Engineering 152 (1-2) (1998) 85-102.

NPB, NAS Parallel Benchmarks, http://www.nas.nasa.gov/
publications/npb.html.

OpenMP, Specifications, http://openmp.org/wp/
openmp-specifications/.

MPI, Message Passing Interface, http://www-unix.mcs.anl.gov/mpi.

T. L. Adam, K. M. Chandy, J. R. Dickson, A Comparison of List Schedules
For Parallel Processing Systems, Commun. ACM 17 (12) (1974) 685-690.

B. Kruatrachue, T. G. Lewis, Duplication Scheduling Heuristics (DSH):
A New Precedence Task Scheduler for Parallel Processor Systems, Oregon
State University, Corvallis, OR, (1987).

M.-Y. Wu, D. D. Gajski, Hypertool: A Programming Aid For Message-
Passing Systems, IEEE Trans. on Parallel and Distributed Systems 1 (1990)
330-343.

41

[25]

[36]

H. Topcuouglu, S. Hariri, M.-y. Wu, Performance-Effective and Low-
Complexity Task Scheduling for Heterogeneous Computing, IEEE Trans.
Parallel Distrib. Syst. 13 (3) (2002) 260-274.

M. A. Khan, Scheduling for Heterogeneous Systems using Constrained Crit-
ical Paths, Parallel Computing 38 (4-5) (2012) 175 — 193.

M. Solar, M. Inostroza, A Scheduling Algorithm to Optimize Real-World
Applications, in: Proceedings of the 24th International Conference on Dis-
tributed Computing Systems Workshops, Volume 7, ICDCSW °04, IEEE
Computer Society, Washington, DC, USA, 2004, pp. 858-862.

Y.-K. Kwok, I. Ahmad, Benchmarking the Task Graph Scheduling Algo-
rithms, in: Parallel Processing Symposium, 1998. IPPS/SPDP 1998. Pro-
ceedings of the First Merged International ... and Symposium on Parallel
and Distributed Processing 1998, 1998, pp. 531-537.

D. I. Moldovan, J. A. B. Fortes, Partitioning and Mapping Algorithms into
Fixed Size Systolic Arrays, IEEE Trans. Comput. 35 (1) (1986) 1-12.

K. Jainandunsing, Optimal Partitioning Scheme for Wavefront/Systolic Ar-
ray Processors, in: Proceedings of IEEE Symposium on Circuits and Sys-
tems, 1986, pp. 940-943.

B. Cirou, E. Jeannot, Triplet: A Clustering Scheduling Algorithm for Het-
erogeneous Systems, in: Parallel Processing Workshops, 2001. International
Conference on, 2001, pp. 231-236.

T. Yang, A. Gerasoulis, PYRROS: Static Task Scheduling and Code Gen-
eration for Message Passing Multiprocessors, in: Proceedings of the 6th
International Conference on Supercomputing, ICS ’92, ACM, New York,
NY, USA, 1992, pp. 428-437.

V. Sarkar, Partitioning and Scheduling Parallel Programs for Multiproces-
sors, MIT Press, Cambridge, MA, USA, 1989.

H. Kasahara, H. Honda, A. Mogi, A. Ogura, K. Fujiwara, S. Narita,
A Multi-Grain Parallelizing Compilation Scheme for OSCAR, (Optimally
Scheduled Advanced Multiprocessor), in: Proceedings of the Fourth Inter-
national Workshop on Languages and Compilers for Parallel Computing,
Springer-Verlag, London, UK, 1992, pp. 283-297.

C. Newburn, J. Shen, Automatic Partitioning of Signal Processing Pro-
grams for Symmetric Multiprocessors, in: Proceedings of the 1996 Con-
ference on Parallel Architectures and Compilation Techniques, 1996, pp.
269-280.

Y. Choi, Y. Lin, N. Chong, S. Mahlke, T. Mudge, Stream Compilation for
Real-Time Embedded Multicore Systems, in: Proceedings of the 7th annual
IEEE/ACM International Symposium on Code Generation and Optimiza-
tion, CGO ’09, Washington, DC, USA, 2009, pp. 210-220.

42

