
Using Shared-Data Localization to Reduce the Cost

of Inspector-Execution in Unified-Parallel-C Programs

Michail Alvanosa,c,1,∗, Ettore
Tiotto2,b, José Nelson Amaral3,e, Montse Farreras5,d, Xavier Martorell4,d

aBarcelona Supercomputing Center, C/ Jordi Girona, 1-3, Barcelona, Spain, 08034
b IBM Toronto Software Laboratory, Warden Ave, Markham, ON L6G 1C7, Canada

c IBM Canada CAS Research, Warden Ave, Markham, ON L6G 1C7, Canada
d Department of Computer Architecture,

Universitat Politècnica de Catalunya, C/ Jordi Girona, 1-3, Barcelona 08034, Spain.
e Department of Computing Science,

University of Alberta, Athabasca Hall (ATH) 342, T6G 2E8, Edmonton, Alberta, Canada

Abstract

Programs written in the Unified Parallel C (UPC) language can access
any location of the entire local and remote address space via read/write
operations. However, UPC programs that contain fine-grained shared ac-
cesses can exhibit performance degradation. One solution is to use the
inspector-executor technique to coalesce fine-grained shared accesses to larger
remote access operations. A straightforward implementation of the inspector-
executor transformation resultin excessive instrumentation that hinders per-
formance.

This paper addresses this issue and introduces various techniques that
aim at reducing the generated instrumentation code: a shared-data local-
ization transformation based on Constant-Stride Linear Memory Descriptors
(CSLMADs) [32], the inlining of data locality checks and the usage of an in-
dex vector to aggregate the data. Finally, the paper introduces a lightweight

∗Corresponding author
1Email: malvanos@gmail.com
2Email: etiotto@ca.ibm.com
3Email: amaral@cs.ualberta.ca
4Email: xavim@ac.upc.edu
5Email: mfarrera@ac.upc.edu

1

*Manuscript

Click here to view linked References

ruben pocull
Texto escrito a máquina
© <2016>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-0nd/4.0/
DOI 10.1016/j.parco.2016.03.002

ruben pocull
Texto escrito a máquina

ruben pocull
Texto escrito a máquina

ruben pocull
Texto escrito a máquina

loop code motion transformation to privatize shared scalars that were prop-
agated through the loop body.

A performance evaluation, using up to 2048 cores of a POWER 775,
explores the impact of each optimization and characterizes the overheads
of UPC programs. It also shows that the presented optimizations increase
performance of UPC programs up to 1.8× their UPC hand-optimized coun-
terpart for applications with regular accesses and up to 6.3× for applications
with irregular accesses.

1. Introduction

New parallel languages and programming models provide simpler means
to develop applications that can run on parallel systems without sacrificing
performance. Partitioned Global Address Space (PGAS) languages [16, 31,
2, 18, 12, 37] extend existing languages with constructs to express parallelism
and data distribution. These languages provide a shared-memory-like pro-
gramming model, where the address space is partitioned, and the program-
mer has control over the data layout. Unified Parallel C (UPC) [16], an exten-
sion of the C programming language, follows the PGAS programming model.

PGAS languages offer the advantage of fast development of parallel ap-
plications, in comparison with the Message Passing Interface (MPI) [30],
through the use of a shared-memory abstraction. These programs may con-
tain fine-grained shared accesses that lead to performance degradation. Of-
ten, after initial coding, the programmer fine tunes the source code to pro-
duce a more scalable version. However, the reality is that, at the end of
this tuning for performance, the PGAS code resembles its MPI equivalent.
Therefore, the performance tuning often nullifies the ease-of-coding and ease-
of-maintenance advantages of PGAS languages.

A solution to improve the performance of fine-grained communication
is to apply compiler and runtime optimizations to reduce the cost of inter-
node communication. Proposed methods to improve fine-grained communi-
cation in PGAS languages include inspector-executor transformation [27, 11,
5], static coalescing [14, 8, 25], limited privatization [10, 15], and software
caching [39]. However, a big hurdle in the code generation of UPC language is
that the compiler ends up inserting runtime calls to transform UPC “shared”
accesses into requests for data (or actions) to other address partitions. Thus,
an important question to answer is: how can we achieve performance com-

parable to C or MPI using the UPC programming model? Despite the great

2

work done both with High-Performance Fortran and UPC, today no compiler
delivers acceptable performance in the case of fine-grained communication.

This paper focuses on solving the problem of excessive instrumentation
produced from the compiler in UPC language. This paper extends previous
work presented at the SBAC-PAD conference [3] by (i) including a detailed
presentation of the shared-reference-aware loop-invariant code motion and
privatization, (ii) better performance evaluation including comparison with
the serial version of benchmarks and parameter exploration, and (iii) broader
related work for completeness. The main contributions of this paper are:

• The combination of a shared-data localization transformation based
on Constant-Stride Linear Memory Descriptors (CSLMADs) [24] and
a new shared-reference-aware loop-invariant code motion and privati-
zation — which is designed specifically for UPC language — to de-
liver improved performance for benchmarks that rely on fine-grained
communication. This transformation improves the performance of pro-
grams containing fine-grain accesses by orders of magnitude.

• A thorough performance study of this combined approach using the
IBM Power 775 architecture [33]. It also includes a parametrization
and characterization of overheads of UPC programs. These analysis
indicate that this approach is an important step toward delivering the
promised combination of productivity and performance through the use
of the UPC language.

The rest of this paper is organized as follows. Section 2 reviews the Uni-
fied Parallel C language and the challenges of fine-grained communication.
Section 3 presents the optimizations for the inspector-executor approach.
Section 4 describes the experimental methodology. The results of the evalu-
ation appear in Section 5. Section 6 discusses previous work that is related
to this research. We present the conclusions and the future work in section 7.

2. Unified Parallel C

The Unified Parallel C (UPC) language follows the PGAS programming
model. It is an extension of the C programming language designed for high-
performance computing on large-scale parallel machines. UPC uses a Single-
Program-Multiple-Data (SPMD) model of computation in which the amount
of parallelism is fixed at program startup time.

3

1 typedef struct fish { double x; double vx;
2 double y; double vy; } fish_t;
3 typedef struct f_acc { double ax; double ay; } fish_accel_t;
4
5 shared [NFISH/THREADS] fish_t fish[NFISH];
6 shared [NFISH/THREADS] fish_accel_t acc[NFISH];
7
8 for each time step {
9 upc_forall (i=0; i<NFISH; ++i; &fish[i]) { /* Force calc */

10 tmpx = tmpy = 0;
11 for (j = 0; j < NFISH; ++j) {
12 dx = fish[j].x - fish[i].x;
13 dy = fish[j].y - fish[i].y;
14 a = calculate_force(dx,dy);
15 tmpx += a * dx / r;
16 tmpy += a * dy / r;
17 }
18 acc[i].ax = tmpx; acc[i].ay = tmpy;
19 }
20 ... /* max_norm calc & Fish movement */
21 }

Listing 1: UPC version of gravitational Fish.

Listing 1, presents the computation kernel of the fish gravitational bench-
mark. The benchmark emulates fish movements based on gravity. The
benchmark is an N-Body gravity simulation that solves ordinary differen-
tial equations in parallel [1]. Arrays fish and accel are declared as shared
(lines 5-6). Shared arrays and shared objects are accessible from all UPC
threads. The layout qualifier [NFISH/THREADS] specifies that the shared ob-
ject is distributed in blocked form to different UPC threads. The construct
upc forall (line 9) distributes loop iterations among the UPC threads. The
fourth expression in the upc forall construct is the affinity expression. The
affinity expression specifies that the owner thread of the specified element
executes the ith loop iteration. The UPC compiler translates the shared ac-
cesses to runtime calls. Runtime calls are responsible for fetching, or modify-
ing, the requested data implying fine-grained communication. Two problems
arise from codes with fine-grain accesses to shared data: (i) inefficient com-
munication because of the exchange of short messages, and (ii) high overhead
because of the number of runtime calls created.

The compiler deals with short messages by applying UPC-specific opti-
mizations [5, 14, 8, 13, 10, 15, 39]. However, the overhead caused by the large
number of runtime calls hinders performance even when the application ex-
hibits good data locality. For example, a sequential C version of the Fish
benchmark using 16384 objects takes 155 seconds while the UPC version —

4

without the optimizations described in this paper — takes 727 seconds on a
single UPC thread in an IBM R© POWER7 R© machine.

In this example, the compiler privatizes the accesses fish[i].x and
fish[i].y in lines 12 and 13. However, the accesses fish[j].x and
fish[j].y are not privatized because the program accesses the full shared ar-
ray. In this case, the prefetching optimization of the compiler [4] transforms
the loop into an inspector-executor form and aggregates, at runtime, the
shared accesses. Listing 2 presents a simplified version of prefetching using
the inspector-executor loop transformation. There are three entry points: the
sched add access, the sched dereference, and the schedule calls.

Before accessing shared pointers, the compiler also creates calls to shared
pointer arithmetic (ptr arithmetic). The shared pointer is a fat pointer

that contains information about the offset and the thread [7].

1 ...
2 upc_forall (i=0; i<NFISH; ++i; &fish[i]) {
3 for (j=0; j<NFISH; j++){
4 ptr = __ptr_arithmetic(&fish[j].x);
5 __sched_add_access(ptr,...);
6 ptr = __ptr_arithmetic(&fish[j].y);
7 __sched_add_access(ptr,...);
8 }
9 __schedule(); /* Schedule shared accesses */

10 for (j = 0; j < NFISH; ++j) {
11 ptr1 = __ptr_arithmetic(&fish[j].x);
12 tmp1 = __sched_dereference(ptr1,...);
13 ptr2 = __ptr_arithmetic(&fish[j].y);
14 tmp2 = __sched_dereference(ptr2,...);
15 ...
16 }
17 }
18 ...

Listing 2: Simplified example of inspector-executor.

3. Inspector-executor improvements

The experimental prototype for the code transformations described in
this paper is built on top of the XLUPC compiler framework [36].

The biggest drawback of the inspector-executor code transformation is
the overhead of function calls that the compiler introduces in order to in-
spect which data transfers are amenable for coalescing. Therefore, an impor-
tant goal is to decrease the overhead of inspector-executor transformations
by reducing the number of function calls executed at run time. Figure 1
presents the algorithm used to optimize loops with fine-grain accesses using

5

Can CSLMAD

describe the

accesses

Candidate Loop

NO

NOYES

YES

Struct elds

Const stride

Regular

Accesses

Blocked

Allocation

YES

NO

YES

NO

YES

NO

Use Constant Stride Linear Memory

Access Descriptos in inspector loop
3.1

Use Constant Stride Linear Memory

Access Descriptos in executor loop3.1.1

Create a vector to collect

references in the inspector
3.2

3.4 Inline checks

Regular Inspector

Executor
3.5

Static Coalescing and

 Inspector-Executor
3.3

Version the loop:

with and without calls
3.1.2

Figure 1: Compiler transformation algorithm.

the inspector-executor transformation. A hatched block in Figure 1 repre-
sents the cases where the inline transformation inserts branches between the
entry points of the runtime, as explained in Section 3.4. After categorizing
the access pattern into regular or irregular, the compiler analyses the stride to
select an appropriate code transformation. A loop with regular accesses [32]
is transformed using the CSLMAD framework (Case 3.1) and all the runtime
calls are removed from the inspector loops (Case 3.1.1). Alternatively, for
arrays that are not allocated in blocking fashion, two versions of the loop are
created: one with run-time calls and the other without (Case 3.1.2). In the
case of irregular accesses, the compiler creates a temporary array to collect
the elements (Case 3.2). Finally, if the programmer uses aggregated data
types (such as structs in C), the compiler tries to apply static coalescing
(Case 3.3) or applies the original form of inspector-executor transformation
(Case 3.5). Furthermore, the compiler inserts inline checks (case 3.4) in some
for the cases to check for data locality and check for loop-invariant privati-
zation possibilities.

3.1. Constant-Stride Linear Memory Descriptors

An array access analysis based on the Constant-Stride Linear Memory
Access Descriptors (CSLMADs) identifies the type of access in a loop [24].
If the accesses on a shared array are regular, then the calls in the inspector
loops are replaced with a single call.

CSLMADs are a restricted form of Linear Memory Descriptors [32] used
to describe array accesses. CSLMADs lead to much simpler code transforma-

6

Threads

0

1

2

3

 0 1 2 3 4 5 6 7

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

Data

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Blocking Factor = 32/4 = 8

Local bu er returned to program

Threads

0

1

2

3

 0 1 8 9 16 17 24 25

 2 3 10 11 18 19 26 27

 4 5 12 13 20 21 28 29

 6 7 14 15 22 23 30 31

Data

8 9 16 17 10 11 18 19 5 12 13 6 7 14 15

Blocking Factor = 2

Local bu er returned to program

Figure 2: The shared address translation problem, when accessing the range 5-19.

tions than the more general Linear Memory Access Descriptors description.
The main restriction that differentiates a CSLMAD from an LMAD is that
a CSLMAD cannot represent overlapping indexing expressions. CSLMADs
still capture a surprisingly large set of index expressions that appear in nu-
merical applications — it also captures all the expressions that appear in the
benchmarks used in this paper.

Each array access in CSLMAD form can be expressed as:f(x) = b +
a × x. The constant a is the stride of the CSLMAD and the integer con-
stant b is the base of the CSLMAD (offset). Using the loop-range infor-
mation the compiler transforms the descriptors to the following format:
〈a, local offset , low bound + b, upper bound + b〉. The constants local offset

are used to access fields of aggregated data types.
The transformation that replaces multiple calls in the inspector loop with

a single call requires a normalized loop with monotonically increasing loop
index. Furthermore, if shared arrays were allocated in blocked fashion, then
the calls in the executor loops can be removed. In the UPC language the
compiler detects blocked allocation in two cases: (i) when the programmer
specifies the number of threads at compiler time and the blocking factor is
the size of the array divided by the number of UPC threads; (ii) when the
programmer uses a structure that contains an array. If the blocking factor is
the size of the array divided by the number of threads, then the fetched data
are placed in order. Figure 2 presents an example illustrating the fetching
remote data with range from 5 to 19. On the left of the figure, the runtime
fetches and places the data, in order, to the local buffer. In contrast, when
the blocking factor is two, the runtime fetches the data but the placement is
shuffled (right of the Figure 2).

7

3.1.1. Runtime improvements

The runtime uses a compact form to keep track of shared accesses if the
shared array is allocated in blocked form. The runtime stores the shared ac-
cesses in the form of: 〈stride, local offset, lower bound, upper bound〉. Hence,
an additional benefit of using the compact representation form in the run-
time is that the accesses do not require additional analysis. Furthermore, the
runtime fetches the elements from the remote UPC threads in order. Also,
the runtime tries to merge different CSLMADs when the descriptors have
the same shared base array and stride. Thus, there is no duplication in the
data transfers. Moreover, the runtime reuses the internal data structures for
subsequent iterations by setting the new range of iterations to inspect.

3.1.2. CSLMADs in dynamic environments

Another challenge the compiler must address is the usage of shared point-
ers when the number of threads are not available at compile time. In this case,
the compiler produces two variants of the executor loop. The first assumes
that the loop has blocked allocation and the second assumes that the loop has
blocking factor other than ideal. The compiler adds a branch to verify that all
the arrays accessed are in blocked fashion. Thus, when any of the arrays has a
blocking factor that is not ideal, the program executes the loop with the calls.

3.2. Usage of vectors to collect shared indexes

The compiler analyzes shared accesses occurring in irregular fashion to
check if they access more complex structures, such as shared arrays of aggre-
gated data types. For irregular accesses on shared arrays of native types, a
temporary array (vector) stored in the stack is used to collect the shared in-
dexes (Case 3.2 in Figure 1). The code generation inserts a call to inspect the
elements at the end of each inspector loop. Internally the runtime processes
the elements one by one. Thus, the performance gain is limited compared
with the previous approach. The main benefit of this solution is a reduction
in the number of calls in the inspector loop.

3.3. Combining dynamic with static Coalescing

Finally, the array-access analysis checks if the loop contains shared ac-
cesses to fields of aggregated data types that have constant stride. The com-
piler uses a previously proposed combination of dynamic and static coalescing
methods [4]. The algorithm coalesces shared accesses when the compiler can

8

prove that the remote data belongs to the same thread (Case 3.1.1 in Fig-
ure 1). This is possible when accessing members of shared structures that
belong to the same thread. Therefore, the compiler applies this optimization
when the program uses shared arrays with data structures.

3.4. Inline checks

1 shared int A[128];
2 for (i=0;i<PF;i++){ // Inspector loop. shared ptr is fat pointer
3 ptr = __ptr_arithmetic(&A[i]);
4 if (ptr.thread != MYTHREAD) __sched_add_access(ptr, ...);
5 }
6 __schedule();
7 for (i=0;i<PF;i++){ // Similar approach in the executor loop:
8 ptr = __ptr_arithmetic(&A[i],...):
9 if (ptr.thread != MYTHREAD){ local_ptr = __sched_dereference(ptr);

10 } else { local_ptr = CALC_LOCAL(ptr); } // Simple pointer additions
11 ... = local_ptr;
12 }

Listing 3: Example of code modifications for the inline checks.

A number of UPC applications contain shared references that target the
local address partition but cannot be proven to be local at compile time. In
applications that have good data locality only a small proportion of shared
accesses are remote. For instance, in the Sobel benchmark [23] only 1.6% of
the shared accesses are remote when running with 2048 UPC threads.

To solve this problem, this paper proposes the idea of inlining. The inline
check optimization (Case 3.4 in Figure 1) inserts a branch before two en-
try points of the runtime: the sched add access and the sched dereference

calls. These branches check if the data accessed are remote or local. When
the shared accesses are local the runtime avoids collecting the accesses. In-
stead, the executor loops use thin pointers to read the local data. The com-
piler applies this transformation, in addition to the transformations described
earlier, when the benchmark exhibits irregular access pattern (Listing 3).

3.5. Shared-reference-aware loop-invariant code motion and privatization

Loop-invariant code motion is a traditional compiler optimization that
moves statements and expressions that are not affected by the loop compu-
tations placing them outside of the loop body. It is, however, often difficult to
prove that statements that use shared scalars and pointers are loop-invariant.
Furthermore, copy propagation interferes with loop-invariant code motion
because the existence of shared variables is often ignored.

9

There are two ways to solve this issue: (a) disable copy propagation; (b)
implement an alternative code-invariant motion specific for PGAS languages.
Disabling copy propagation can have negative effects in performance because
this copy propagation may lead to dead code elimination. Thus, the imple-
mentation uses the second approach to implement a lightweight version of
loop-invariant code motion in loops that have shared accesses.

UPCCodeInvariantMove(Procedure p)

1: for each candidate loop structure Li in p do
2: RefList← ∅;
Phase 1 - Gather Candidates
3: for all Shared reference Rs in Li do
4: if Rs is loop-invariant then
5: RefList.Add(Rs);
6: end if
7: end for
Phase 2 - Replace shared references in the loop
8: for each shared mem ref Rs in RefList do
9: stmts ← SHARED STATEMENT(RS)

10: LPROLOG
i .Add(tmp var = Rs.SharedExpr)

11: for each statement stmt in Li do do
12: if stmt = stmts then
13: innerloopstmt

i .Replace(stmt
expr
s , tmp var)

14: end if
15: end for
16: end for
17: end for

Algorithm 1: UPC loop-invariant code movement

Algorithm 1 presents this new loop-invariant code motion. For each
shared reference, the algorithm uses the reaching-definition analysis using the
Static Single Assignment (SSA) [19] representation. For each independent
shared reference, the algorithm stores the shared value to a temporary scalar
variable before the loop and replaces the occurrences inside the loop body.

4. Experimental Methodology

This evaluation uses an IBM R© Power R© 775 supercomputer [33] with 64
nodes with 32 Power7 [26] cores on each node, running at 3.856 GHz, totaling
2048 cores. The POWER7 R© (P7) processor has 32 KBytes instruction and

10

Benchmark Description Transformations Communication
Type

Stream-like Microbenchmark: read data from the
next thread.

Prefetch: Case 3.3 Stream-like from
neighbour thread

Random-access Microbenchmark: read data randomly. Prefetch: Case 3.3 Random access
Sobel [23] Gradient approximation of image in-

tensity, using a 9-point stencil.
Prefetch: Case 3.1.1 Nine-point Stencil

Fish Grav [1] N-Body gravity simulation using fishes
as objects.

Prefetch: Cases
3.1.1/3.1.2

All-to-
all/Reduction

WaTor [21] Simulates the evolution over time of
predators and preys in an ocean.

Prefetch: Cases 3.3,
3.4, and loop-invariant
privatization

Random updates
/Reduction/25-
point stencil

Mcop [17] Matrix chain multiplication problem:
finds the most efficient way to multi-
ply these matrices together.

Prefetch: Cases
3.1.1/3.1.2/3.2/3.4

All-to-all / Irregu-
lar

Guppie [29] Random read/modify/write accesses
to a large distributed array.

Prefetch: Cases 3.2/3.4 Random updates

Table 1: Benchmarks and Communication type.

32 KBytes L1 data cache per core, 256 KBytes 2nd level cache per core, and
a 32 MByte 3rd level cache shared per chip. The size of the available main
memory is 128 GBytes. The machines are grouped in drawers consisting of
eight nodes. Four drawers are connected to create a SuperNode (SN). The
nodes are equipped with the POWER7 Hub chip interconnect [6] for com-
munication. The Hub chip is connected with the four POWER7 chips using
four links, of 24GB/s each.

All runs use one process per UPC thread and schedule one UPC thread
per POWER7 core. There are 32 UPC threads on each node and each UPC
thread is bound to its own core. The results presented in this evaluation
are the average of the execution time of five runs. The maximum execution
time variation is less than 2% and occurs only in runs with a high number of
UPC threads. Due to the characteristics of the Power 775 interconnect, the
runs are isolated and no other task or job was running during the measure-
ment. All benchmarks are compiled using the ’-qarch=pwr7 -qtune=pwr7

-O3 -qprefetch’ compiler flags. The evaluation tries to keep the computa-
tion constant per UPC threads (weak scaling). The evaluation doubles the
dataset every quadruplication of UPC threads in the case of Fish Grav and
WaTor benchmarks.

Table 1 presents the list of the benchmarks used in this evaluation and
their communication pattern — they all use blocked data allocation. For this
evaluation, five different binaries were generated for each program:

• Baseline: compiled with a dynamic number of threads and with the
code transformations described in this paper disabled. The baseline

11

is the best available compiler and contains a number of optimizations:
static coalescing [8], privatization [10], and remote updates [9].

• Prefetch: compiled with the inspector-executor code-transformation
that prefetches and coalesces shared references at runtime [5].

• Prefetch Optimized : combines the inspector-executor transformation
with the improvements presented, with dynamic number of threads.

• Hand-optimized: uses coarse-grained communication, manual pointer
privatization, and collective communication whenever possible. This
version also uses dynamic number of threads.

• MPI : contains coarse-grained communication and uses collective com-
munication whenever possible. This version uses blocking communica-
tion and it does not use the one-side communication model introduced
in MPI 2.0. One process is assigned to each core for the MPI imple-
mentation.

5. Experimental results

This experimental evaluation assesses the effectiveness of the transfor-
mations by presenting the following: (1) the performance on microbench-
marks to help understand the maximum speedup that can be achieved (2)
the comparison with the sequential C version using strong scaling; (3) the
performance of real applications; (4) the impact of the number of iterations
examined; (5) an analysis of the overhead observed.

5.1. Microbenchmark Performance

Microbenchmarks are used to demonstrate the effectiveness of the code
transformations. Indeed, the results presented in Figure 3 in log scale con-
firm that the code transformations are very effective when applied to the code
that they target. In the stream-like benchmark the bandwidth increases
close to linearly with the number of UPC threads for all versions including
the baseline. The speedup due to the code transformations vary between 3.1x
and 6.7x with the most significant gain due to prefetching. Adding static co-
alescing of struct fields to prefetching improves performance by 5-10%. The
rightmost bars indicate that the overhead due to the insertion of inline checks
is around 1%, which is bellow the measurement error. The inline-check code

12

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

1000

10

0.1

0.001

B
a
n

d
w

id
th

 (
G

B
/s

)
Baseline

Prefetch

Prefetch + Optimized

Prefetch + Optimized + Inline

1000

10

0.1

0.001

Stream-like Random

Figure 3: Performance in GB/s for the microbenchmark reading four fields from the same
data structure for different versions.

Benchmark
Sequential UPC Single-Thread 32 UPC 256 UPC
C (gcc) Static Dynamic Threads Threads

Sobel 101.0 93.5 110.1 3.6 0.7
Fish 155.7 642.8 727.7 24.8 7.2

WaTor 9.8 48.3 791.3 98.2 28.1
MCop 16.6 19.2 29.3 140.8 22.0
Guppie 70.5 305.1 349.6 104.3 22.1

Table 2: Benchmarks compared with the serial C non-instrumented version and UPC
version measured in seconds.

transformation inserts a branch before the entry points of the runtime, as
described in Section 3.4.

The stream-like microbenchmark contains only remote shared refer-
ences because it accesses shared data residing in the next-neighbour thread.
Thus, the inline branch that avoids calls when the shared data are local is
always taken. In contrast, the random-access microbenchmark results in a
speedup between 3.2× and 21.6× from prefetch with an additional 4-8% due
to struct-field coalescing. Furthermore, the inline transformation gives an
additional 2-5% performance gain due to local shared access improvement.

An interesting observation emerging from the results is that random-access
achieves better bandwidth than stream-like when the code transformations
are enabled. This higher bandwidth results from the random traffic pattern
in combination with the high-radix interconnect when using direct routes.

5.2. UPC Single-Threaded Slowdown

This section, prior to the scalability measurements, studies the perfor-
mance of UPC language compared with the serial version. The single-thread

13

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

UPC THREADS

60000

6000

600

60

M
p

ix
el

/s

Baseline

Prefetch

Prefetch Optimized

Hand Optimized

MPI

(a)

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

UPC THREADS

400000

40000

4000

400

40

O
b

je
ct

s/
s

Baseline

Prefetch

Prefetch Optimized

Hand Optimized

MPI

(b)

Figure 4: Performance numbers for Sobel (a) and Fish Grav (b) benchmarks.

overhead, shown in Table 2 compares the execution time of the UPC ver-
sion of the program running on a single thread with the execution time of
a sequential C version of the code. The most important cause for the in-
crease in the single-thread overhead is the use of fat pointers to reference
data in distributed arrays. The run time in the single-threaded dynamic
column in Table 2 is obtained running binaries where the number of threads
is not known at compile time. When the number of the UPC threads is an
integer power of two and it is known at compile time, then the pointer arith-
metic call is replaced with shifts and masks. The runs with 32 and 256 UPC
threads are performed with the inspector-executor transformation and the
other code transformations presented in this paper. Some benchmarks, such
as Fish and Guppie, run much slower than the C version even with a large
number of threads because the compile-time data-access analysis is unable
to detect and simplify accesses that are local.

The large slowdown for the dynamic single-threaded UPC version of
WaTor can be explained by its large number of shared accesses for which
the compiler generates calls to the runtime system. On the other hand, the
smaller single-thread slowdown for Guppie can be explained by its irregular
accesses that make its serial C version slower because of poor cache utiliza-
tion. Sobel has the best potential compared with the other benchmarks for
two reasons. First, it has good shared data locality because it fetches data
only from the neighboring threads. Second, the code transformations re-
moves the calls from the inspector and executor loops. The low performance
in the single-thread version occurs because the program executes the unopti-
mized version of the loop to avoid the overhead of the shared-access analysis.
Finally, the MCop benchmark is slower with 32 UPC threads than with one
thread. This is expected because of the instrumentation code. On the other
hand, the version with 256 UPC threads is faster than the one thread because

14

(i) the compiler creates fewer runtime calls and (ii) this section uses strong
scaling. This slowdown underlines the key role of the code transformations
that remove unneeded runtime calls automatically. Those results indicate
that PGAS programmers and compilers should not focus only on reducing
the cost of communication, but also in reducing the runtime calls.

5.3. Application Performance

This section explores the performance of the code transformations when
applied to benchmarks. As described in Table 1, the access-analysis leads
only to the removal of the runtime calls in Sobel and Fish benchmarks
because those are the only benchmarks that contain regular accesses. The
analysis allows the partial removal of the calls in MCop. WaTor and Gup-

pie have complex access patterns and the compiler uses struct-field coalescing
and the vector collection of elements in the inspector loop. The inline code
transformation is also applied to the MCop, WaTor, and Guppie bench-
marks.

Sobel achieves a performance gain between 1.5× and 2× using the inspector-
executor (prefetch) code transformation as shown in Figure 4(a). The prefetch
optimized technique achieves from 9.2× up to 12.3× speedup over the base-

line because it allows for the complete removal of library calls. The hand

optimized UPC version is faster than the MPI version because it uses one-
side communication. However, the performance of the hand optimized and
the MPI versions are converging with more than 256 UPC threads. One
interesting observation is that the prefetched optimized version is faster than
the UPC hand-optimized because of double buffering. The current version
of the UPC language does not support asynchronous memget/memput calls.
Thus, the exploitation of the overlapping communication and computation
is the main advantage of the compiler transformation.

The Fish benchmark exhibits high performance gains because the base-

line is inefficient, as shown in Figure 4(b). The compiler uses the CSLMADs
representation to remove the runtime calls from the inspector and executor
loops. The benchmark achieves from 40% up to 80% of the performance
of the hand optimized version of the benchmark. The compiler successfully
transforms one out of the two loops that contain fine-grained communication.
The second loop implements a data reduction and becomes the bottleneck
after the compiler applies the loop transformations.

The performance gain of the WaTor benchmark is lower than the Sobel
and Fish: the prefetch optimized version is 1.12× to 1.72× faster than the

15

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

UPC THREADS

4000

400

40

4

M
B

/s
Baseline

Prefetch

Prefetch Optimized

Hand Optimized

MPI

(a)

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

UPC THREADS

40000

4000

400

40

4

M
eg

a
U

p
/s

Baseline

Prefetch

Prefetch Optimized

Hand Optimized

MPI

(b)

Figure 5: Performance numbers for the WaTor (a) and Guppie (b) benchmarks.

baseline (Figure 5(a)). The compiler transforms a loop structure that has
constant number of iterations (25): the stencil computation. The compiler
improves the performance of the remaining fine-grained shared accesses using
the remote update to eliminate runtime calls [9]. The MPI version is faster
but requires additional code before and after the calculation of force to move
objects.

The Guppie benchmark uses random remote updates across a large
shared array and calculates the performance in MegaUpdates/s. Due to
irregular accesses, the prefetch optimized version of the benchmark achieves
between 1.6× and 2.53× speedup over the baseline (Figure 5(b)). The com-
piler removes the calls from the inspector loops, thus decreasing the instru-
mentation overhead of collecting shared accesses. It is known that manual
code modifications to this benchmark allow the application of the remote-
update code transformations [9]. The benchmark uses a temporary buffer to
fetch the data, modify, and write them back. The typical size of this buffer is
512 elements. In the UPC hand optimized version the number of elements is
set to one. Thus, the compiler collapses the loops to apply the remote-update
optimization and to exploit the hardware acceleration.

The MPI version of the Guppie benchmark generates the data on all
processors and distributes the global table uniformly to achieve load balanc-
ing. The benchmark sends the addresses to the appropriate processors and
the local process performs the updates. The MPI version is faster than the
UPC versions for small number of threads. On the other hand, the manual
UPC optimized version is 46× times faster than the MPI version running with
2048 Threads. This result provides strong evidence in support of the impor-
tance of the remote update code transformation [9]. The automatic compiler-
optimized version achieves from 22% up to 48% the speed of the MPI version.

16

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

UPC THREADS

3000

300

30

3

0.3

M
eg

a
O

p
/s

Baseline

Prefetch

Baseline Unroll

Prefetch Optimized + Unroll

Hand Optimized + Prefetch

MPI

Figure 6: MCop benchmark performance.

The prefetch code transforma-
tion gives a speedup from 1.6× up
to 2.6× compared with the baseline
version in the MCop benchmark, as
shown in Figure 5.3. Applying the
code transformations and manually
unrolling the loops by four gives a
speedup from 4.9× up to 6.3×. De-
spite the removal of most calls in the
loops, there are still irregular refer-
ences. The manually optimized ver-
sion still contains irregular remote
shared references. Prefetching these references improves the performance
of the application. The hand optimized combined with the prefetching is two
orders of magnitude faster than the MPI version.

5.4. Parameter exploration

An important question is how many iterations the runtime should prefetch.
Previous studies of the inspector-executor code transformations [4, 20] sug-
gest that this number should not be large. The main problem with inspecting
and prefetching too many iterations is that the prefetching interferes with
the normal operation of the various levels of caching. Figures 7(a) and 7(b)
present one curve for the speedup and three curves for the cache miss ra-
tios for different cache levels using different number of prefetched iterations
(Prefetch Factor). The runs use 128 UPC threads (four nodes) and the
IBM HPC Toolkit to obtain the performance-counter values. Sobel uses a
262144×262144 image (530 MB/ UPC Thread) and 0.32% of the total ac-
cesses are remote. Guppie uses 134 MB per UPC thread, and each UPC
thread makes 16777216 updates. In total 99.21% of the shared accesses are
remote. Each point in the horizontal axis is identified by the number of
processing nodes and the average number of aggregated messages (inside
parenthesis). The number of aggregated messages in Sobel is the number
of iterations to inspect plus two for the borders of the image. On the other
hand the number of messages aggregated in Guppie is calculated using the
equation: #Iterations to inspect/UPC THREADS, because of the ran-
dom distribution.

For Sobel, the results indicate a correlation between the speedup and the
cache misses at different levels of the memory hierarchy. The speedup cor-

17

3
2
 (

3
3
.9

)

1
0
2
4
 (

1
0
2
5
.7

)

2
0
4
8
 (

2
0
4
9
.8

)

3
0
7
2
 (

3
0
4
1
.7

)

4
0
9
6
 (

4
0
9
7
.8

)
Iterations to inspect (aggregation)

15

10

5S
p

ee
d

u
p

Speedup

5

4

3

2

1

M
iss R

a
tio

 (%
)

Level 1 Cache Miss Ratio

Level 2 Cache Miss Ratio

Level 3 Cache Miss Ratio

(a)

3
2
 (

0
.9

9
)

1
0
2
4
 (

8
.1

)

2
0
4
8
 (

1
5
.8

)

3
0
7
2
 (

2
3
.4

)

4
0
9
6
 (

3
1
.6

)

Iterations to inspect (aggregation)

2

1.5

1

0.5

S
p

ee
d

u
p

Speedup

40

30

20

10

M
iss R

a
tio

 (%
)

Level 1 Cache Miss Ratio

Level 2 Cache Miss Ratio

Level 3 Cache Miss Ratio

(b)

Figure 7: Speedup and cache misses for Sobel (a) and Guppie (b) using different number
of iterations to inspect and average aggregation levels.

relates with the level two (L2) and level three (L3) cache misses. The most
important observation is that the speedup remains constant when inspect-
ing more than 672 iterations. Thus, when the compiler removes completely
the instrumentation code, the limit of the application is not the network
communication as next section explains.

On the other hand, Guppie incurs high miss ratio due to the random
access pattern that it employs. In this case, despite the larger number of
aggregated messages when we increase the number of elements to inspect,
the speedup decreases for two reasons: (1) because there is an increase in the
L3 miss ratio; and (2) because the cost of translating the shared addresses to
local pointers increases with the number of prefetched elements. The runtime
translates the shared index of the shared pointer into the index of the local
buffer using a binary search algorithm because the fetched elements are not
in the correct order. Thus, when the compiler does not remove completely
the runtime calls using the CSLMADs, the performance gain should decrease
as the number of iterations to be inspected increases.

5.5. Overhead Analysis

Two representative benchmarks are selected for the overhead evaluation:
Sobel, which contains regular access and Guppie, which contains random
accesses. Figure 8 presents a breakdown of the normalized execution time
before and after the code transformations, using Linux Perf Tool. Sobel has
regular access pattern and the compiler removes completely the calls from

18

Baseline

Sobel

Prefetch

Sobel

Prefetch+Opt

Sobel

Baseline

Guppie

Prefetch

Guppie

Prefetch+Opt

Guppie

Hand+Opt

Guppie

0

20

40

60

80

100

 %
 T

im
e

Inspector: Ptr Arithmetic

Dereference

Assign

Inspector/Executor loop

Application

Schedule

Other

Figure 8: Normalized execution time breakdown using 32 UPC threads.

the inspector and executor loops. On the other hand, Guppie benchmark
contains totally random access over the shared array. Using the inspector-
executor approach (Prefetch) in Sobel benchmark, the time devoted to the
computation decreases significantly. The Sobel benchmark spends more
than 55% of the time in the shared-pointer arithmetic in the Prefetch ver-
sion because of the additional calls in the inspector loops. The shared-pointer
arithmetic translates the shared offset to the relative offset inside the thread.
Removing the calls from the inspector and executor loops decreases the over-
head to less than 8% of the application time.

On the other hand, the impact of the code transformations in Gup-

pie is less than in Sobel. The optimized inspector-executor transforma-
tion in Guppie removes the calls from the inspector loops, but retains the
calls in the executor loops. The improved inspector-executor transforma-
tion (Prefetch Optimized) reduces the communication overhead down to 57%.
However, the overhead is transferred to the shared-reference analysis because
of the irregular communication pattern. Therefore, the improved transforma-
tion successfully eliminates the apparent overhead in the application’s code,
but the runtime still processes the elements one by one. The inline code
transformation has minor impact on the achieved performance and it is only
visible for lower number of threads, when a certain portion of shared accesses
are local. The hand optimized version of Guppie benchmark spends more
time on assign that is replaced by the remote update runtime call.

5.6. Summary and Discussion

The code transformations presented can generate code for applications
with regular accesses that achieve between 60% and 180% of the performance
of the hand-optimized UPC version. The evaluation results support the
argument that code transformations should focus on removing run-time calls
completely in addition to the traditional compile and runtime optimizations.

19

On the other hand, there is still room for improvement for benchmarks that
contain irregular communication.

6. Related Work

Shared Object Coalescing: Coalescing accesses that target a single
shared object on the same UPC thread, or same remote node, is a well-
known code transformation that aims to reduce instrumentation code. When
using static analysis for data coalescing in Unified Parallel C [14, 8] and
High Performance Fortran [13, 25], the compiler identifies, through data and
control flow analysis, shared accesses to specific threads and creates a single
run-time call to access multiple data items from the same thread. However,
existing solutions do not completely remove the calls.

Shared-Pointer Privatization: The compiler uses information pro-
vided by the affinity expression of an upc forall loop to privatize shared
accesses to the local partition of the memory [10, 15]. For instance, an affin-
ity expression that is pointer-to-shared usually indicates that the references
are to local memory. Thus, the compiler can transform a fat shared pointer
into a thin private pointer and completely remove the run-time call. Unfor-
tunately, this approach only works for upc forall construct and requires
that the physical data placement be known at compile time.

Array Accesses Analysis: Linear Memory Access Descriptors
(LMADs) [32] are a well-known representation that describes linear accesses
to an array. LMADs are used for array-access analysis, coalescing of ac-
cesses, and for privatizing array accesses on various platforms. For instance,
Xhu et al. use the LMAD representation to translate programs manually
for distributed-shared-memory (DSM) systems [40]. Xunhao Li [28] and
Garg [24] use a subset of LMAD called Restricted Constant Strided Lin-
ear Memory Access Descriptor (RCSLMAD) to identify memory locations of
accessed array elements in Graphic Processor Units (GPUs).

Inspector-executor transformation: The inspector-executor strategy
was initially developed to make communication more efficient in irregular
applications [20] but it is now also a well-know code-transformation technique
for PGAS languages. There are approaches [27] for compiler support using a
global-name space programming model, or language-targeted optimizations
such as: High Performance Fortran [11, 38], Titanium language [35], Unified
Parallel C [4, 5], X10 [22], and Chapel [34]. Unfortunately, it turns out that
even for loops with irregular shared references, the overhead is too high.

20

In contrast, the new approach presented in this paper applies aggressive
transformations to remove calls from the inspector and executor loops and
thus reduce its overhead.

7. Conclusion and Future Work

Eliminating runtime calls inserted by the compiler to translate shared-
memory accesses into inter-node data transfers is essential to deliver reason-
able performance in PGAS programming models executing in distributed-
shared-memory machines. This paper uses a combination of new code trans-
formations and adaptations of known techniques to the PGAS paradigm to
eliminate such calls. The experimental evaluation indicates that when such
calls are completely removed, the performance of automatically generated
code is similar to the performance of coarse-grained versions of the bench-
marks. On the other hand, there is room to improve the performance of
applications that contain irregular accesses. The transformation helps to de-
liver the promised programming productivity of PGAS languages by allowing
the programmer to write simpler fine-grained code.

There are still some aspects that we would like to investigate in the fu-
ture. First of all, the existence of runtime calls inside the loops decreases
the opportunities for optimizing the loop. Inter-procedural analysis can give
additional information about the loop analysis optimizations to increase the
opportunities of optimizing loops. Secondly, there are two applications cate-
gories that this paper doesn’t examine. The first category is the applications
that contain graph traversing. In this case the loops are not normalized and
usually the traverse of the loop leads to irregular access pattern. Another
category is the benchmark that contain sparse matrices, where the inspector-
executor optimization fetches only the first level of the accesses.

Acknowledgments

The researchers at Universitat Politècnica de Catalunya and Barcelona
Supercomputing Center are supported by the IBM Centers for Advanced
Studies Fellowship (CAS2012-069), and the Spanish Ministry of Science and
Innovation (TIN2007-60625, TIN2015-65316-P, and CSD2007-00050). IBM
researchers are supported by the Defense Advanced Research Projects Agency
under its Agreement No. HR0011-07-9-0002. The researchers at University
of Alberta are supported by the NSERC Collaborative Research and Devel-
opment program of Canada.

21

References

[1] Aarseth, S., 2003. Gravitational N-Body Simulations: Tools and Algo-
rithms. Cambridge Monographs on Mathematical Physics. Cambridge
University Press.

[2] Allen, E., Chase, D., Hallett, J., Luchangco, V., Maessen, J.-W., Ryu,
S., Jr., G. L. S., Tobin-Hochstadt, S., March 2008. The Fortress Lan-
guage Specification Version 1.0.

[3] Alvanos, M., Amaral, J. N., Tiotto, E., Farreras, M., Martorell, X.,
2014. Reducing Compiler-Inserted Instrumentation in Unified-Parallel-
C Code Generation. In: IEEE International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD).

[4] Alvanos, M., Farreras, M., Tiotto, E., Amaral, J. N., Martorell, X.,
2013. Improving Communication in PGAS Environments: Static and
Dynamic Coalescing in UPC. In: Proceedings of the 27th International
Conference on Supercomputing. ICS ’13.

[5] Alvanos, M., Farreras, M., Tiotto, E., Martorell, X., 2012. Automatic
Communication Coalescing for Irregular Computations in UPC Lan-
guage. In: Conference of the Center for Advanced Studies (CASCON).

[6] Arimilli, B., Arimilli, R., Chung, V., Clark, S., Denzel, W., Drerup,
B., Hoefler, T., Joyner, J., Lewis, J., Li, J., Ni, N., Rajamony, R.,
2010. The PERCS High-Performance Interconnect. High-Performance
Interconnects, Symposium on 0, 75–82.

[7] Barnaby Dalton and Gabriel Tanase and Michail Alvanos and George
Almasi and Ettore Tiotto, 2014. Memory Management Techniques for
Exploiting RDMA in PGAS Languages. In: In Workshop on Languages
and Compilers and Parallel Computing (LCPC).

[8] Barton, C., Almasi, G., Farreras, M., Amaral, J. N., 2009. A Unified
Parallel C compiler that implements automatic communication coalesc-
ing. In: 14th Workshop on Compilers for Parallel Computing.

[9] Barton, C., Cascaval, C., Almasi, G., Zheng, Y., Farreras, M., Chat-
terje, S., Amaral, J. N., June 2006. Shared memory programming for

22

large scale machines. Programming Language Design and Implementa-
tion (PLDI), 108–117.

[10] Barton, C. M., 2009. Improving access to shared data in a Partitioned
Global Address Space programming model. Ph.D. thesis, University of
Alberta.

[11] Brezany, P., Gerndt, M., Sipkova, V., 1994. SVM Support in the Vienna
Fortran Compilation System. Tech. rep., KFA Juelich, KFA-ZAM-IB-
9401.

[12] Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A.,
Ebcioglu, K., von Praun, C., Sarkar, V., Oct. 2005. X10: an object-
oriented approach to non-uniform cluster computing 40 (10), 519–538.

[13] Chavarria-Miranda, D., Mellor-Crummey, J., 2005. Effective Commu-
nication Coalescing for Data-Parallel Applications. In: In Proceedings
of the 10th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP). pp. 14–25.

[14] Chen, C. I. W., Yelick, K., 2005. Communication optimizations for fine-
grained upc applications. In: In 14th International Conference on Par-
allel Architectures and Compilation Techniques. pp. 267–278.

[15] Chen, W.-Y., Dec 2007. Optimizing partitioned global address space
programs for cluster architectures. Ph.D. thesis, University of California,
Berkeley.

[16] Consortium, U., 2005. UPC Specifications, v1.2. Tech. rep., Lawrence
Berkeley National Lab Tech Report LBNL-59208.

[17] Cormen, T. H., Stein, C., Rivest, R. L., Leiserson, C. E., 2001. Intro-
duction to Algorithms, 2nd Edition. McGraw-Hill Higher Education.

[18] Cray Inc, April 2011. Chapel Language Specification Version 0.8.

[19] Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., Zadeck, F. K.,
October 1991. Efficiently computing static single assignment form and
the control dependence graph. ACM Transactions on Programming Lan-
guages and Systems 13, 451–490.

23

[20] Das, R., Uysal, M., Saltz, J., shin Hwang, Y., 1993. Communication
optimizations for irregular scientific computations on distributed mem-
ory architectures. Journal of Parallel and Distributed Computing 22,
462–479.

[21] Dewdney, A. K., 1984. Computer recreations sharks and fish wage an
ecological war on the toroidal planet wa-tor. Scientific American, 14–22.

[22] Ebcioglu, K., Saraswat, V., Sarkar, V., 2004. X10: Programming for
hierarchical parallelism and non-uniform data access. In: Proceedings
of the International Workshop on Language Runtimes, OOPSLA.

[23] El-Ghazawi, T., Cantonnet, F., 2002. UPC performance and potential:
a NPB experimental study. In: Proceedings of the 2002 ACM/IEEE
conference on Supercomputing. pp. 1–26.

[24] Garg, R., Amaral, J. N., 2010. Compiling python to a hybrid execution
environment. In: Proceedings of the 3rd Workshop on General-Purpose
Computation on Graphics Processing Units. pp. 19–30.

[25] Gupta, M., Schonberg, E., Srinivasan, H., 1996. A unified framework
for optimizing communication in data-parallel programs. IEEE Trans-
actions on Parallel and Distributed Systems 7, 689–704.

[26] Kalla, R., Sinharoy, B., Starke, W., Floyd, M., 2010. Power7: IBM’s
Next-Generation Server Processor. Micro, IEEE 30 (2), 7 –15.

[27] Koelbel, C., Mehrotra, P., 1991. Compiling Global Name-Space Parallel
Loops for Distributed Execution. IEEE Transaction Parallel Distributed
Systems 2.

[28] Li, X., 2010. Jit4OpenCL: A Compiler from Python to OpenCL. Mas-
ter’s thesis, University of Alberta.

[29] Luszczek, P. R., Bailey, D. H., Dongarra, J. J., Kepner, J., Lucas, R. F.,
Rabenseifner, R., Takahashi, D., 2006. The HPC Challenge (HPCC)
benchmark suite. In: Proceedings of the 2006 ACM/IEEE conference
on Supercomputing. SC ’06. ACM.

[30] MPI Forum, 2014. MPI: A Message-Passing Interface Standard. http:
//www.mpi-forum.org.

24

[31] Numwich, R., Reid, J., 1998. Co-array fortran for parallel programming.
Tech. rep.

[32] Paek, Y., Hoeflinger, J., Padua, D. A., 2002. Efficient and Precise Array
Access Analysis. ACM Transactions on Programming Languages and
Systems (TOPLAS) 24 (1), 65–109.

[33] Rajamony, R., Arimilli, L., Gildea, K., 2011. PERCS: The IBM
POWER7-IH high-performance computing system. IBM Journal of Re-
search and Development 55 (3), 3–1.

[34] Sanz, A., Asenjo, R., Lopez, J., Larrosa, R., Navarro, A., Litvinov,
V., Choi, S.-E., Chamberlain, B. L., 2012. Global data re-allocation via
communication aggregation in Chapel. In: SBAC-PAD.

[35] Su, J., Yelick, K., 2005. Automatic Support for Irregular Computations
in a High-Level Language. In: Proceedings of the 19th IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS).

[36] Tanase, G., Almási, G., Tiotto, E., Alvanos, M., Ly, A., Daltonn, B.,
2013. Performance Analysis of the IBM XL UPC on the PERCS Archi-
tecture. Tech. rep., RC25360.

[37] Yelick, K. A., Semenzato, L., Pike, G., Miyamoto, C., Liblit, B., Kr-
ishnamurthy, A., Hilfinger, P. N., Graham, S. L., Gay, D., Colella, P.,
Aiken, A., 1998. Titanium: A High-performance Java Dialect. Concur-
rency - Practice and Experience 10 (11-13), 825–836.

[38] Yokota, D., Chiba, S., Itano, K., 2002. A New Optimization Technique
for the Inspector-Executor Method. In: International Conference on Par-
allel and Distributed Computing Systems. pp. 706–711.

[39] Zhang, Z., Savant, J., Seidel, S., 2006. A UPC Runtime System Based
on MPI and POSIX Threads. Parallel, Distributed, and Network-Based
Processing, Euromicro Conference on 0, 195–202.

[40] Zhu, J., Hoeflinger, J., Padua, D., 2003. Compiling for a hybrid program-
ming model using the lmad representation. In: Languages and Compilers
for Parallel Computing. Springer, pp. 321–335.

25

