
Locality-aware parallel block-sparse matrix-matrix
multiplication using the Chunks and Tasks

programming model

Emanuel H. Rubensson, Elias Rudberg

Division of Scientific Computing, Department of Information Technology, Uppsala
University, Box 337, SE-751 05 Uppsala, Sweden

Abstract

We present a method for parallel block-sparse matrix-matrix multiplication on
distributed memory clusters. By using a quadtree matrix representation, data
locality is exploited without prior information about the matrix sparsity pattern.
A distributed quadtree matrix representation is straightforward to implement
due to our recent development of the Chunks and Tasks programming model
[Parallel Comput. 40, 328 (2014)]. The quadtree representation combined with
the Chunks and Tasks model leads to favorable weak and strong scaling of the
communication cost with the number of processes, as shown both theoretically
and in numerical experiments.

Matrices are represented by sparse quadtrees of chunk objects. The leaves
in the hierarchy are block-sparse submatrices. Sparsity is dynamically detected
by the matrix library and may occur at any level in the hierarchy and/or within
the submatrix leaves. In case graphics processing units (GPUs) are available,
both CPUs and GPUs are used for leaf-level multiplication work, thus making
use of the full computing capacity of each node.

The performance is evaluated for matrices with different sparsity structures,
including examples from electronic structure calculations. Compared to meth-
ods that do not exploit data locality, our locality-aware approach reduces com-
munication significantly, achieving essentially constant communication per node
in weak scaling tests.
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1. Introduction

Sparse matrix-matrix multiplication, sometimes referred to as SpGEMM,
is a key operation in large-scale electronic structure calculations based on for
example Hartree–Fock or Kohn–Sham density functional theory [1]. Sparse
matrix-matrix multiplication is used in particular in polynomial expansion [2]
and minimization methods [3] to compute the density matrix. Such methods are
used in a number of electronic structure codes such as Conquest [4], CP2K [5],
Ergo [6], FreeON [7], Honpas [8], Onetep [9], and LATTE [10] to achieve
a computational cost that increases only linearly with system size. The matrix
sparsity varies from tens to thousands of nonzeros per row depending on the
underlying model and the basis set used. It is often beneficial to use a block-
sparse data structure. The optimal block size depends on the model and on the
order of the matrix rows and columns. The present work is mainly motivated
by Hartree–Fock and Kohn–Sham density functional theory calculations using
Gaussian basis sets in which the matrices have up to thousands of nonzero
elements per row and a priori unknown sparsity patterns [11, 6]. This work
is also relevant for the general parallel SpGEMM problem as no application
specific information such as atomic positions is built into the presented method.

Algorithms based on dense matrix-matrix multiplication are generally con-
sidered attractive because of the existence of efficient linear algebra libraries,
e.g. [12, 13], and parallelization through e.g. Cannon’s algorithm or SUMMA [14].
Parallel sparse and block-sparse matrix-matrix multiplication has received less
attention and represents a greater challenge, particularly when the nonzero pat-
tern is not known in advance. Nevertheless, several parallel sparse matrix-matrix
multiplication methods have been presented. Several methods assume some a
priori knowledge about the input matrix sparsity structure and use that knowl-
edge to improve performance [15, 16, 17, 18]. Other methods require beforehand
knowledge of the computational pattern or the sparsity structure of the output
matrix, requiring a preparatory symbolic multiplication step before the actual
parallel computation can start [19, 20]. Here, we will focus on the general case
where no a priori knowledge about the structure is assumed, and no symbolic
multiplication step is needed. Recent methods for this general case are first em-
ploying a random permutation of the rows and columns of the matrix to destroy
any structure in the sparsity pattern and decrease data locality [21, 22]. The
goal of this maneuver is to obtain about the same density of nonzero elements
everywhere in the matrix. Then, a static distribution of work and data is used
in the same way as for dense matrices, but with the local block-block multi-
plies replaced by sparse products. This random permutation approach prevents
load imbalance, but the obvious drawback is that the possibility to exploit the
nonzero structure to reduce communication or make efficient use of the memory
hierarchy is spoiled, see Figure 1 for a trivial yet illustrative example. On the
other hand, such exploitation is difficult to achieve since it requires that the
mapping of data and work to physical resources is performed dynamically dur-
ing the calculation [23]. We believe that the difficulties are mainly associated
with the programming model used to tackle the problem. While conventional
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Figure 1: A trivial example of possible effects of random permutation to load balance static
work and data distribution. Left: Example matrix for which we want to compute the square
on 4 identical compute nodes. The best distribution of data and work is obvious and leads to
perfect load balance and no communication of matrix elements. Right: Random permutation
of the matrix columns and rows and a two-dimensional data decomposition indicated by solid
black lines. Although the workload may still be roughly load balanced, communication of
matrix elements is now needed.

programming models like message passing protocols work well for static distri-
bution of work and data, they are inconvenient if you want to distribute data
and work dynamically. The programmer has to make decisions about where
data should be located, where every piece of work should be executed, and see
to it that data is communicated as needed.

Recently, we proposed a new programming model named Chunks and Tasks,
designed to work well for algorithms with dynamic work and data [24]. We
describe and analyze in this article an approach to parallel block-sparse matrix-
matrix multiplication based on a hierarchical quaternary tree (quadtree) repre-
sentation implemented using the Chunks and Tasks programming model. The
method is locality-aware in the sense that it is able to exploit a priori unknown
structure in the sparsity pattern to reduce communication and thereby improve
performance. The library used for performance evaluation here is a further
developed version of the code that was briefly described and used for test cal-
culations in [24].

This article is organized as follows: in Section 2, we briefly discuss the
Chunks and Tasks programming model. Our new matrix library based on
Chunks and Tasks is presented in Section 3. In the present work, the Chunks and
Tasks matrix library is used together with a block-sparse leaf matrix type, de-
scribed in Section 4. An analysis of the computational costs due to the quadtree
representation is given in Section 5, followed by results of test calculations in
Section 6 and concluding remarks in Section 7.

2. Programming model

Our block-sparse matrix library has been implemented using the Chunks
and Tasks programming model [24]. In Chunks and Tasks the programmer
writes her program in terms of small pieces of data and work, chunks and
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tasks, respectively. The programmer is responsible for dividing work and data
into smaller pieces but not for the mapping of work and data onto physical
resources. The programmer need not worry about message passing, all com-
munication is handled by the Chunks and Tasks library. The programmer does
neither have to worry about race conditions nor non-deterministic behavior. The
computation is driven by the registration of tasks, similarly to other task-based
models. Recursive nesting of tasks is allowed, i.e. during task execution new
tasks can be registered as in for example Cilk [25], Scioto [26], SuperGlue [27],
and XKaapi [28]. This is important for scalability of dynamic algorithms, since
otherwise only a single process can generate new tasks, or multiple processes
generate predetermined (static) task graphs.

A key feature of the Chunks and Tasks model is that abstractions are not
only provided for work but also for data. The Chunks and Tasks library takes
care of the distribution of both work and data. The user creates data objects
called chunks. The transfer of responsibility of such a chunk object to the
runtime library is referred to as registration of a chunk; in return, the user
gets an identifier that can be used to specify dependencies later on. After the
point of registration the chunk object is read-only. This is in a way similar to
e.g. Linda [29] and Concurrent Collections [30] that also have a “space” to which
you can add a piece of data and later retrieve it, possibly on another process. A
key difference is that in Linda and Concurrent Collections the identifier is cho-
sen by the application programmer whereas in Chunks and Tasks, the identifier
is chosen by the runtime library. On one hand, being able to choose identifiers
makes it possible for a process or task to ask for data without any prior com-
munication or interaction whatsoever with the process or task that registered
the data. On the other hand, the fact that the runtime library does not control
the identifiers means that inconsistencies can be introduced (supposedly unin-
tentionally) where for example several different pieces of data with the same
identifier exist, e.g. on distant nodes in a cluster. Perhaps of even greater im-
portance is that such a model makes it difficult for the runtime library to make
data available efficiently. Any process may ask for any piece of data at any time
possibly without any information being available locally about the location of
the piece being asked for. This stands in contrast to Chunks and Tasks where
the library for example can store information about the location in the chunk
identifier. In this way, Chunks and Tasks, by imposing appropriate restrictions,
makes life easier both for the application programmer and the runtime library
developer.

2.1. Library implementations

A Chunks and Tasks program can be compiled, linked and executed with any
Chunks and Tasks runtime library implementation. We will in our performance
evaluation use the publicly available Chunks and Tasks library CHT-MPI [31,
24], which is written in C++ and uses the Message Passing Interface (MPI)
for communication between computational nodes, enabling Chunks and Tasks
programs to run on distributed-memory clusters.
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The CHT-MPI implementation uses work stealing to distribute tasks, see
e.g. [32], meaning that there is no central ”master” node responsible for all
scheduling. Each worker process is responsible for its own set of tasks, and
steals work from some other (randomly selected) worker when it has no work
left. For recursive algorithms operating on hierarchical data structures, some
tasks recursively generate new tasks leading to a tree of tasks, and each worker
process effectively executes its own local part of that tree. Work stealing always
occurs as high up as possible in the local task tree of the victim process.

Besides distributing tasks, the runtime library must also make sure that the
necessary input data is available for each task. Thanks to the possibility of
storing the MPI rank of the owner process in the chunk identifier, this becomes
straightforward: when a particular chunk is needed as input to a task, the
library implementation simply inspects the chunk identifier to find out from
which worker the data should be fetched. In this way data can be made available
efficiently, without need for any central authority storing information about the
location of all chunks.

Each chunk object is by default owned by the worker process that created
that chunk. This has the advantage that no communication is needed to create
a chunk, and temporary chunks used within a local part of the task tree can
often be reused directly without need for any communication, since each worker
processes its own local part of the task tree. CHT-MPI also implements a
chunk cache for each worker process, meaning that if the same chunk is needed
multiple times it only needs to be fetched the first time. Thus, for Chunks and
Tasks programs corresponding to recursive algorithms operating on hierarchies
of chunks, data re-use happens automatically. Note that the data distribution is
determined dynamically and follows from the work stealing distribution of tasks.
The distribution of chunks among worker processes will therefore in general be
different for different runs of the same program.

For the reasons outlined above, CHT-MPI can be used to achieve scalable
parallelization for Chunks and Tasks programs; both work and data is dis-
tributed dynamically without need for any ”master” node that all workers must
communicate with. From an application programmer’s point of view, what is
needed to make use of these features is to express the program using hierarchical
representations and recursive algorithms. As will be seen in the following sec-
tion, a quadtree-based representation is a natural way to achieve this for matrix
operations. See [31, 24] for more information about CHT-MPI.

3. Quadtree representation of matrices in the Chunks and Tasks model

Hierarchical data structures based on a two-dimensional block decomposi-
tion of the matrix at each level in a hierarchy have both been used to block for
the memory hierarchy in dense matrix computations [33, 34, 35] and to avoid
operations on zero elements (or entire submatrices that are zero) in sparse ma-
trix computations [36]. Quadtree representations have also been advocated
for simplicity and expressiveness in particular leading to ease of programming
for multiprocessing (shared memory) environments [37, 38, 39, 36, 33, 34] and
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straightforward exploitation of symmetry [39]. As will be shown in Section 5,
the quadtree representation is in principle also appropriate for distributed rep-
resentation of sparse matrices on computer clusters. The caveat is that a dis-
tributed sparse quadtree representation is difficult to implement in conventional
programming models, especially if a priori unknown sparsity patterns are to
be handled efficiently. In this section, we describe how such a sparse matrix
quadtree representation can be straightforwardly implemented in the Chunks
and Tasks programming model [24].

In our Chunks and Tasks matrix library, matrices are represented by sparse
quadtrees of chunks. At the lowest level in the hierarchy, different leaf matrix
representations, for example dense or sparse, may be used. In this work we
will focus on regular matrix-matrix multiplication on the form C = AB and
the symmetric matrix square operation C = A2, where A and therefore also
C is symmetric and only the upper triangles of A and C are stored. The
sparse symmetric matrix square is a key operation and a major computational
challenge in linear scaling electronic structure calculations. In all task type
implementations, sparsity is dynamically exploited at all levels in the hierarchy
by skipping operations on zero submatrices, which are represented by NIL chunk
identifiers. Regular matrix-matrix multiplication without transpose C = AB
and matrix addition C = A+B are illustrated as pseudo-code in Algorithms 1
and 2, respectively. For all task types, at the lowest level in the hierarchy, the
corresponding functionality of the leaf matrix library is used, while at higher
levels a straightforward implementation for the two by two case is used, see
e.g. lines 7-14 in Algorithm 1. Checking for NIL chunk identifiers corresponds
to the if statement on line 2 in each of Algorithms 1 and 2. In practice, the
Chunks and Tasks C++ interface requires a regular execute function used when
all input chunks are available, and a fallback execute used when some of the
input chunk objects cannot be constructed due to NIL chunk identifiers. This is
convenient from a programmer’s point of view since the if statement on line 2 is
checked by the runtime library and the appropriate function, regular or fallback
execute, is called automatically. This also allows for compile-time type checking
and programming errors such as attempts to access nonexisting chunks are not
possible. We list and describe below all chunk and task types that are needed
for the C = AB and C = A2 operations.

3.1. Chunk types for quadtree representation

– Matrix : A basic matrix chunk type is used to represent nonzero subma-
trices in the quadtree representation. At each but the lowest level in the
hierarchy, the matrix is divided into four submatrices represented by their
chunk identifiers. At the lowest level, a leaf matrix type is used for matrix
representation. Storage and addressing of zero submatrices is avoided at
all levels in the hierarchy. Zero submatrices are represented by NIL chunk
identifiers. Note that a NIL chunk identifier can appear at any level in the
hierarchy. The matrix dimension is also stored along with the maximum
allowed dimension for leaf matrices. This basic chunk type is the natural
Chunks and Tasks implementation of a quadtree matrix representation as
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Algorithm 1 Pseudo-code for quadtree based matrix-matrix multiplication us-
ing the Chunks and Tasks programming model.

1: input: A,B
2: if A not NIL and B not NIL then
3: if lowest level then
4: X = leafMatrixMultiply(A, B)
5: C = registerChunk(X)
6: else
7: for m = 1, 2 do
8: for n = 1, 2 do
9: Y1 = registerTask(multiply, Am1, B1n)

10: Y2 = registerTask(multiply, Am2, B2n)
11: Cmn = registerTask(add, Y1, Y2)
12: end for
13: end for
14: C = registerTask(createFromIds, C11, C12, C21, C22)
15: end if
16: else
17: C = NIL
18: end if
19: output: C

execute

fallback

defined by Wise and Franco [40]. When setting up the quadtree structure
the matrix is split so that a predetermined uniform blocksize at each level
in the hierarchy is achieved as far as possible. This ensures that when two
matrices A and B are combined in e.g. a multiplication or addition op-
eration, the submatrix dimensions of A and B will match. The blocksize
used at leaf level should be chosen to achieve an appropriate granularity of
chunks and tasks. This is a trade-off: the leaf level chunks/tasks should be
small enough to allow sufficient parallelism for the given computational
resource. At the same time, each leaf level chunk/task should contain
enough data/work to make the administration overhead of the runtime
library negligible. The matrix dimensions at higher levels in the hierarchy
are directly determined by the lowest level blocksize, by multiplying by a
factor of 2 for each level. A submatrix in the quadtree represented by a
matrix chunk does not contain any global information such as the global
matrix dimension or its location in the entire matrix, i.e. row and column
offsets.

– Matrix parameters: A chunk type for matrix parameters is used to con-
vey information needed in the construction of matrix chunks. The chunk
includes information about the matrix dimension and the leaf matrix di-
mension, and whenever needed information about the location of the ma-
trix (its rowwise and columnwise offsets from the upper left corner) in
the global matrix. It is also used to store information needed by the leaf
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Algorithm 2 Pseudo-code for quadtree based matrix addition using the Chunks
and Tasks programming model.

1: input: A,B
2: if A not NIL and B not NIL then
3: if lowest level then
4: X = leafMatrixAdd(A, B)
5: C = registerChunk(X)
6: else
7: for m = 1, 2 do
8: for n = 1, 2 do
9: Cmn = registerTask(add, Amn, Bmn)

10: end for
11: end for
12: C = registerTask(createFromIds, C11, C12, C21, C22)
13: end if
14: else
15: if A not NIL then
16: C = A
17: else if B not NIL then
18: C = B
19: else
20: C = NIL
21: end if
22: end if
23: output: C

execute

fallback

matrix type.

3.2. Task types for regular matrix-matrix multiplication

– C = AB, C = ATB, C = ABT , and C = ATBT : The task types for regu-
lar and transposed matrix-matrix multiplication takes two matrix chunks,
described above, and returns the product. If the input matrices are both
at the lowest level in the hierarchy, the corresponding leaf matrix multi-
plication is invoked. Otherwise matrix multiplication and matrix addition
tasks for child submatrix multiplication and addition are registered for
execution. The results are collected into the result matrix with a task for
creation of a matrix chunk from four submatrix chunk identifiers. See the
pseudo-code in Algorithm 1 for the C = AB case.

– C = A + B: The task type for matrix addition takes two matrix chunks
and returns their sum. If the input matrices are at the lowest level, the
addition in the leaf matrix library is performed. Otherwise, tasks for
child submatrix addition are registered for execution, and the results are
collected with a task for creation of a matrix chunk from child submatrix
identifiers. See the pseudo-code in Algorithm 2.
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– Creation from submatrix identifiers: A task type for creation of a matrix
chunk from four submatrix chunk identifiers is needed since chunks are
read-only after the point of registration. Since the submatrix chunk iden-
tifiers are included in the matrix chunk, it is not possible to construct the
matrix chunk before the construction of the submatrices. Therefore, this
task type is used whenever a matrix that depends on the results of other
tasks needs to be constructed. This task type also takes a chunk of matrix
parameters as input.

3.3. Additional task types for symmetric matrix square

– C = A2 where A is symmetric: A symmetric matrix square task squares
a symmetric matrix in upper triangular storage. At the lowest level the
corresponding leaf matrix symmetric matrix square operation is executed.
At higher levels, the symmetric matrix square task registers symmetric
rank-k, symmetric square, symmetric multiply, and matrix addition tasks
to compute the submatrices in the product matrix. The results are col-
lected into the result matrix chunk with a task for creation of a matrix
chunk from submatrix identifiers. In general, a symmetric matrix square
task directly or indirectly makes use of all but the C = ATBT task type
in this section. Therefore, a benchmark of the symmetric matrix square
operation covers nearly all task types presented here.

– C = AB, where A or B is symmetric: Symmetric matrix multiply is the
task type for multiplication of two matrices where either the first or the
second multiplicand is a symmetric matrix in upper triangular storage. At
the lowest level the corresponding multiplication operation for symmetric
matrix multiply is executed. At higher levels, tasks for regular matrix
multiplication, symmetric matrix multiply, and matrix addition are reg-
istered and the results are collected into the result matrix chunk with a
task for creation from submatrix identifiers.

– C = AAT and C = ATA: With this task, the so-called symmetric rank-k
operation is performed; a symmetric matrix in upper triangular storage is
constructed from the product of a general matrix and its transpose. At
the lowest level the symmetric rank-k operation of the leaf matrix library
is used. At higher levels, symmetric rank-k, matrix multiplication, and
matrix addition tasks are registered and a task for creation from submatrix
identifiers is used to collect the results into the result matrix chunk, as for
the other task types.

4. Leaf matrix types

As discussed above, different leaf matrix representations may be used at the
lowest level in the quadtree. A leaf matrix type used together with our chunk
quadtree representation has to implement some basic functionality such as se-
rialization routines. The leaf matrix type also has to implement functionality
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Figure 2: Illustration of a sparse matrix product as a sum of sparse outer products. All
multiplies within a batch are independent making it possible to use the batched gemm API
in cuBLAS.

needed by task types used together with the leaf matrix type. When implement-
ing a leaf matrix type, one can assume that the matrix data fits in the memory
of a single compute node. All functionality in the class has to be thread-safe,
since the Chunks and Tasks library must be able to execute several leaf tasks
and call the serialization routines simultaneously.

4.1. Block-sparse leaf matrix type

In the present work we are using a block-sparse leaf matrix type. The block-
sparse matrix class uses a uniform blocksize configurable via the matrix param-
eters chunk type as discussed in Section 3.1. Submatrices are kept in a simple
two-dimensional array where only non-zero submatrices are allocated. The leaf
matrix library makes use of the Basic Linear Algebra Subprograms (BLAS) [41]
for submatrix-submatrix multiplications on CPUs and the NVIDIA CUDA Basic
Linear Algebra Subroutines (cuBLAS) [42] for submatrix-submatrix multiplica-
tions on graphics processing units (GPUs). An advantage of using the BLAS
and cuBLAS library interfaces is that we can take advantage of optimized BLAS
and cuBLAS library implementations. We have for example observed substan-
tial performance improvements of the cuBLAS library when going from Cuda 5.0
to Cuda 6.5 (see the caption of Table 2).

Our block-sparse leaf matrix type targets problems where a block size around
16-64 is appropriate. The regular gemm operation in cuBLAS is inefficient for
such small matrix dimensions. Therefore, we are instead making use of the
batched gemm API in cuBLAS. The routine executes a batch of small matrix-
matrix multiplications. The operations in a batch should be independent in the
sense that none of the multiplications are allowed to write to the same product
matrix. The block-sparse multiplication can be expressed as a sum of outer
products, see Figure 2. Each outer product is a batch of small matrix-matrix
multiplications and all multiplies within a batch are independent.

We would like to make use of both CPUs and GPUs, if any. If there is
a GPU available, the multiply will be processed by the GPU. Otherwise the
multiply will be processed by a CPU core. Since there will be other threads
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that execute similar tasks, a GPU may become available during the calculation.
Then, it is generally good if the remaining work can be offloaded to the GPU.
To achieve this we are using Algorithm 3. Using this algorithm, load balancing
between the CPUs and GPUs is achieved when several threads executing leaf
matrix multiplies are running on the host. An alternative could be to use a
Chunks and Tasks library that let idle host threads reexecute already running
tasks whenever there is no more work, as in [43]. The application programmer
would then not have to worry about feeding smaller portions to the CPU, and
such an approach could also help in case of various failures. On the other hand,
some tasks would be executed more than once.

Algorithm 3 Algorithm for load balanced processing of batch lists.

1: Get list of batches (CPU)
2: while not done do
3: if free GPU slot then
4: Process remaining batches on GPU
5: else
6: Process one batch on CPU
7: end if
8: end while

4.2. Efficient utilization of both GPUs and CPUs

To make efficient use of both GPUs and CPUs on each node, data transfers
to/from GPUs should as far as possible be overlapped with computation and
the load should be shared between the GPUs and the CPU cores. In addition,
in case the amount of work in each task varies, it is preferable to run small tasks
on the CPU cores and let the GPUs handle the computationally heavier tasks.

Overlap of data transfers and computation is achieved by keeping two slots
for each device (GPU), allowing one thread to do computations while another
thread is transferring data. In order to have a task ready for execution on each
device, a bounded queue is used, with a queue length equal to the number of
devices. To allow computationally heavy tasks to run primarily on the GPUs,
the queue is prioritized according to a measure of the expected amount of work
needed to execute each task. For tasks that do not fit in the queue, the work
is performed on a CPU core until a GPU becomes available, see Algorithm 3.
This gives load balancing between GPUs and CPUs provided that the number
of threads is large enough; for small numbers of threads only GPUs are used.

Since the preparatory work needed to get the list of batches for each task is
performed on a CPU core before checking for a place in the queue, computation
on the GPU is overlapped not only with data transfers to/from the device
memory but also with the preparatory work.

Note that the Chunks and Tasks C++ interface presented in [24] does not
include support for data transfers between the host and GPU memory nor does
it assist in scheduling of tasks on GPUs, as does for example StarPU [44]. The
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Chunks and Tasks library is unaware of any devices that may be installed on
the compute nodes. The code for deciding when to offload work to the GPU,
as well as data transfers to/from GPU memory, is part of the task execution.
This means that data that is used by several tasks running on the same GPU
will be transferred to the device memory once for each task. However, as will
be seen in Section 6.1, the design described above achieves both hiding of data
transfer costs and sharing of the workload between GPUs and CPUs.

5. Computational costs associated with the quadtree representation

In this section, we first consider the number of tasks for different sparsity
patterns, and then use those results to get theoretical estimates of computation
and communication costs.

The total number of tasks includes both addition and multiplication tasks.
However, for the purpose of studying the scaling behavior of the total number of
tasks it is sufficient to consider only the number of multiplication tasks since this
is always larger than the number of addition tasks. This can be understood in
the following way. The input submatrices to any addition task are temporaries
that come from previous addition or multiplication tasks. The input submatrices
to any multiplication task come from the original input matrices (A and B). The
output submatrix resulting from any multiplication or addition task can appear
as input to at most one addition task. Therefore, the tasks generating the trace
of temporaries that precedes any addition task form a binary tree in which every
node has 0 or 2 children with multiplication tasks as leaves and addition tasks as
non-leaves. Such a tree has more leaves than non-leaves. Thus, the total number
of addition tasks is strictly bounded by the total number of multiplication tasks.

5.1. Total number of tasks

We will here consider the total number of matrix-matrix multiplication tasks
for different sparsity patterns. Tasks executed at higher levels can be seen as
administration work required to determine which low-level tasks are needed. A
key issue is how much such extra administration work that is generated due to
the quadtree representation.

In this section, we consider a quadtree representation with blocksize 1 at the
lowest level. In practical calculations, a larger blocksize will typically be used
for performance reasons; we use blocksize 1 here in order to more clearly see the
effects of the quadtree structure. The use of a larger blocksize will correspond
to merging several of the lowest levels, leaving it to the leaf matrix library to
handle any sparsity there.

We first consider a case with little data locality, a random sparsity pattern
where the nonzero matrix elements are uniformly randomly distributed. The
probability δ to find a nonzero element at a given position is the same everywhere
in the matrix and uncorrelated to the position of other nonzero matrix elements.

Let the levels in the hierarchy be labeled such that level l = 0 is the highest
level (the root of the tree) and level l = L is the lowest (leaf) level. Let N be the
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Figure 3: Number of matrix-matrix multiplication tasks at different levels in the hierarchy for
random and banded matrices with matrix dimension N = 2L with L = 20 and L = 30. The
target number of nonzero elements per row is 65, corresponding to δ = 65/N in the random
case and k = 5 in the banded case. The dashed lines indicate the upper bounds given by (2)
and (3).

matrix dimension and Nl = 2l such that N2
l is the total number of submatrices

at level l and NL = N . If we denote the probability of a submatrix at level l
being nonzero as δl, the expected number of matrix-matrix multiplication tasks
at level l is

Crandom
l = N3

l δ
2
l = 23l(1− (1− δ)nl)2 (1)

where nl = 22(L−l) is the total number of elements (including both zeros and
nonzeros) in each submatrix at level l. The relationship (1) is illustrated in
Figure 3.

Since δl ≤ 1, it follows that

Crandom
l ≤ N3

l = 8l for all l. (2)

Furthermore, the probability δl of a submatrix being nonzero satisfies the rela-
tion δl = 1− (1− δl+1)4 = 4δl+1 − 6δ2l+1 + 4δ3l+1 − δ4l+1 ≤ 4δl+1. Therefore, we
also have that

Crandom
l ≤ N3

l (4L−lδ)2 =
16Lδ2

2l
for all l. (3)

Although both inequalities (2) and (3) are valid for all l, (2) is tight for low
levels while (3) is tight for high levels, as seen in Figure 3.

Let x = log2(N)+ log2(δ)
2 be the point where the two bounds above intersect,

given by solving 4L−xδ = 1. Then, 8x = (δN2)
3
2 , 8bxc ≤ 8x, and 16Lδ2

2bxc+1 <
16Lδ2

2x = 8x. Therefore, assuming δ ≥ 1/N2 =⇒ x ≥ 0 the expected total
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number of tasks

L∑
l=0

Crandom
l ≤

bxc∑
l=0

8l +

L∑
l=bxc+1

16Lδ2

2l
(4)

= 8bxc
bxc∑
l=0

1

8l
+

16Lδ2

2bxc+1

L−bxc−1∑
l=0

1

2l
(5)

< 8x
(

1

1− 1/8
+

1

1− 1/2

)
(6)

= (3 1
7 )(δN2)3/2. (7)

We note that even though the number of tasks at leaf level is O(N3δ2), the total
number of tasks is O(N3δ3/2) due to excessive administration work at higher
levels.

As a simple case with data locality, we consider banded matrices with band-
width b = 2d+ 1 where for simplicity we assume that d = 2k for some k ≥ 0. In
this case, the number of matrix-matrix multiplication tasks at level l is bounded
by

Cbanded
l < Nlb

2
l = 2l(2dl + 1)2 (8)

where

dl =

{
1 for l < L− k,
2l−(L−k) for l ≥ L− k.

(9)

As seen in Figure 3, the case with data locality gives a very different behavior
of the number of tasks on each level; most of the work is concentrated at the
lowest levels in the hierarchy. The total number of tasks is bounded by

L∑
l=0

Cbanded
l <

L−k−1∑
l=0

2l32 +

L∑
l=L−k

2l(2 · 2l−(L−k) + 1)2 (10)

< (4 4
7d

2 + 5 1
3d+ 2 +

9

d
)N. (11)

We note that the total number of tasks is proportional to the number of tasks
at the lowest level, i.e. no excessive administration work is going on at higher
levels.

As an example of sparsity structures appearing in physical applications, we
consider overlap matrices for systems of evenly distributed particles in D ≥ 1
spatial dimensions with one spherically symmetric basis function per particle,
ordered using a recursive divide-space procedure. We consider finite systems (no
periodicity). A matrix element Aij is nonzero if the distance between particles i
and j is smaller than some radius R. Note that this is a kind of sparsity structure
found in many applications in physics and chemistry, where each matrix element
is often related to a pair of particles or other objects in a physical system;
sparsity arises from the fact that only matrix elements that correspond to objects
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Figure 4: Number of matrix-matrix multiplication tasks for matrices with different sparsity
structures. Left: overlap matrices for artificially constructed 1d, 2d, and 3d molecules. Right:
R-MAT graph matrices with parameters corresponding to different degrees of data locality.
See the text for details.

that are sufficiently close in space are nonzero. In D spatial dimensions with
the chosen ordering of basis functions, the Nl blocks at level l can be seen
as corresponding to a set of Nl spatial boxes such that all basis functions (or
particles) in a given block are contained in the corresponding box. The number
of multiplication tasks at a given level can be estimated by

Coverlap
l < NlM

2
l = 2lM2

l (12)

where Ml is the number of spatial boxes that can be reached by a sphere of
radius R. For high levels where the width of spatial boxes is larger than R, Ml

is determined by the number of neighboring boxes, Ml = 3D, independently of l.
For lower levels Ml is proportional to the volume of a D-dimensional sphere of

radius R
hl

where the width of boxes hl ∝ 2
L−l
D , giving Ml ∝ RD2l−L. Therefore,

analogously to the banded matrix case, for high levels Coverlap
l ∝ 32D2l and for

lower levels Coverlap
l ∝ R2D23l−2L. We note also that Coverlap

l ≥ 2Coverlap
l−1 for

all l ≥ 1. Therefore, as for the banded matrix case, the total number of tasks is
proportional to the number of tasks at the lowest level. Numerical experiments
for D = 1, 2, 3 are shown in the left panel of Figure 4. The test matrices were
created using the Ergo program [6] to compute overlap matrices for artificially
generated 1d, 2d, and 3d molecules with one basis function per atom from
the standard Gaussian basis set STO-3G, applying the default recursive divide-
space procedure to order the atoms. The molecules were generated by placing
hydrogen atoms on a D-dimensional grid with separation 2 Å and a uniform
random displacement of up to ±1 Å in each coordinate direction. The matrix
size was 216 = 65536 for D = 1, 2 and 403 = 64000 for D = 3. Blocksize 1 was
used for the 1d case while the 2d and 3d cases used blocksize 2 and 4, reducing
the number of hierarchy levels for those cases by 1 and 2, respectively.

As an example where different degrees of data locality can be easily inves-
tigated we consider multiplication of graph matrices constructed using the R-
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MAT model [45]. We choose the R-MAT parameters such that b = c = d = 1−a
3

and perform tests for different values of a in the range 0.25 ≤ a < 1. Setting
a = 0.25 essentially corresponds to the random case described above, while in-
creasing a corresponds to increasing the data locality. We use matrix dimension
213 = 8192 and a number of graph edges corresponding to 5 nonzero elements
per row, although for large a values matrices become more sparse due to mul-
tiple graph edges between the same nodes. The right panel of Figure 4 shows
the number of matrix-matrix multiplication tasks for a set of different a values.
We note that most of the work is pushed towards lower levels as the degree of
data locality increases.

5.2. Computation and communication costs

We will here assume that the tasks are as far as possible evenly distributed
over the computational nodes, i.e. that the total execution time is given by
O(T1/p+T∞) where T1 and T∞ are the serial and critical path execution times,
respectively and p is the number of processes. Such load balancing can for
example be achieved by work stealing [32]. While the total number of addition
tasks is always smaller than the total number of multiplication tasks, the number
of tasks along the critical path is up to O((log(N))2) for the additions and
O(log(N)) for the multiplications. Therefore, we take T1 to be proportional to
the total number of multiplication tasks and T∞ = O((log(N))2) given by the
worst case critical path length. Thus, for the random case we have that the
execution time is

O
(

(δN2)3/2

p
+ (log(N))2

)
(13)

and for the banded case we have that the execution time is

O
(
d2N

p
+ (log(N))2

)
. (14)

We are interested in the communication costs in the weak and strong scaling
limits. We consider first a weak scaling test constructed by keeping the number
of nonzero matrix elements per row fixed and increasing the matrix dimension
together with the number of processes. In the random case, this means that
δ ∝ 1

N and the number of leaf level tasks is O(N) but the total number of tasks

is O(N
√
N). Assuming that all data for each task needs to be communicated

this means that each process needs to receive data scaling as O(
√
p) with the

number of processes. In the banded and overlap cases both the leaf level and
total number of tasks is O(N) and the average amount of data received per
process is O(1). Since these results are based on the number tasks, the latency
cost behaves in the same way; the number of messages exchanged per process is
proportional to the number of tasks per process. For strong scaling the number
of tasks is constant, so the average number of tasks per process and thereby also
the average amount of data communicated per process scales as O(1/p) for all
sparsity structures.
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Weak Strong

Quadtree - random O(
√
p) O(1/p)

Quadtree - banded O(1) O(1/p)
Quadtree - overlap O(1) O(1/p)
SpSUMMA O(

√
p) O(1/

√
p)

Table 1: Communication costs. Scaling of the average amount of data received by each process
with the number of processes p in the weak and strong scaling limits for matrices with different
sparsity patterns.

The above results for the quadtree representation can be compared to the
approach where a random permutation is employed to destroy data locality
followed by application of the Sparse SUMMA algorithm [46]. Assuming that
the random permutation succeeds to evenly distribute the nonzero matrix el-
ements, the number of matrix elements that each process needs to fetch from
other processes becomes (see e.g. equation (3.1) in [21])

2mN
√
p

(15)

where m is the number of nonzeros per row. Similarly to the above, a weak
scaling test can be constructed by keeping m fixed and letting N ∝ p, leading
to each process receiving data scaling as O(

√
p) with the number of processes.

The weak and strong scaling results are summarized in Table 1.

6. Performance evaluation

In this section, we will examine the performance of our block-sparse matrix-
matrix multiplication presented in Section 3 when linked to the publicly avail-
able Chunks and Tasks library implementation CHT-MPI described in Sec-
tion 2.1, using the block-sparse leaf matrix library of Section 4. Hereinafter,
the number of floating point operations for multiplication of two dense matrices
with dimension N is counted as 2N3.

6.1. Calculations on cluster of GPU-equipped nodes

We will first present calculations performed on the Erik cluster at the Lu-
narc computer center, Lund University, using CHT-MPI 1.1 compiled with
Open MPI 1.6.5 and gcc 4.8.1, Cuda 6.5 and the Intel Math Kernel Library
(MKL) version 11.1. The Erik cluster consists of 24 nodes each with dual 64-bit,
8-core Intel Xeon E5-2650 2.00 GHz processors. The nodes are interconnected
with FDR InfiniBand and equipped with Nvidia Tesla K20m GPU cards: 16
nodes with 2 cards, 7 nodes with 4 cards, and 1 node with 8 cards. Leaf matrix
submatrix operations were performed with the MKL implementation of BLAS
on CPUs and with cuBLAS on the GPUs, as described in Section 4.1.
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Matrix size 16 32 48 64 80 96
Gflop/s (single) 243.1 392.3 276.6 558.4 401.9 628.9
Gflop/s (double) 147.7 210.5 231.3 244.0 263.8 270.5

Table 2: Practical peak performance figures for cuBLAS batched matrix-matrix multiplication
in Cuda 6.5 on Nvidia K20. Computed from batches with 64000 matrix-matrix multiplications,
Ci = βCi + αAB, i = 1, 2, . . . , 64000 with A, B, and Ci being b × b matrices with b =
16, 32, 48, 64, 80, 96. The number of floating point operations is counted as 64000 × 2b3. We
note that the figures are up to 40% larger than what we obtained with the benchmark program
provided by Nvidia. This is mainly due to the reuse of the A and B matrices for all 64000
multiplies in the present benchmark. Also, in the present benchmark timers on the GPU
were used instead of timers on the CPU combined with synchronization. This results in
larger Gflop/s values. Furthermore, switching from Cuda 5.0 to Cuda 6.5 gave performance
improvements ranging from 20 % for the “double precision, block size 16” case to 310 % for
the “single precision, block size 96” case, for calculations that were otherwise identical.

Our first benchmark measures only the performance of the block-sparse
matrix-matrix multiplication used for the leaf multiplications in the Chunks and
Tasks matrix library. Thus, Chunks and Tasks is not involved in this bench-
mark. We perform multiplications with matrix dimension 4096 × 4096 with
varying degree of matrix sparsity. The nonzero submatrix blocks are randomly
uniformly distributed over the matrix to get a predetermined fill factor which is
the fraction of nonzero matrix elements. Results for double and single precision
are shown in Figures 5 and 6, respectively. Practical peak performance values
(dashed lines) were calculated with a separate benchmark program measuring
the performance of the cuBLAS batched matrix-matrix multiplication, see Ta-
ble 2. We are not quite reaching up to those peak figures. The main reason is
that the benchmark of the leaf matrix library includes data transfers to/from
the GPU which are not included in the peak performance figures. The work
needed to prepare the list of batches is also included in the measured wall time.
However, when the leaf matrix library is used within the Chunks and Tasks
matrix library, there will be several threads that need to execute leaf matrix
multiplications. This means that both communication to/from the GPU and
preparation of batch lists on the CPU can then be overlapped with computation
on the GPU as described in Section 4.

This brings us to the next two benchmark figures where the Chunks and
Tasks library is used but only on a single computational node, see Figures 7
and 8. The computational node is equipped with 16 CPU cores and 2 GPUs.
Considering that the bounded priority queue has length 2 and that there are
2 slots per GPU, this means that up to 6 threads, no processing of batch lists
will ever occur on the CPU cores. When 2 threads are executing tasks, there is
one GPU dedicated to each thread, similarly to the previous benchmark figures.
Therefore, the performance improvement when going from 2 to 6 threads comes
solely from overlapping data transfers to/from the GPUs and preparation of
batch lists on the CPU with the processing of batch lists on the GPUs. Com-
paring the practical peak performance limits to the performance for 6 threads
in Figures 7 and 8 shows that the performance for 6 threads reaches between
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Figure 5: Results of leaf block-sparse matrix library matrix-matrix multiplication test runs
with double precision and matrix dimension 4096 × 4096, varying sparsity (fill factor), and
blocksizes 16, 32, and 64 on the Erik cluster. The nonzero submatrices are randomly uniformly
distributed over the matrix. Left: running on one of the CPU cores. Right: running on one
of the CPU cores but processing the list of batches on one of the GPUs. The dashed lines are
practical peak performance figures computed from batches with 64000 b × b multiplies with
b = 16, 32, 64, not including any data transfers, see Table 2.
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Figure 6: Test runs for single precision corresponding to the double precision results in Fig-
ure 5. See that figure caption for more information.
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Figure 7: Results of matrix-matrix multiplication test runs in double precision using the
Chunks and Tasks matrix library for dense 25000× 25000 matrices and blocksizes 16, 32, and
64 on a single Erik node equipped with two GPUs. A varying number of threads was used
by CHT-MPI to execute tasks. The leaf matrix dimension was fixed to 4096 × 4096. Left:
running on the CPU cores. Right: running on both the CPU cores and the GPUs. The dashed
lines indicate practical peak performance figures for the two GPUs, see Table 2. Note that up
to 6 threads all batch lists are executed on the GPUs, see the discussion in the text.

88% and 95% of the practical peak performance values. When increasing the
number of threads further, batch lists will also be processed on the CPU cores,
according to Algorithm 3. The figures show that we are able to take advantage
of both the CPU and GPUs in a load balanced manner. We also note that
no parametric models for task execution times on different hardware were re-
quired, the load balancing was achieved automatically without any information
about the computational power of the devices, other than the assumption that
a GPU is much more powerful than a CPU core. Block-sparse matrix-matrix
multiplication using GPUs has also been implemented in the distributed block-
compressed sparse row library, but using custom computational kernels rather
than the batched kernels in cuBLAS [22]. The performance results in Figure 7
are comparable to those in Figure 8 in [22].

In Figure 9 we investigate the weak scaling of our block-sparse matrix-matrix
multiplication for a set of banded matrices with fixed bandwidth but a matrix
dimension that is increasing proportionally to the number of computational
nodes. Each node used 17 worker threads and a chunk cache size of 5 GB. In this
case, we noticed fluctuations in the execution time and have therefore carried
out 6 test runs for each case (no. of nodes and blocksize). Note that according
to the theoretical weak scaling results of Section 5, we would expect at worst
O((log(n))2) scaling of the wall time with increasing number of nodes n. Figure 9
shows results for both regular matrix-matrix multiplication and the symmetric
matrix square operation that assumes upper triangular storage of a symmetric
matrix and only computes the upper triangle of the symmetric product. The
implementation of the symmetric matrix square operation is straightforward
using Chunks and Tasks since all decisions regarding distribution of work and
data are handled by the runtime library. The expected speedup of 2 compared
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Figure 8: Test runs for single precision and matrix dimension 40000 × 40000, otherwise cor-
responding to the double precision results in Figure 7. See that figure caption for more
information.

to the regular multiplication is achieved.
The effective performance in Gflop/s for the tests in Figure 9 can be com-

puted based on the number of scalar multiplications and additions for multipli-
cation of banded matrices with bandwidth 2d+ 1:

2(N(2d+ 1)2 − (5/3)d(d+ 1)(2d+ 1)). (16)

For the 1-node case in the left panel of Figure 9 this gives 222, 374, and 441
Gflop/s for block sizes 16, 32, and 64, respectively. For the 20-node case the
corresponding numbers are 2933, 4258, and 5065 Gflop/s. These figures can
be directly compared to the performance results in the right panel of Figure 7.
In particular, one can compare to the highest performance for each block size.
This shows that the banded matrix test runs in Figure 9 retained 70%, 81%,
and 77% of the performance for the 1-node case for block sizes 16, 32, and 64,
respectively. For the 20-node case the corresponding numbers are 47%, 46%,
and 44% compared to a perfect weak scaling scenario. Since the weak scaling
efficiency per node has essentially leveled out at 20 nodes, similar efficiency can
be expected also for larger calculations.

6.2. Application to overlap matrix in electronic structure program

To test the applicability of our block-sparse matrix-matrix multiplication
in large-scale electronic structure calculations, we have adapted parts of the
linear scaling electronic structure code Ergo [6] so that the overlap matrix can
be constructed in parallel using Chunks and Tasks. This allows us to test the
symmetric matrix square operation for the overlap matrix. See the description
of the symmetric matrix square task type in Section 3.3.

The overlap matrix construction was done using a hierarchical representa-
tion of the basis set, where each part of the hierarchy contains basis functions
located in a particular part of space. At higher levels in the hierarchy, chunk
identifiers are stored referring to basis set descriptions at lower levels. Using
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Figure 9: Weak scaling test for banded matrices with bandwidth 2 × 4000 + 1 and matrix
dimension 40000n×40000n, where n is the number of nodes. The calculations were performed
in double precision with leaf matrix dimension 4096× 4096 for internal leaf matrix block sizes
16, 32, and 64. Left: Regular matrix-matrix multiplication. Right: Symmetric matrix square
taking advantage of that the product matrix is symmetric. For each case (no. of nodes and
blocksize), the benchmark calculation was repeated 6 times, and we plot the smallest interval
containing all 6 wall times. Lines are drawn through the average wall time of the 6 benchmark
calculations.

such a hierarchical basis set description, it is straightforward to implement tasks
to compute the overlap matrix.

The basis function ordering, which affects the sparsity pattern of the matrix,
was determined based on the spatial coordinates of the basis functions using a
recursive divide-space procedure. This is the default ordering used in the Ergo
program.

The Ergo overlap matrix test calculations were performed on the Tintin
cluster at the UPPMAX computer center, Uppsala University, using CHT-
MPI 1.1 compiled with Open MPI 1.8.1 and gcc 4.9.1. The AMD Core Math
Library (ACML) version 5.2.0 was used for BLAS operations on submatrices
within the block-sparse leaf matrix implementation. The Tintin cluster consists
of 160 compute nodes. Each node is a dual AMD Bulldozer compute server with
two 8-core Opteron 6220 processors running at 3.0 GHz, with 64 GB of memory.
The nodes are interconnected with a 2:1 oversubscribed QDR InfiniBand fabric.
CHT-MPI was configured to use 15 threads for executing tasks, leaving one core
on each node to handle communication. The chunk cache size was set to 8 GB.

The test molecules were water clusters generated from a molecular dynamics
simulation of bulk water at standard temperature and pressure by including all
water molecules within spheres of varying radii. The Gaussian basis set STO-
3G was used, corresponding to 7 basis functions for each water molecule. The
largest test system contained 1745413 water molecules, giving 12217891 basis
functions. The overlap matrix S was truncated so that the Frobenius norm
of the error matrix was smaller than 10−5. The calculations were performed
in double precision with leaf matrix dimension 4096 and blocksize 16. For the
largest test systems this gave a sparsity corresponding to on average 1070 matrix
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Figure 10: Timings and scaling for S2 symmetric matrix square computations on Tintin. Left:
Timings for S2 computations on overlap matrices for water clusters of varying size, using 25,
50, and 100 nodes of the Tintin cluster. Nearly linear system-size scaling is observed. Right:
Scaling with respect to number of nodes, for three different matrix sizes. The speedups are
relative to the 25 nodes case. We get closer to ideal speedup when the matrix size is increased.

elements per row in S after truncation, and about 7000 matrix elements per row
in S2.

Timings and scaling for different numbers of compute nodes for the computa-
tion of S2 using the symmetric matrix square operation are shown in Figure 10.
The time scales nearly linearly with the size of the molecular system, and the
parallelization speedup improves for larger problem sizes.

Figure 11 shows memory usage and communication statistics for the same
water cluster S2 calculations. The minimum, maximum, and average values
among the 100 compute nodes are shown. Note that since CHT-MPI dis-
tributes both work and data dynamically, both the amount of data stored and
the amount of communication needed will in general be different among the
compute nodes. For the largest water cluster, the S2 matrix contained about
8.6 × 1010 matrix elements. Since only the upper triangle was computed and
double precision was used, this corresponds to 344 GB of storage for S2, or
about 3.4 GB per node for the 100 nodes case. The average chunk memory
usage shown in the left panel of Figure 11 is larger, about 12.4 GB per node, as
it includes also temporary matrix chunks used during the computation.

Compared to the S2 test calculations in [24], where plain dense matrix stor-
age with blocksize 500 was used at the lowest level, the results in the present
work represent significant improvements. The block-sparse leaf matrix type al-
lows us to exploit sparsity much better, and using the symmetric matrix square
operation reduces the computational effort even further. For a given water
cluster size and number of compute nodes used, the memory usage for S2 is
reduced by about a factor of 16, and the time for the S2 computation is reduced
by about a factor of 6. Thanks to the reduced memory usage we are able to
test significantly larger systems.
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Figure 11: Memory usage and communication statistics for S2 symmetric matrix square
computations for water clusters of varying size, using 100 nodes of the Tintin cluster. Left:
Chunk storage peak memory usage. Only the memory for owned chunks is shown here; chunk
cache is not included. Right: Amount of data received by each node during the symmetric
matrix square operation.

The results in this section demonstrate that our block-sparse matrix-matrix
multiplication is indeed well suited for applications in large-scale electronic
structure calculations; we get the desired linear scaling with respect to the
size of the molecular system and reasonable parallel speedup for large enough
problems, with dynamic distribution of both work and data. However, there
is room for performance improvements. Statistics from the calculations indi-
cate that the worker threads were typically idle more than half of the time,
either waiting for data to be fetched from other nodes or because there was not
enough remaining work to occupy all worker threads. This can be addressed by
improvements within the CHT-MPI implementation, for example by running
tasks closer to their input chunks. As seen in the left panel of Figure 11, a
more even distribution of the chunk storage in the the CHT-MPI implementa-
tion would also be desirable, for example using an upper limit for the chunk
storage on each node, and storing chunks elsewhere when that limit is reached.
Such improvements could be taken advantage of without changes in the matrix
library code, by linking to an improved CHT-MPI or another Chunks and Tasks
library.

The compute nodes on the Tintin cluster where the Ergo tests were run
are not equipped with GPUs, so the effect of using GPUs was not studied here.
However, as seen in Section 6.1, our GPU implementation can provide additional
performance in case GPUs are available.

Note that the Ergo test calculations presented here only involved the over-
lap matrix. Full Hartree–Fock or Kohn–Sham density functional theory calcu-
lations require additional parts of the Ergo code, notably the Coulomb and
Hartree–Fock exchange matrix construction steps, to be parallelized using the
Chunks and Tasks model. When that is done, the matrix library described
here will be used to combine the different parts so that full Hartree–Fock and
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Kohn–Sham density functional theory calculations can be performed. The most
performance-critical matrix operations are expected to be the symmetric ma-
trix square operations during density matrix construction. The density matrix
in general contains significantly more nonzero elements than the overlap ma-
trix [11]. Therefore, for a given size of the molecular system more work for each
matrix-matrix multiplication can be expected compared to the S2 tests here,
especially if larger basis sets are also used.

6.3. Investigation of communication costs

As shown in Section 5, the quadtree representation in principle allows data
locality in sparse matrices to be exploited. Here we test this in practice by
considering weak scaling using banded matrices similarly to the calculations
presented in Figure 9 with fixed bandwidth but a matrix dimension that is in-
creasing proportionally to the number of worker processes. The average amount
of communication for each worker process can then be expected to be constant,
provided that the used CHT-MPI library succeeds in distributing the work.

However, if an approach like [21, 22] is used, where a random permutation
destroying data locality is employed, the average amount of communication
needed will grow, as noted in Section 5.2. In this case, since the matrix dimen-
sion is increased together with the number of processes, by (15), the number of
matrix elements that each process needs to fetch becomes

2mk
√
p (17)

where k is the constant relating N and p in our weak scaling tests such that
N = kp.

Since we are here interested in how the amount of communication scales
for large numbers of processes, we use 8 worker processes per node and one
worker thread per process. The test runs used up to 30 nodes of the Tintin
cluster, corresponding to up to 240 worker processes. We consider here the
total amount of data received by each process from other processes, including
both communication between processes on the same node and between processes
on different nodes. The chunk cache size for each process was set to 2 GB. The
calculations were performed in double precision with leaf matrix dimension 4096
and blocksize 16.

Figure 12 shows results of our weak scaling tests using the Chunks and Tasks
matrix library. The minimum, maximum, and average values among the worker
processes are shown. For each case, the plotted numbers are averages from
6 repeated benchmark calculations. For comparison, the amount of commu-
nication that would have been needed if a random reordering and the Sparse
SUMMA algorithm had been used is also shown. We note that the Chunks and
Tasks matrix library, without a priori knowledge about the sparsity structure,
is able to take advantage of locality and achieve essentially constant amount
of communication per worker process on average, as predicted in Section 5.2.
To get an indication of the load balance, the active percentage for the worker
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threads, defined as the fraction of the time that worker threads were busy exe-
cuting tasks, is also shown in the figure. When the communication per process
no longer increases the active percentage is also stabilized. Note the difference
between our locality-aware approach and the Sparse SUMMA algorithm, for
which communication would have dominated completely for large enough test
cases.

Figure 13 shows the corresponding results for the symmetric matrix square
operation. For large numbers of processes, using the symmetric matrix square
operation instead of regular multiplication reduced the average necessary com-
munication per process from about 1.39 GB to 0.76 GB.

Note that although the weak scaling tests described above were performed
for the simple case of banded matrices, our Chunks and Tasks matrix library au-
tomatically takes advantage of any sparsity and locality that can be exploited
by the quadtree structure. As another example, exploitation of data locality
in the sparsity pattern improves the scaling of the amount of communication
also for the more complex sparsity patterns occurring in electronic structure
calculations for three-dimensional molecular systems. This can be seen by com-
paring some of the overlap matrix tests in Section 6.2. For example, going from
2463377 basis functions and 25 nodes to 9861383 basis functions and 100 nodes
corresponds to a factor of 4 in the number of nodes and a factor of 4.003 in
matrix size. The average amount of data received per node increased from 6.0
GB to 7.7 GB, or a factor of 1.28. This is a significant improvement compared
to the factor of 2 that would have resulted from a

√
p behavior. It should be

noted that such a comparison of different S2 calculations does not correspond
exactly to a weak scaling study, since the spherical shape of the water cluster
systems and the use of Frobenius norm truncation lead to an amount of work
that increases slightly more than linearly; in this case the increase in matrix
size by a factor of 4 lead to an increase in the number of nonzeros in S2 by a
factor of 4.33.

Figure 14 shows measured wall times for weak scaling tests on the Tintin
cluster using the Combinatorial BLAS SpSUMMA implementation [47] and the
here presented matrix library, in order to verify the theoretical results in Sec-
tion 5.2 regarding execution times. The SpSUMMA tests were performed using
the freely available and well organized software package Combinatorial BLAS
version 1.4.0 [47]. Both Combinatorial BLAS and our matrix library were com-
piled with Open MPI 1.8.1 and gcc 4.9.1. The calculations used up to 16 worker
processes per node, with the specific number of processes for each case fulfilling
the Combinatorial BLAS requirement of a square logical processor grid. For
our library, leaf matrix dimension 4096 and blocksize 16 was used and BLAS
operations at leaf level were performed using ACML version 5.2.0. The test
matrices were chosen so that the asymptotic scaling behavior for each approach
can be clearly seen, using banded matrices of size N = 20000p and bandwidth
2 × 20 + 1, in double precision. This makes the amount of work per process
O(d2N/p) relatively small. For SpSUMMA the O(

√
p) communication cost

dominates the calculation. SpSUMMA also involves a cost for processing the
data that has been fetched. Owing to the efficient representation of hypersparse
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Figure 12: Weak scaling results for regular matrix-matrix multiplication of banded matrices
with bandwidth 2× 2000 + 1 and matrix dimension 5000p× 5000p, where p is the number of
worker processes. Left: Amount of data received by each process during the matrix-matrix
multiplication operation. The dashed line indicates the amount of communication that would
have resulted if a random reordering and the Sparse SUMMA algorithm had been used,
see (17). Right: active percentage: the fraction of the time that worker threads were busy
executing tasks.

matrices provided by the doubly compressed sparse column data structure [48],
used in Combinatorial BLAS, this cost is only O(

√
p) as well. (In contrast,

the standard compressed sparse column representation used in e.g. Matlab [49]
and Csparse [50] would lead to an O(p) scaling for the processing of fetched
data.) The inherent O(

√
p) scaling behavior has also been demonstrated for

SpSUMMA as implemented in the distributed block-compressed sparse row li-
brary, see e.g. Figure 10 in [22]. For our quadtree based approach Figure 14
shows a c0 + c1 log(p) + c2(log(p))2) least squares fit to the observed timings.
We have noted that the c2 coefficient is very small and even slightly negative,
meaning that the log(p) term dominates in practice for this case. Thus, the ob-
served behavior is slightly better than predicted by theory, see (14). A possible
explanation is that although the total number of tasks along the critical path is
O((log(p))2), the number of leaf level tasks along the critical path is O(log(p)).
When a large blocksize is used, leaf level tasks will be more expensive with
respect to both computation and communication.

In summary, the results of our numerical experiments are consistent with
the theoretical weak scaling results in Section 5.2: we observe constant average
communication per process and execution times increasing only with the squared
logarithm (or better) for matrices with data locality. In such cases, our approach
will thus be increasingly favorable compared to SpSUMMA as the calculation
size is scaled up.
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Figure 13: Weak scaling results for symmetric matrix square computations corresponding to
the regular matrix-matrix multiplication results in Figure 12. See that figure caption for more
information.
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Figure 14: Timings for weak scaling tests for regular matrix-matrix multiplication of banded
matrices with bandwidth 2 × 20 + 1 and matrix dimension 20000p × 20000p, where p is
the number of worker processes. Left: Wall times for Combinatorial BLAS (CombBLAS)
compared to the Chunks and Tasks matrix library (CHTML). Right: Closeup of the CHTML
timings. The dashed and solid help lines show c0 + c1

√
p and c0 + c1 log(p) + c2(log(p))2 least

squares fits for CombBLAS and CHTML, respectively.
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7. Concluding remarks

The matrix library presented in this work is based on a quadtree data struc-
ture, with the important property that it allows for automatic exploitation of
a priori unknown matrix sparsity structure. The hierarchical quadtree repre-
sentation and associated recursive algorithms have been implemented using the
Chunks and Tasks programming model. In this matrix library code, parallelism
is exposed to the Chunks and Tasks library by expressing matrices and oper-
ations as hierarchies of chunk and task objects. All details regarding message
passing and synchronization are left to the Chunks and Tasks library. Thus, the
matrix library code can be written without worrying about how many nodes
there are, where data is to be sent, etc. Storage and manipulation of matrices
at the lowest level of the hierarchy is handled by a separate leaf matrix library.
This means that the matrix library code is relieved from the details regard-
ing the best way to store a particular type of submatrix or the best way to
perform submatrix-submatrix multiplication on a particular type of hardware.
Such modular design is powerful since it allows each part to be developed and
optimized separately, and one can easily switch between different implementa-
tions of each part. Well designed interfaces between different modules, in our
experience, results in both increased programming productivity and improved
performance.

For matrices appearing in electronic structure calculations, the basis function
ordering plays an important role in determining the sparsity pattern. For the
overlap matrix test calculations in the present work, the default ordering in the
Ergo program was used. A different ordering, using e.g. space filling curves [16]
or network modularity optimization [51, 52], could lead to increased data locality
and result in improved performance.

In Section 5.2 we showed that for matrices with data locality our quadtree
based approach yields superior weak scaling compared to the Sparse SUMMA
algorithm [46]. It should be noted that there are algorithms that in theory
could provide better scaling than SpSUMMA, see for example the so-called
3D algorithms that were theoretically discussed in [23]. Recently, a practical
implementation of such a 3D algorithm was demonstrated [53]. In that work,
similarly to SpSUMMA, a random permutation of rows and columns is used
to achieve load balancing. However, instead of the two-dimensional

√
p × √p

process grid used in SpSUMMA the algorithm makes use of a three-dimensional
c ×

√
p/c ×

√
p/c process grid. Following [23], c should be chosen as c =

dp/m2e in order to minimize communication, where m is the average number
of nonzeros per row. This makes the 3D algorithm equivalent to SpSUMMA
(c = 1) whenever p ≤ m2. This means that for all benchmark calculations
presented in this article, where p is always smaller than m2, the scaling behavior
for the 3D algorithm would in practice be identical to the scaling behavior of
SpSUMMA. For example, for our tests in Figure 14, where m = 41, the 3D
algorithm would scale as SpSUMMA up to about 1600 processes. Although
after this point the scaling behavior is expected to be improved compared to
SpSUMMA, the method is still fundamentally different from our approach since
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it uses a predetermined data distribution and is unable to exploit data locality.
The possibility of using quadtrees in data-parallel or partitioned global ad-

dress space languages such as High Performance Fortran (HPF) was discussed
by Chatterjee et al. in [33]. Chatterjee et al. argued that representation of dense
matrices using quadtrees could be incorporated in HPF but that recursion and
nested dynamic spawning of computations would be difficult to achieve. In
the context of the present work, representation of sparse matrices with a priori
unknown sparsity patterns would represent a further obstacle.

This work illustrates the usefulness of programming models allowing dy-
namic distribution of work and data, which we expect will become increasingly
important in the future, as larger compute systems are used. Apart from simpli-
fying the implementation of dynamic algorithms, such models also make it easier
to achieve fault resilience. They also facilitate the use of heterogeneous com-
putational resources and allow robustness with respect to varying performance
among compute nodes.

In the test calculations in this work, both generation of input matrices and
verification of output matrices was performed using Chunks and Tasks pro-
grams. Thus, the data distribution of input matrices was a result of the task
executions that generated those matrices. The placement of chunks was a result
of work stealing as discussed in Section 2.1. Using the Chunks and Tasks matrix
library together with other kinds of parallel software would require conversion
of the data structures. Task types for carrying out such conversion without need
for centralized administration of all data could be provided, although this was
not done in the present work.

Finally, we note that the flexible design of the presented Chunks and Tasks
matrix library makes it easy to modify and extend the library. For example,
inclusion of extra information such as the Frobenius norm of each submatrix
in the quadtree as in [54] could be straightforwardly implemented. The library
could also be used for elementwise sparse matrices rather than block-sparse
matrices by simply switching to a different leaf matrix library, employing for
example a compressed sparse row format.
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[37] D. Lê, D. Stott Parker, Using randomization to make recursive matrix
algorithms practical, J. Funct. Program. 9 (1999) 605–624.

33

http://dx.doi.org/10.1109/IPDPS.2013.66
http://www.chunks-and-tasks.org
http://www.chunks-and-tasks.org
http://www.chunks-and-tasks.org
http://dx.doi.org/10.1109/TPDS.2002.1058095
http://dx.doi.org/10.1145/263767.263789


[38] A. Lugowski, J. R. Gilbert, Efficient sparse matrix-matrix multiplication
on multicore architectures, CSC14: The Sixth SIAM Workshop on Combi-
natorial Scientific Computing (2014) 35.

[39] E. H. Rubensson, E. Rudberg, P. Sa lek, A hierarchic sparse matrix data
structure for large-scale Hartree–Fock/Kohn–Sham calculations, J. Com-
put. Chem. 28 (2007) 2531–2537.

[40] D. S. Wise, J. Franco, Costs of quadtree representation of nondense matri-
ces, J. Parallel Distr. Com. 9 (3) (1990) 282 – 296.

[41] J. J. Dongarra, J. D. Croz, S. Hammarling, I. Duff, A set of level 3 Basic
Linear Algebra Subprograms, ACM T. Math. Software 16 (1) (1990) 1–17.

[42] NVIDIA, CUDA Toolkit v6.5, CuBLAS library (2014).

[43] T. Beri, S. Bansal, S. Kumar, A scheduling and runtime framework for a
cluster of heterogeneous machines with multiple accelerators, in: Parallel
and Distributed Processing Symposium (IPDPS), 2015 IEEE International,
2015, pp. 146–155. doi:10.1109/IPDPS.2015.12.

[44] C. Augonnet, S. Thibault, R. Namyst, P.-A. Wacrenier, StarPU: a uni-
fied platform for task scheduling on heterogeneous multicore architectures,
Concurrency Computat.: Pract. Exper. 23 (2) (2011) 187–198.

[45] D. Chakrabarti, Y. Zhan, C. Faloutsos, R-MAT: A recursive model for
graph mining, in: Proceedings of the 2004 SIAM International Conference
on Data Mining, 2004, pp. 442–446.
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