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Approaching parallel computing to simulating population 
dynamics in demography 

 

Abstract 

Agent-based modelling and simulation is a promising methodology that can be applied in 

the study of population dynamics. The main advantage of this technique is that it allows 

representing the particularities of the individuals that are modeled along with the 

interactions that take place among them and their environment. Hence, classical numerical 

simulation approaches are less adequate for reproducing complex dynamics. Nowadays, 

there is a rise of interest on using distributed computing to perform large-scale simulation 

of social systems. However, the inherent complexity of this type of applications is 

challenging and requires the study of possible solutions from the parallel computing 

perspective (e.g., how to deal with fine grain or irregular workload). In this paper, we discuss 

the particularities of simulating populating dynamics by using parallel discrete event 

simulation methodologies. To illustrate our approach, we present a possible solution to 

make transparent the use of parallel simulation for modeling demographic systems: Yades 

tool. In Yades, modelers can easily define models that describe different demographic 

processes with a web user interface and transparently run them on any computer 

architecture environment thanks to its demographic simulation library and code generator. 

Therefore, transparency is provided by by two means: the provision of a web user interface 

where modelers and policy makers can specify their agent-based models with the tools they 

are familiar with, and the automatic generation of the simulation code that can be executed 

in any platform (cluster or supercomputer). A study is conducted to evaluate the 

performance of our solution in a High Performance Computing environment. The main 

benefit of this outline is that our findings can be generalized to problems with similar 

characteristics to our demographic simulation model.  

Keywords: agent-based simulation, simulation tool, demography, population dynamics, high 

performance computing, transparency 

 



1. Introduction 

Changes in our society driven by social, economic, environmental and technological 

developments have created a challenge for policymakers. As a response to this, the 

European Union’s Horizon 2020 program has established a research agenda centred on 

societal challenges like ageing, energy saving, smart transport, secure internet, inclusion and 

preservation of cultural heritage. Many of these challenges can be overcome by using 

analytic tools that rely on right projections of future population. Simulation is one of the 

tools with a lot of potential in dealing with population dynamics and population projection. 

Particularly, discrete event simulation has long been used as a simulation methodology for 

capturing the behaviour of a system using a sequence of discrete events during time. Events 

occur at a particular time instant, producing a change in the simulation state of the system 

(Averill and Kelton, 2007). This methodology is particularly useful for reproducing the 

activities and interactions of individuals, social patterns, and population movements on a 

local and global scale. However, in a large context these simulations can be difficult to 

obtain due to the number of agents and interactions involved and the complexity of those 

interactions among them and their environment. Therefore, parallel simulation techniques 

can further provide support to manage the execution of complex social simulation models. 

Traditionally, parallel simulation has been applied in military and network simulations. 

However, since 2005 there has been an increase in the number of papers reporting on 

parallel simulation applications outside traditional areas. The reason behind is that the 

increase of power consumption and clock speed improvements following the Moore’s law 

began to stall in 2004. As a result, hardware manufacturers switched to the multicore 

technology, situation that possibilitates the acess to large amounts of computing power and 

memory. Therefore, in the petascale era performance increases come through parallelism. 

This change of scenario was key to raise the use of parallel computing, since applications 

continuously require to process models with a growing number of parameters and larger 

datasets, along with a competitive simulation time. In this context, the programmer not only 

has to define the simulation model and algorithms to use, but also how to distribute data 

and work among the parallel processing elements in the architecture. 



Generally in parallel discrete event simulation, the whole simulation state is partitioned in 

multiple subportions of the sate (logical processes) which execute independently of each 

other. Each logical process has a private clock and executes without any shared portion of 

memory. Logical processes communicate through event exchange and are autonomous in 

the sense that they can determine for themselves how to process their received events. 

Since the beginning of petascale systems, we have seen applications of parallel discrete 

event simulation outside traditional areas such as plasma physics (Tang et al., 2005), in the 

realm of biological science (Lobb et al., 2005), manufacturing (Lan and Pidd, 2005),  traffic 

simulation (Yoginath and Perumalla, 2008), electromagnetics (Bauer-Jr. et al., 2009), or 

archaelogy (Rubio-Campillo et al., 2012). The current number of applications is encouraging, 

although it is still far from ideal.  

Therefore, there is a need of more works to promote the use of parallel computing 

techniques in real applications, particularly in the social sciences. The analysis of more 

detailed models of social behavior would help us understand, for example, how pandemics 

spread allowing health policy-makers and planners better estimate the effectiveness of 

different strategies to limit the spread of diseases. High-performance parallel computing is 

particulary important in the context of such what-if analysis where the production of 

simulation outputs on time is critical for decision making. Moreover, social scientists and 

policy-makers are not necessarily close to computer science methodologies to speed up 

their simulations. Therefore, this is a perfect context to develop methodologies and 

frameworks to make available the use of parallel simulation transparently. In this context, 

we refer to transparency taking the definition of Solcany and Safarik (2002) and Pellegrini 

(2015) in the sense that (i) no modification of the original (sequential) simulation model is 

needed, and (ii) users do not have to worry about the detail on how to harness the parallel 

computer power. Since the development of parallel programs is estimated to cost ten times 

as much as developing sequential programs (Rajaei and Ayani, 1993), transparency is 

important. Therefore, with a framework that provides transparent parallel solutions the 

development speed will increase and a reduced execution time of simulation models will be 

obtained (Rajaei, 1992). Moreover, modelers can concentrate more on the actual model 

definition, and reduce the effort on model development and parallel intricate mechanisms 

(Rönngren et al., 1996). 



In the application area of simulating complex social systems, Agent-Based Modeling (ABM) 

is a bottom-up modeling approach that has gained popularity in recent years. It allows 

gaining insights of social complexity. An agent-based model allows the simulation of the 

dynamics of a population by controlling the characteristics and behavior of each individual 

of the system (Ferrer et al., 2009). Moreover, agent-based modeling is particularly useful for 

projecting a population by answering "what if" questions such as the effect of a certain 

policy on the spread of a disease in a target group. It possibilitates modelling the impact of 

personal decision making processes in strategic planning or government policies. Although 

the population projection is a simplification and uncertain representation of the modelled 

people, it is often used as an input to models utilized for planning and policy making. 

Demography is an area of study which has greatly contributed to the study of population 

projection to guide policy analysis on societal planning (Rees, 2009).  

In the past few years, supported by the advances in computer technology and the 

availability of data at micro level (individuals), the use of micro-level simulation models in 

population projection has become more widespread. The main advantage of this approach 

is that individual-specific explanatory variables can be included in the model so the main 

advantage is that it opens up new research fields. For example, we may include factors such 

as age, education level, salary group and ethnicity to model the number of children that an 

individual female will have. This capability has attracted quantitative social science 

researchers and practitioners such as anthropologists, historians, and demographers to 

investigate the potential use of micro-level simulation models in their research. In addition, 

the projected population is often used as an input to policy models which at the same time 

are often taken as the basis for government policies in areas such as labour market, 

education, healthcare, social welfare and taxation.  

In the context of demographic studies, agent-based models have been used for performing 

simulations. Some of the relevant works have been published in a book titled “Agent-Based 

Computational Demography” (Billari & Prskawetz, 2003). In this paper, we propose a 

solution to bridge the gap between the need for efficient parallelism exploitation, and the 

complexity of developing applications of population dynamics for demography. Our 

proposal uses an agent-based approach to conduct large-scale demographic simulations. To 

support its usage, we provide a web-based user interface which will also offer help to 



modelers who may not have any parallel programming skills. Currently, there are several 

tools that support the development and execution of generic agent-based models (see for 

example Collier, 2001; Mason; Minar et al., 1996; Tisue & Wilensky, 2004). However, 

desktop agent-based modeling tools may not scale well for large-scale simulations. Recently, 

some efforts have been made in this direction by using High Performance Computers to 

distribute the workload of agent-based simulation between a number of processors (see 

Collier and North, 2012; Cordasco et al., 2011; Rubio-Campillo, 2014). The work presented in 

this paper contributes to the current body of knowledge addressing specifically large 

demographic simulations.  

The rest of this paper is organized as follows. In Section 2 an overview of related work in 

demographic simulation is presented, including some previous work on agent-based 

simulation in demographics. Section 3 discusses the challenges of large-scale agent-based 

models for population dynamics in parallel environments. Our framework for parallel 

demographic simulation then follows in Section 4. Section 5 shows an evaluation of the 

performance results of the simulation tool. Finally, the concluding remarks and suggestions 

for further work are discussed in Section 6. 

 

2. Related works 

An increase in the popularity of simulation for population projection has arised during the 

past decade. One of the commonly used paradigms in demographic simulation is micro-

simulation, which has been widely applied in the field of migratory movements or human 

reproduction (Billari et al., 2003). The initial work in micro-simulation was first introduced by 

Orcutt (1957). In this paradigm, modelers have to specify a random sampling process for 

each individual at each simulation time point, to determine its state at the next time point. 

At one end, the sampling process requires a simple random sampling. At the other end, it 

may require a sophisticated regression model. Despite the complexity of these processes, 

most micro-simulation tools have been built for certain public policies. Examples include 

LABORsim for policies related to labour supply in Italy (Leombruni and Richiardi, 2006) and 

Pensim2 for the British pension system (O’Donoghue and Redway, 2009). SOCSIM (Hammel 

and Wachter, 1990) is one among the few generic micro-simulation tools for demography. 



Dahlen (2009) and Zinn et al. (2009) developed generic open-source micro-simulation 

alternatives. These tools have proven to be useful in evaluating decission making processes 

in public policy analysis. However, they require a model detail that is difficult to achieve 

(randomness, countless parameters, data reliability and quality).   

System dynamics is another commonly used modeling paradigm in developing demographic 

simulation models. Unlike micro-simulation, system dynamics does not keep track changes 

in each invidual’ state but focuses more on the group of individuals and the rates of them 

shifting from one state to another. System dynamics is generally used to examine the 

complex feedback systems and the mutual interactions in the system over time. Important 

works in this area include the World Dynamics (Forrester, 1971) and World3 population 

model (Meadows and William, 1972; Meadows and Randers, 2004). A demographic model 

based on system dynamics is often used as a component in policy modelling. For instance, 

Ahmad and Billimek (2005) developed a system dynamics model which analyzes policies to 

reduce the harmful effects of tobacco on population health. Saysel et al. (2002) developed a 

system dynamics model to evaluate policies on various environmental issues such as water 

distribution management and agricultural pollution.  

Similar to microsimulation, discrete-event simulation keeps tracking the individuals from 

their arrival in the system (through births and migrations) to their departure (through 

deaths and migrations). However, discrete-event simulation does not inspect each individual 

at each simulation time point. Instead, it evaluates an individual only when the state of the 

individual changes, thus increasing simulation performance. Most discrete-event 

demographic simulation models are applied to fields such as healthcare and epidemiology. 

For example, Rauner et al. (2005) proposed a discrete-event simulation model to study the 

effectiveness of intervention programs to reduce the vertical HIV transmission. A number of 

attempts have targeted to build large-scale epidemiological simulation models. The main 

purpose is to understand the spread of global epidemics which may include analysis of a 

large number of individuals. For instance, Montañola-Sales et al. (2015); Prats et al. (2016) 

showed how discrete-event models can be used to evaluate public policies in the 

transmission of tuberculosis in big cities. Eubank (2002) and Rao and Chernyakhovsky (2008) 

showed with their development of specialized simulation tools that parallel discrete-event 

simulation was required for large-scale epidemiological models.  



Demographic simulation has also been tackled by means of agent-based models. Read 

(1998) used an agent-based model to explore the interrelation between the demographic 

system and the cultural system in an artificial society of hunter-gatherers. Heiland (2003) 

explained migration flows from East to West Germany from 1989 to 1991 by using agent-

based simulation. Also Benenson et al. (2003) took the same approach to understand 

residential dynamics in Yaffo (Israel). Among recent works in this area, agent-based 

extensions of a spatial microsimulation model of demographic change have been proposed 

by Wu & Birkin (2012) for projecting the student migration and mortality in Leeds (UK). 

Geard et al. (2013) showed an example of how agent-based modelling can be applied to 

create a synthetic population able to describe basic demographic processes and explore 

their interaction with patterns of infection and immunity. Kniveton et al. (2011) proposed an 

agent-based approach to understanding environmental migration in Burkina Faso with the 

purpose of assisting policy makers. Silverman et al. (2013) presented an example which uses 

agent-based models to evaluate family structures changing in the UK population and the 

health care provision.  

As in previous works, our proposed simulation tool implements a set of agent-based 

demographic models to explain population dynamics. However, we use parallel 

environment in order to take advantage of High Performance Computing capabilities to run 

large-scale simulations. Although in agent-based simulation some attempts have already 

been made to explore demographics, none of them can cope with large scenarios. Despite 

the existence of other tools that deal with large-scale agent-based models, their interface is 

not specifically designed to model demographic human behavior neither they target 

demographers and policy makers.  

3. Challenges of parallel social simulation 

To understand the complex nature of social systems, social researchers have a range of 

methodologies available. Simulation is among them. The intrinsic dynamic nature of real-

world social phenomena may easily lead to simulations too slow to provide the needed 

insights for researchers (Allen, 2011). That is where parallel computing enables to manage 

realistic models. However, the distribution of social models among computers in a network 

of nodes is not an easy task. Social models are irregular applications with particular 



characteristics such as fine-grained communication or no straightforward solutions to 

balance the workload. Scalability needs to be addressed, although there is no consensus on 

dealing with the difficulties it encounters on agent-based models (Hybinette et al.,  2006; 

Rubio-Campillo, 2014; Tesfatsion, 2002). 

There are multiple situations where parallel simulation can leverage the execution time of 

agent-based simulations. On first instance, it is especially valuable in cases where the 

execution time is too slow as a result of including a large number of agents and having a 

simulation time very small. The duration of a large simulation will depend not only on the 

processor speed but also on the capacity. If the execution requires a bigger memory space 

than the memory capacity of a single processor, it will cause numerous operations on 

memory swapping which repercute on an increased simulation time. Although most of the 

agent-based models in the literature are barely large-scale, advances in social fields could 

make the simulation of these scenarios more necessary. On second instance, including 

enriched decision-making processes in the agent model, such as rational behaviour or 

cognitive and psychological processes, can require higher computing demands. On third 

instance, parallel simulation offers a solution when exploring emergent properties that a 

small-scale variant of the model is not able to cope with. For instance, parallel simulation 

might be the only solution in the case the emergent property is linked to the number of 

interactions at a given time step (Mithen and Reed, 2002; Rubio-Campillo et al., 2012). On 

fourth instance, it is important to take into account that we are dealing with non-linear, 

dynamic systems with high uncertainty and notable degree of stochasticity. As a 

consequence, the exploration of the model’s parameter space would be required to obtain 

calibrated results. This parameter sweep might easily imply a considerable number of runs. 

Parallel simulation minimizes the time needed to perform this task. 

There are several aspects which might particulary affect the scalability of agent-based 

models: the complexity of agents, the topology of communications, and the representation 

of the environment. Advanced approaches to human modelling might represent a high 

demand in computer power and be crucial to the parallelization of social simulation models. 

Approaches in Artificial Intelligence such as the Belief, Desires, Intentions scheme (BDI) can 

be used for enriching the individual raisoning (Bratman, 1999), with the consequent load of 

computation power.  



Scalability can be highly vulnerable to the complexity and topology of communications 

between agents. The number of communications in the system depends mainly on the 

distribution of space, the implementation of agents, and the number of their movements 

across the environment. A common approach is to perform a spatial partitioning, which is 

strongly dependent of the topology (either static or dynamic) of agents. However, there 

exist models were space is not important, such as in the case of the study of social 

mechanisms like evolution of paternal care (Salgado, 2013). Therefore, it is important to 

understand the logic of the model to efficiently divide the environment across computer 

processors. For instance, in the case of migrations flows an efficient approach could be 

adapting the space partitioning to these population movements and considering the balance 

between regions and the ’bottlenecks’ migrations (communications) they may produce.  

Another issue that might affect scalability is the representation of the environment, which 

can be as simple as dividing the model in different parts (regions) or as complex as a 

Graphical Interface System (GIS). A GIS can not only contain data at a geographical scale but 

also alternative data such as culture, political ideology or religion (Castle and Crooks, 2006). 

In agent-based systems, each agent needs to gather knowledge from the environment, as 

well as from other agents, in order to execute its decision making processes. Agents may 

also modify the environment. The variety of environments might lead to different design 

solutions, from the distribution of space across processors in the simplest scenario (see for 

example, Parry and Bithell (2012)) to more sophisticated variations. Although there have 

been some initiatives to automatize the parallelisation of agent-based simulations (Coakley 

et al., 2012; Kurowski et al., 2009), overall, the nature of the problem and the properties of 

the computer platform will often guide the method to split the simulation execution. 

Therefore, scalability of social agent-based models is not a trivial matter and requires an 

interdisciplinary effort. On one hand, computer scientists need to study the particularities of 

the social domain to successfully participate in the model design. On the other hand, social 

researchers need to be aware of the computational challenges the model generates at 

different layers (availability of computational resources, experiment design, model scale, 

and so on). 



4. A solution for parallel demographic simulation: Yades 

framework 

This paper presents an example on bringing transparency to parallel discrete-event 

simulation by the design and implementation of Yades (Yet Another Demographic 

Simulator), a parallel demographic agent-based simulation tool. Yades uses an agent-based 

approach to model fertility and birth, mortality, economic status, marital status, and 

migration demographic processes which permits individuals to flexibly move and interact in 

a geographical environment: 

1. It uses a rich set of attributes which originate not only from census or surveys data 

sources, but also from behavioural rules that help to overcome some data-related 

limitations of over-reliance on purely statistical information. Individuals’ attributes 

change over time due to their demographic evolution. 

2. There is no central unit that controls interactions or behaviours of the population 

3. Agents behave autonomously according to their own rules  

4. Agents do not have global information, they take actions according to simple rules 

that are based on local knowledge  

Yades has three components: a web user interface, a demographic simulation library and 

the simulation code generator. The web user interface allows demographic modelers to 

specify demographic model components in a number of representations familiar to 

demographers such as regression and statistical distribution function. The simulation code 

generator can produce the corresponding C++ code that is linked to the demographic 

simulation library which uses a scalable parallel discrete-event simulation engine. The 

generated code is ready for compilation using a target C++ compiler. The demographic 

simulation library supports both sequential and parallel execution of the simulation model. 

The framework is shown in Figure 1¡Error! No se encuentra el origen de la referencia..  



 

Figure 1. Yades framework for paralell demographic simulation 

 

Yades models the life course of individuals in an environment formed by a set of regions 

through five demographic components which are typically used on demography (Hinde, 

1998): birth (fertility), change in economic status and marital status, migration, and death 

(mortality). The fertility component determines whether a female individual will give birth, 

based on the characteristic of the female individual and the current calendar time. Yades 

includes the option to use age to determine the probability of having a child (age-specific 

fertility), to take into account the number of children a female has already had (parity-

specific fertility), to focus on the time between each birth (birth spacing), and their 

combinations. Similarly, modelers can use the characteristic of an individual and the current 

calendar time to determine a new economic status of that individual (generally with a state 

diagram). Complex models will include explanatory variables such as an individual’s 

characteristics, the characteristics of the individual’s family and external socio-economic 

factors. A new marital status can be modelled based on the characteristics of the individual 

(or individuals for a couple) and the current calendar time. If the new status is either 

married or cohabitating, modelers need to define the criteria that will be used to match the 

individual to another individual from the list of prospective partners (match making 
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function). Similar to economic status, most marital status models use state-transition 

diagrams to represent the possible changes in status. Modelers also need to specify a model 

that is used to determine whether a family unit is going to migrate (either domestically or 

internationally). A simple model uses a simple random sampling to decide whether an 

individual is going to migrate and to determine the new area. A more complex model 

employs a combination of individual-specific factors, family-specific factors, region-specific 

factors and other external factors to explain the individual’s decision to migrate to a new 

place. Finally, in the mortality component, modelers need to model the time when an 

individual will die based on the characteristics of the individual. Commonly used methods, 

such as life table and survival function can be used for the mortality component. 

There have been different works in the literature about providing transparency to parallel 

discrete-event simulation. For example Rönngren et al. (1996) presented a method to 

implement a transparent incremental state saving mechanism in an optimistically 

synchronized parallel discrete event simulation system based on the Time Warp (optimistic) 

mechanism that proved to be useful in the simulation of cellular phone systems. Solcany 

and Safarik (2002) showed a simulator design for build parallel simulation models with 

lookahead transparently without any substantial penalty performance due to the 

transparency. Pellegrini et al. (2012) extended of the traditional Time Warp synchronization 

protocol for parallel/distributed simulation by handling global variables in a more 

transparent way, saving event communications across logical processes. In our approach, 

we propose to increase transparency to social simulations by providing an environment 

where users can benefit from the facilities of parallel computing and obtain faster execution 

time without the need to be concerned about specific parallel mechanisms. 

There are several run-time support libraries for running parallel discrete-event simulations 

such as Root-Sim (Alessandro Pellegrini & Quaglia, 2014), ROSS (Carothers, Bauer, & Pearce, 

2002), Warped (Martin, McBrayer, & Wilsey, 1996) or sik (Perumalla, 2005). As a case 

study, we chose sik simulation library for parallel discrete-event simulation (Onggo, 2008, 

2010). It has been used in multiple projects and has shown a good performance in the 

classical benchmark Phold (Perumalla, 2005). In sik, models adopt the process interaction 

world-view; hence a simulation model is formed by a set of interacting (logical) processes 

(LP) hosted on each processor. Logical processes are fully autonomous entities that can 



determine for themselves how to process their received events. Therefore, we used sik 

(logical) processes to implement agents in our demographic agent-based model.  

Logical processes communicate through events with the standardized protocol Message 

Passing Interface (MPI) (Pacheco, 1997), also used for synchronization. Multiple logical 

processes are mapped onto a physical process (sik kernel) that is run on top of a 

processing element. A machine can have more than one processing element (e.g., in multi-

core architecture). Figure 2 shows the layers of software needed to implement the parallel 

simulation tool using sik. sik kernel provides services to locate all sik processes, 

efficiently communicate events with other remote processes through multicast exchanges, 

and collectively achieve the correct time-ordered processing of events. This scheme is 

common in the parallel discrete-event simulation literature. A drawback of this approach is 

that the communication costs become a wasted overhead if the event is later retracted, due 

to a user request or a process of event cancellation. 

 

Figure 2. Parallel simulation using sik 

In sik, event lifecycle consists of a simulation process that allocates and schedules an 

event. Then, the receiver starts processing the event, which includes executing some part of 

the application code. Eventually, the final actions associated to the event are committed 

and then the memory used is released. Simulation processes manage a future event list and 

processed event list and takes care of guarantee to emit events with the earliest time 

stamp. sik supports multiple synchronization algorithms such as lookahead-based 



conservative protocol and rollback-based optimistic protocol (state-saving and reverse-

computation). In an optimistic synchronization approach, sik does state saving of the event 

processing during a time window, and commits all the events passing the earliest 

committable time stamp. Readers who are not familiar with parallel discrete-event 

simulation may find (Fujimoto, 2000) and (Perumalla, 2006) useful.  

With Yades framework, users can run large demographic simulations that take advantage of 

High Performance Computing environments to run faster simulations. In this way, Yades 

handles the distribution of data and the work done by the parallel processing elements 

transparently. Moreover, it shows how transparency can be achieved in the context of 

socio-demographic fine-grained simulation models. With this approach, users do not have 

to account for parallel techniques for running demographic simulations thus making more 

transparent the use of parallel computing techniques. The model is specified through a user 

interface and the resulting source code is automatically generated by the framework, thus 

being much lighter that the corresponding parallel simulation code. Figure 3 shows the 

current approach followed by Yades in distributing the space and agents in a parallel 

architecture. Space is partitioned according to a logic entity (a region, a country, a 

neighborhood, a city, etc.). Agents located in that space are evaluated in the same processor 

where the region is computed. This schema relies on current demographic data bases and it 

is commonly used by other agent-based simulations (Collier and North, 2011; Rubio-

Campillo, 2014). Therefore, users decide how many resources they need to request to run 

the simulation in parallel and how long the simulation will last. Yades requests this 

resources’ allocation to the computer architecture where the code is executed (cluster or 

supercomputer). Furthermore, the approach of specifying agent-based simulation models in 

computer programs is not ideal for social scientists who are often not trained in coding. To 

solve this problem, we designed a web user interface for Yades’ modeling and simulation. 

With the user interface modelers can define the set of agents, variables, and components 

that will be used in the simulation model. After specifying the model, they will be able to 

generate the simulation code and run it on the target execution platform such as a 

supercomputer, a cluster of PCs or even a local machine. As a result, modelers do not have 

to worry about the detail on how to harness the parallel computer power. The detailed 



implementation of Yades’ physical and logical processes and the design of the web-user 

interface to approach social scientists and modelers can be seen in the Appendix. 

 

Figure 3. Schema on the translation between the logic model and the implementation in a parallel 

environment in Yades. Note that node here means processor. 

 

 

5. Yades performance 

To better understand the particular characteristics of social agent-based simulations and 

their performance limitations, we performed some experiments in Marenostrum, a 

supercomputer that is rank 77 in the TOP500 from June 2015. In this section, we present the 

results of experiments to understand Yades performance under varying conditions. For that, 

we use a synthetic population based on demographic data of the UK and run experiments to 

simulate its demographic evolution in terms of fertility, mortality, marital relationships, 

economic status, and migrations. The goal of the first experiment is to comprehend the 

effect of population size and migration activities on performance and scalability (Section 5.1 

and Section 5.2). The objective of the second experiment suite is to study the performance 

of the tool on different execution settings: homogeneous environment (Section 5.3), 

heterogeneous population size (Section 5.4), heterogeneous processing speed (Section 5.5) 

and heterogeneous communication latencies (Section 5.6). The model uses a continuous 

time where future events can happen almost immediately. The lookahead is relatively small 

that makes a conservative protocol less efficient. For this reason, the optimistic protocol is 

used. All experiments were run using µsik settings that gave a roll-back based optimistic 

parallel simulation execution with a state-saving mechanism and a time window of 12 



months (to limit how far a logical process can advance ahead of others). Fujimoto (2000, 

Chapters 4 and 5) provides a good overview of various techniques in optimistic parallel 

simulation.  

The experiments were run on Marenostrum 2 and 3 supercomputers, with high-speed 

Myrinet and Infiniband interconnections respectively. Each node in Marenostrum 2 has two 

dual-core PowerPC 970 CPUs with a frequency of 2.3GHz and 8GB of memory. Each node in 

Marenostrum 3 has two 8-core Intel SandyBridge-EP E5-2670 with a frequency of 2.6GHz 

and 32GB of memory. In the experiments, we used up to 256 processors. While in 

Marenostrum 2 the program was compiled using gcc version 3.3.5 and mpich version 1.2.7 

was used, in Marenostrum 3 we used gcc version 4.3.4 and OpenMPI 1.8.1. All performance 

results presented in this section are based on the average of five replications. Because the 

standard deviations are very low, we did not need more than five replications for each 

experiment. The results of the parallel simulation have been checked against the sequential 

execution for correctness. 

5.1 Effect of population size on execution time and scalability 

Perumalla (2005, 2007) has carried out a number of experiments to evaluate the 

performance of µsik simulation library. Hence, we do not repeat it in this paper. The focus of 

the following experiments is to understand the effect of population size on the overall 

simulation performance. We disable the migrations to measure the effect of the number of 

family units on computation time. The simulation for a period of 30 years was run with 

different initial population sizes of 80,000, 160,000 and 320,000 family units. The number of 

individuals is approximately twice the number of family units. Since the average fertility rate 

is set to be around two with no immigration, the numbers of individuals at the end of the 

simulation are approximately the same as their initial size. The result ran in Marenostrum 2 

is shown in Figure 4. As we can see, it shows superlinear speedup, meaning the double of 

processors increases the speedup more than twice. For example, a simulation of 320,000 

families in two nodes has a speedup of 4.66 while in four nodes it is 22.63, showing an 

improvement higher than two which would be expected in an ideal linear scalability.  



  

Figure 4. Effect of population size on speedup 

The superscalar behavior can be explained due to cache memory problems. To illustrate 

that, we observe the behavior of cache miss ratio and IPC (instructions per cycle) in our 

application. Besides the studied population sizes, we run lower population sizes: 40,000, 

20,000 and 10,000 family units. All the executions were made in one node. First, we plot the 

average miss ratio seen in L2 cache level in Figure 5. We choose L2 cache level because it is 

the most representative in Marenostrum 2. We observe average miss ratio increases with 

population growth, particularly when we go from 40,000 to 80,000 family units. Second, we 

plot IPC in Figure 6 observing a substantial decrease in IPC when we increase the number of 

families, especially beyond 40,000. These results prove our application is very sensitive to 

the size per node, since memory is determinant of performance which explains the super 

linear speedup found in our experiment. 
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Figure 5. Miss ratio observed in L2 cache for different population sizes scenarios in one node 

 

Figure 6. IPC obtained for different population size scenarios in one node 

To deepen in the impact of different population sizes in performance, we calculate the 

effect of increasing the number of processors and the population size in proportion (weak 

scaling). We used three different population sizes configurations per node: 40,000, 20,000 

and 10,000 family units. Due to Marenostrum 2 machine decommissioning, we perform the 

experiment in Marenostrum 3. Despite the difference on the architecture, the results 

(shown in Figure 7) are representative. We can see execution time remains stable when 

increasing the population and nodes. That means our application is scaling well as we 

increase the problem size when there are no migrations. Moreover, here we also observe 
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the effect of cache misses on execution time. Looking at the results in one node, going from 

20,000 to 40,000 population size the execution slows more than 74% (from 31.45 seconds 

to 2.02 minuts) in comparison to moving from 10,000 to 20,000 families (with a difference 

of 21.87 seconds).  

  

Figure 7. Weak scaling without migrations 

 

A comparison between the simulation with different population sizes on Marenostrum 2 

and 3 can be seen in Figure 8. The graph shows a comparative change in performance due 

to the difference on type of processors (from PowerPC 970 CPUs with a frequency of 2.3GHz 

to Intel SandyBridge-EP E5-2670 with a frequency of 2.6GHz), the change on memory per 

node (from 8GB to 32GB), and the presence of infiniband over myrinet. 
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Figure 8. Comparison of simulation execution time between different population sizes (80,000 

familie, 160,000 families and 320,000 families) in Marenostrum 2 (MN2) and Marenostrum 3 (MN3). 

 

5.2 Effect of migrations on execution time and scalability 

The objective of this experiment is to study the effect of varying the number of processors 

on execution time and speedup. Both experiments were run in Marenostrum 2. 

In the first part, the effect of migrations on execution time is measured. The simulation was 

started with 320,000 family units and was run for a period of 30 years. We varied the 

number of processors from one to 256 using base-2 logarithmic scale. The probability of 

migrations was varied from 0% to 60%. The probability of migrations determines the 

probability of a family unit to migrate when there is a change in the employment status of 

one of the parents. The results are shown in Figure 9. On one hand, the execution time 

decreases as we increase the number of processors. Due to the increase cache misses and 

the IPC decrease shown in Figure 5 and Figure 6, the execution time is reduced more than 

half as we double the number of processors. For instance, from 2 to 4 processors we obtain 

a mean reduction of 79.41% without migrations and 68.83% with migrations (see Table 1). 

Hence the simulation is slower for big scenarios in few processors due to the limitations on 

node memory. On the other hand, the reduction in the execution time becomes less 

significant as the number of processors increases. This is because the reduction in the 

computation cost becomes less significant and at the same time the communication costs 

becomes more expensive as the number of processors increases, due to migrations and 

rollbacks. 



  

Figure 9. Effect of population degree of migration on execution time 

 

Table 1. Percentages of time reduction as the number of processors increase under different 

migration scenarios 

Increase in the number of resources Migration probability 

 0 0.2 0.4 0.6 

From 2 to 4 processors 79.42% 66,26% 68,67% 71,58% 

From 4 to 8 processors 80.47% 65,24% 65,35% 65,49% 

From 8 to 16 processors 76.74% 60,95% 59,32% 59,13% 

From 16 to 32 processors 69.88% 52,11% 52,31% 46,83% 

From 32 to 64 processors 47.46% 35,48% 21,30% 19,85% 

From 64 to 128 processors 16.46% 26,89% 22,71% 22,39% 

From 128 to 256 processors 12.68% 0,49% 3,93% 4,76% 

 

In the second part, we study the speedup for a fixed population size (strong scaling). Figure 

10 displays the performance improvement when the simulation is run for 30 years with 

320,000 family units running on 1 to 128 processors. The speedups grow when the number 

of processors increases. Ideal line shows the linearity. The result shows the super linearity 

observed in section 6.1 due to cache misses. Moreover, for the same problem size, an 

increase in the number of processors increases computing power, but at the same time 
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more synchronization overheads are required. This explains the diminishing performance 

gain as we increase the number of processors. It can also be seen in Figure 10 that the 

smaller the proportion of family units who are going to migrate, the larger the speedup 

obtained. This is because a high proportion of migrations increases the number of inter-

processor communications when migrations take place and, consequently, the rollbacks. 

This also explains why the performance gain diminishes faster for the higher proportion of 

migrations.  

  

Figure 10. Strong scaling with migrations 

 

5.3 Homogeneous environment 

The objective of this experiment is to understand the effect of migration activities on the 

performance of the tool, specifically the execution time and the number of rollbacks, under 

an ideal execution configuration. In this configuration, we ran the simulation in 

Marenostrum 2 for a period of 30 years with an initial population size of 320,000 family 

units (around 650,000 individuals), divided equally among all administrative areas. This 

would produce a homogeneous workload to all processors. The simulation was run on one 

compute node containing four processors to minimize the effect of heterogeneous 

communication latency. The probability of migrations was varied between 0% and 60%. As 

explained earlier, migrations are responsible for all inter-processor communications in the 

simulation.  
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Table 2. Average number of migrations in 30 years 

Probability of migrations 0% 20% 40% 60% 

Average number of migrations (individuals) 0 324,801 642,065 946,524 

 

The results are shown in Table 2 and Figure 11. As expected, the number of migrations is 

proportional to the migration probability (Table 2). Figure 11 shows that the increase in the 

number of migrations increases the execution time. The increase in the number of 

migrations increases the number of event that has to be executed by the simulator. As a 

result, it requires more time to execute all useful events. In this configuration 

(homogeneous environment), the average number of rollbacks is close to zero regardless of 

the migration probability. This indicates that each processor has enough computations and 

advances its simulation clock slower in such a way that the migrations seldom cause any 

rollbacks. Consequently, the overhead costs are mainly due to the inter-processor 

communications and rollbacks. 

 

Figure 11. Execution Time for Homogeneous Workload 

 

5.4 Irregular population size 

In practice, the number of family units may vary across administrative areas. Hence, it is 

important to measure the effect of an irregular distribution of family units on the 

performance of the tool. As in previous experiments, we set the simulation duration to 30 
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years but fixed the probability of migrations to 60%. We ran the simulation on four 

processors in one compute node of Marenostrum 2 with a total of 320,000 family units at 

the start of the simulation. We varied the distributions of the family units from a regular 

distribution of 80,000 family units on each processing element to a highly irregular 

distribution of 215,000 family units on one processing element and 35,000 family units on 

each of the remaining processing elements (Table 3).  

Table 3. Configurations of different population size accross processors 

Configuration Processor 1 Processor 2 Processor 3 Processor 4 

Regular 80,000 80,000 80,000 80,000 

Low irregularity 125,000 65,000 65,000 65,000 

Medium irregularity 170,000 50,000 50,000 50,000 

High irregularity 215,000 35,000 35,000 35,000 

 

The four configurations are arranged in different columns in Table 4. Row 2 shows total 

number of migrations. As expected, the total number of migrations is roughly the same 

regardless of the distribution of the family units. Row 3 onwards shows the total number of 

rollbacks. 

 

 

Table 4 .Effect of irregular distribution of Family Units on performance 

Workload distribution Regular Low 

irregularity 

Medium 

irregularity 

High 

irregularity 

Number of migrations 

(individuals) 

946,524 947,359 946,532 948,299 

Total rollbacks 0 252,397 348,495 474,626 

 

Figure 12 shows that the equal distribution of family units across processors results in the 

best execution time. The worst execution time (almost two times slower) was given by the 



most irregular configuration in the experiments (configuration High irregularity). This result 

is consistent with what has been reported in parallel simulation literature, i.e. an equal 

distribution of family units will result in an equally distributed workload across the 

processors. Consequently, the processors can advance their simulation clock at a similar 

pace, which reduces the number of rollbacks.  

A processor with the highest workload in the more irregular configuration has to execute 

more events. This explains the increase in the amount of time spent for executing useful 

events. In contrast, a processor with the lightest workload in the more irregular 

configuration will execute fewer events. Consequently, it spends less time executing useful 

events.  
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Figure 12. Effect of irregular distribution of Family Units on performance 

In each of the irregular configurations, the processor with the higher workload will advance 

its simulation clock slower than the other processor; hence it will not experience any 

significant number of rollbacks. Consequently, its overhead can be attributed mainly to the 

communication costs other than rollback, such as waiting for events from another 

processor. The busier the processor, the less time is spent on waiting, which explains the 

decrease in the time spent for overhead. On the other hand, processors with lighter 

workload execute fewer events so they may advance their simulation time ahead of the 

busier processor. As a result, they have to rollback more often (see Table 3). This explains 

the increase in the time spent for overhead at the less busy processing elements. 

 

5.5 Heterogeneous processing elements 

In this section, we measure the effect of using heterogeneous processors on the 

performance of the tool. Heterogeneous environments are interesting for us since it is 

common for data centres to be often upgraded by replacing the part of the infrastructure 

with the latests processors and memories. Thus, the response of the framework to 

heterogeneous processing speed and heterogeneous communications can affect not only 

computation time but overheads. 
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In the experiment, we ran the simulation in Marenostrum 2 for a period of 30 years with an 

initial population size of 320,000 family units, divided equally among all administrative 

areas. The probability of migrations was fixed at 60%. To emulate the difference in 

processor speed, we inserted a delay for every simulation year at one of the processors (1 

second and 2 seconds for each experiment, respectively). This is done by adding a delay to 

the event that generates an annual report. The result is shown in Table 5. The result is 

consistent with what has been reported in literature on parallel simulation, i.e., the wider 

gap in processor speed will result in more rollbacks (see the last row). 

Table 5. Effect of irregularities in processor speed on performance 

Delay (second) 0 1 2 

Average number of migrations (individuals) 946,524 946,532 947,327 

Average time to complete simulation (minutes) 
 

361.1 429.1 480.2 

Average number of rollbacks 0 252.4 348,495 

 

5.6 Heterogeneous communication latency 

Finally, we are also interested in the effect of heterogeneous latency in the communication 

between processing elements. The event size used in Yades is 512 bytes. For this event size, 

we used the Intel MPI Benchmark Suite to measure the inter-node latency and intra-node 

latency in Marenostrum 2 and found that the inter-node latency was 4 times slower than 

the intra-node latency. In the experiment, we used the same configuration as in the 

previous experiments but without any delay. We varied the locations of the four processing 

elements used in the experiment: using one compute node with four processing elements, 

using two compute nodes with two processing elements each, and using four compute 

nodes with one processing element each. The performance result is shown in Table 6. As 

expected, the number of migrations is about the same (row 2). The time spent in executing 

useful events is roughly the same because we expect similar number of useful events (row 

4). The last two rows show that when the latency is homogeneous, the number of rollbacks 

is zero (row 6). As a result, it incurs some additional overhead cost (row 5). The overall 

performance (row 3) shows that a configuration with heterogeneous communication 

latencies (2×2) performs worse than a configuration with higher but more homogeneous 



communication latencies (4×1) due to rollbacks. However, the difference in performance is 

not very visible because the inter-node latency and intra-node latency are within the same 

order of magnitude. 

Table 6. Effect of irregular communication latency on performance 

Nodes × Processors 1×4 
 

2×2 4×1 

Average number of migrations (individuals) 
 

947,327 946,990 949,679 

Average time to complete simulation (minutes) 
 

358 363.4 359.6 

Average time to execute useful events  (minutes) 
 

124.1 124.2 122.7 

Average overhead time (minutes) 
 

233.9 239.2 238.7 

Average number of rollbacks 
 

0 6.4 0 

 

6. Conclusion and future work 

Because it is often difficult to study many social phenomena in laboratory situations, agent-

based computational modeling provides a unique artificial laboratory to observe human 

behavior without the limits of empirical approaches (Billari et al., 2003). However, the 

increasing complexity of social models and the challenges of petascale era are making the 

use of parallel computing more necessary. Nevertheless, the parallelization of a simulation 

model requires making many critical decisions which have important impact on its 

performance and capability such as the number of cores required, or how the workload and 

data will be distributed and moved. Parallel simulation approaches for studying real social 

dynamics need to be studied and measured.  

In this paper, we presented a solution to increase transparency of the use of parallel 

computing in performing demographic simulations. Our tool allows building agent-based 

demographic modelling and simulation to get a better understanding of large social 

dynamics. The main objective is to bridge the gap between the need for efficient parallelism 

exploitation, and the complexity of developing large complex population dynamics. For that, 

we run the social agent-based models on top of a parallel discrete-event simulation engine. 



The main benefit of this outline is that our findings can be generalised to problems with 

similar characteristics to our demographic simulation model.  

The tool allows modelers to specify individual behaviour such as fertility and change in 

marital status using agent-based simulation modelling paradigm and run the model on top 

of a parallel discrete-event simulation engine. We did not discuss the validation of the 

model because it has been presented somewhere else (Montañola-Sales et al., 2011). Our 

framework includes a user interface designed for social scientists who are not trained in 

parallel programming. Consultation with anthropologists during the design was fundamental 

to understand how our simulation user interface might be used by the end-users. Further 

work will include the evaluation of the web user interface by more invited end-users.  

We also presented the performance evaluation result of Yades in a real High Performance 

Computing infrastructure. The performance measures such as speedup and execution time 

using up to 256 processors showed the potential of parallel simulation for large-scale 

scenarios. The application is sensible to the architecture where it is run in terms of memory 

consumption when the population size per node is high. However, when analyzing weak 

scaling we saw the application scales well when independent of cache issues. Moreover, 

migrations have a deep effect on performance due to their impact on network 

communications. We also conducted some more fine grained performance measures such 

as time spent in executing useful events, time spent for overhead and the number of 

rollbacks. Specifically, we have investigated the effect of three factors: irregular workload, 

heterogeneous processing speed and heterogeneous communication latency. The results 

are consistent with what has been reported in other application areas where parallel 

simulation has been used. Since the application of parallel simulation in demography is new, 

it is useful to quantify the effect of the three factors on performance. The findings are useful 

because it is likely that the simulation users will run the tool using heterogeneous 

population configurations.  

We plan to add new functionalities such as allowing multiple administrative areas to be run 

on a processing element and introducing the concept of household which would allow one 

or more members of the same family unit to live in separate administrative areas, and to 

enrich the agent-based model to add macro variables as Human Development Index (DHI), 



Gross domestic product (GDP), and economic trends on regions to improve scenario 

simulations and test it with real case studies. 
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Appendix on Yades framework 
 

1. Yades design and implementation 

Figure 13 shows the Unified Modeling Language (UML) class diagram of the implementation 

of Yades model. To develop a simulation model in sik parallel simulation library, we must 

specify three main components: a physical process (PopulationSimulator), a set of 

logical processes (Region and FamilyUnit), and a set of events (PopulationEvent). 

The following sub-sections explain how the three main components are implemented for 

the demographic simulation software. 

 

1.1 Physical process 

The physical process (PP), implemented as class PopulationSimulator, is defined as a 

subclass of class Simulator. The main tasks of this class are to: establish the simulation 

parameters, generate initial population, manage logical processes (agents) and generate 

simulation reports. 

 



 

Figure 13. UML class diagram showing the classes and atributes of Yades simulation model 

and their inheritance from sik library 

 

Figure 14 shows that the simulator will initialize a number of physical processes, each of 

which will run on a processing element. Then, the initialization of two types of LPs: Region 

and FamilyUnit (FU) will follow. All logical processes Region represents an administrative 

area where a number of families live. Each logical process FamilyUnit represents a 

family in the community. Hence, for each physical process, there will only be one logical 

process Region and a number of logical processes for FamilyUnit. Communication 

between two logical processes occurs when a logical process (in this case a family) from the 

region in one physical process wants to migrate to another area on a different physical 

process. 



 

Figure 14. Structure and communication of the simulation, consisting on logical processes 

distributed in physical processes 

One of the demographic modelers’ main tasks is to provide data for the initial population in 

each region. The data includes the proportion of different age groups in the community, the 

proportion of different types of families by age group, proportion of different economic 

status by age group, proportion of different marital status by age group and the proportion 

of the number of children in a family. 

1.2  Logical Process: Family Unit 

One of the key design decisions concerns the types of logical processes that are going to be 

used in the design. We use family unit as one of the logical process types. The reason is that 

public policies may apply to individuals as well as groups of related individuals, such as 

households and single parents. For example, the UK Department for Work and Pensions and 

HM Revenue & Customs manage a number of public funds that may apply to individuals 

(including jobseeker's allowance and incapacity benefit) or groups of related individuals 

(that could include child benefit and housing benefit). Therefore, the model must recognize 

different types of ‘policy unit.’ Policy unit is often referred to as ‘family unit.’ A family unit is 

formed by either a single independent person or two independent individuals living 

together (as married, in civil-partnership, or in cohabitation) and any dependent individuals 
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(children). Hence, in this definition, a family unit may represent an independent person, a 

single parent, a childless couple or a nuclear family. For completeness, the definition is 

extended to include orphans, that is, a family unit of dependent children without any 

parents. The decision to represent a family unit as a logical process has another benefit. 

When there is a change in the marital status that affects couples (such as from married to 

divorced or from married to widowed), only one message needs to be sent to the affected 

couple (in comparison to two messages, if a logical process (agent) was used to represent an 

individual). 

A family unit may receive events that are related to five demographic components that may 

change the system states. Demographic modelers need to specify models for five 

demographic components: fertility, mortality, migration, a change in economic status and a 

change in marital status.  

1.3 Logical Process: Region 

The second logical process (agent) represents a region where a number of families live. This 

logical process will handle domestic migrations, immigration, changes in simulation 

parameters and periodic reports. Yades allows users to have regions with different 

population characteristics. The main limitation of the current version is that it only allows 

one processing element to run one region. 

A region may receive a number of event types. The first event type is used when a family 

unit is going to migrate to a new area. This event will result in sending all members of the 

family to the new location. The second event type is used to simulate the immigration 

events. Demographic modelers need to implement models to represent immigration 

policies, such as the number and demographic characteristics of the immigrants. The third 

event type can be used by demographic modelers to specify periodical changes in 

simulation parameters such as life table and fertility rates. Finally, the report event can be 

used to produce periodical reports, for example, a report on the group structure (by gender, 

age group, marital status and economic status). 

 

2. Yades Web user interface 



Modelling and Simulation platforms are designed to support simulation modelling processes 

and help modelers to perform challenging models. Platforms are aimed to free modelers 

from the unnecessary part of model development processes that can be automated, 

accelerate the model development process and give a chance to reuse models and analyse 

results (Kokalj, 2003; Li et al., 2012). In the case of agent-based simulation, models have to 

be specified in computer programs/codes, usually using an object-oriented programming 

language. For social scientists, this approach is not ideal. To solve this problem, we present a 

web user interface as a framework for Yades’ modeling and simulation that is available at 

http://yades.fib.upc.edu. The main advantage of using a web user interface is that it is easily 

accessible using any supported web browsers. The user interface is designed so that 

modelers can define the set of variables and components that will be used in the simulation 

model. The interface provides safety and authentication features through SSL connection 

and different types of role user since the model, the source code and the input/output data 

could be sensitive. It will also generate the simulation code so that users can download the 

code to be compiled and run on the target execution platform such as a supercomputer, a 

cluster of PCs or even a local machine. Therefore, modelers do not have to worry about the 

detail on how to harness the parallel computer power. 

Figure 15 shows the sequence of the model implementation wizard that is designed to make 

the modelling specification process as easy as possible (the demographic modelers, of 

course, need to prepare the model specification off-line before they enter the specification 

to the web user interface). The sequence starts with the simulation configuration setting 

such as the simulation duration. Then, a number of geographical regions will be added. 

Next, modelers need to specify the initial group settings such as the gender proportion by 

age groups in each area. Then, the demographic components will be specified: fertility, 

mortality, marital status, economic status and migrations. To help defining qualitative and 

quantitative data, users can create distributions, regressions and logical rules in the system, 

which can be later use to define migration, fertility, economic or partnership changes. A 

detailed list of what the modelers need to specify for the model components is given in 

Table 6. 

http://yades.fib.upc.edu/


 

Figure 15. Web user interface – GUI flow chart 

 

The user interface is designed with the demographic modelers in mind. Typical demographic 

modelers (and many social scientists) are not trained in computer programming, let alone 

parallel programming. As a consequence, the web interface is designed to be user-friendly 

by providing both text and graphic development environment and following general user 

interface design principles (Galitz, 2007). The collaboration with anthropologists, who use 

demographic models, was fundamental to designing the user interface. Based on the 

discussion, Yades should provide functionalities for the users to represent their model using 

the commonly used formats such as regressions, logical rules, and standard theoretical 

distributions (see the examples in the list of parameters in Table 6). In addition, state-

transition diagram is used to model changes in the marital and economic status (shown in 

Figure 16). 
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Table 7. Model definitions 

Model component Description List of parameters 

Configuration Defines the simulation 
configuration 

Simulation name, number of years, 
report interval, performance report, 
individual report, and age groups 

Regions Defines the regions in the 
model and their settings 

Number of regions, homogeneous or  
heterogeneous setting, region name, 
family units per region, type of 
configuration 

Initial population Defines the initial population 
settings for each region 

Population proportions by age group, 
types of family units by age group, 
economic status, marital status, 
children distribution, birthspacing 
distribution 

Birth Defines birth and fertility 
settings for each region 

Fertility age interval, time to birth 

Mortality Defines mortality settings for 
each region 

Life expectancy at birth or survival 
function or life table approach 

Economic status Defines economic status 
settings for each region 

Duration in status, transition name, 
transition origin, transition destination, 
probability or rule for transition 

Marital status Defines marital status 
settings for each region  

Duration in status, transition name, 
transition origin, transition destination, 
probability or rule for transition 

Domestic 
migration/emigration 

Defines the settings for 
national migration and 
emigrations 

Logic function to determine whether 
the family unit is going to migrate, logic 
function to decide whether it is a 
domestic migration or emigration, 
migrations to a domestic destination, 
migrations to international destination 

Immigration Defines the settings of 
immigrant population 

Number of monthly arrivals of 
immigrant family units, initial settings 
for immigrants 

Rules Defines distributions, 
regressions and logic rules 
that can be used in the 
simulation 

Distribution name, distribution type, 
distribution parameters, regression 
name, regression parameters, rule 
name, type of result, rule sentence 



 

Figure 16. Web user interface – economic status model 

 

Once the simulation model is defined users can launch the simulation. Then, the user 

interface shows the C++ code of the defined model as shown in Figure 17. The code can be 

compiled using a predetermined execution platform and it is portable to any High 

Performance Computing machine. In that way, users without developing and computing 

skills can execute it either in their desktop machines or submit it to a cluster of PCs or a 

supercomputing facility. Other agent-based simulation tools have similar functioning in 

leaving the management of job’s execution to users, though there have been attempts to 

automatically generate parallel agent-based simulation code (Richmond et al., 2010). We 

have tested Yades using GNU C++ compiler 3.3.5 and 4.3.4, MPICH library 1.2.7 and 



OpenMPI 1.8.1, libsynk communication library and µsik library. Both libsynk and µsik 

libraries are available from http://kalper.net/kp/software/musik/index.php.  

 

Figure 17. Web user interface –simulation launched 

 

 

http://kalper.net/kp/software/musik/index.php

