
Massively parallel Lattice Boltzmann codes
on large GPU clusters

E. Calorea, A. Gabbanab, J. Krausc, E. Pellegrinib, S. F. Schifanoa,∗,
R. Tripiccionea

aUniversità di Ferrara and INFN-Ferrara, via Saragat 1, I-44122 Ferrara, ITALY
bUniversità di Ferrara, via Saragat 1, I-44122 Ferrara, ITALY

cNVIDIA GmbH, Adenauerstr. 20 A4 D-52146 Würselen, GERMANY

Abstract

This paper describes a massively parallel code for a state-of-the art thermal
Lattice Boltzmann method. Our code has been carefully optimized for perfor-
mance on one GPU and to have a good scaling behavior extending to a large
number of GPUs. Versions of this code have been already used for large-scale
studies of convective turbulence.

GPUs are becoming increasingly popular in HPC applications, as they are
able to deliver higher performance than traditional processors. Writing efficient
programs for large clusters is not an easy task as codes must adapt to increas-
ingly parallel architectures, and the overheads of node-to-node communications
must be properly handled.

We describe the structure of our code, discussing several key design choices
that were guided by theoretical models of performance and experimental bench-
marks. We present an extensive set of performance measurements and identify
the corresponding main bottlenecks; finally we compare the results of our GPU
code with those measured on other currently available high performance proces-
sors. Our results are a production-grade code able to deliver a sustained perfor-
mance of several tens of Tflops as well as a design and optimization methodology
that can be used for the development of other high performance applications
for computational physics.

Keywords: Lattice Boltzmann, GPU Accelerators, Massively Parallel
Programming, Heterogeneous systems

1. Overview

High Performance Computing (HPC) has seen in recent years an increasingly
large role played by Graphics Processing Units (GPUs), offering a performance
level significantly larger than traditional processors. GPUs have many slim

∗Corresponding author. Tel/Fax:+390532974614. Email: schifano@fe.infn.it

Preprint submitted to Elsevier August 21, 2018

ar
X

iv
:1

70
3.

00
18

5v
1

 [
cs

.D
C

]
 1

 M
ar

 2
01

7

processing units on a single chip and perform in parallel a very large number
(O(1000)) of operations on a correspondingly large number of operands. While
not limited to such cases, this structure is obviously efficient for algorithms
offering a large amount of available parallelism; in these cases it is possible to
identify and concurrently schedule many operations on data items that have no
dependencies among them. This is often the case for so-called stencil codes.
Stencil codes are typically used to model systems defined on regular lattices;
they process data elements associated to each lattice site applying some regular
sequence of mathematical operations to data belonging to a fixed pattern of
neighboring cells. General implementation and optimization of stencils on GPUs
has been extensively studied by many authors, [1, 2, 3, 4]. This approach is
appropriate also for several computational Grand Challenge applications, such
as Lattice QCD (LQCD), or Computational Fluid-dynamics using the Lattice
Boltzmann method (LBM). Correspondingly, a large effort has gone in recent
years in porting and optimizing for GPUs codes and libraries relevant for these
applications [5, 6, 7, 8].

Interesting results have been reported, exhibiting significant performance
levels obtained on one or just a small number of GPUs. However, the number
of very large scale computational applications heavily relying on GPUs is still
limited, partly because the high performance of GPUs makes node-to-node com-
munication bandwidth in a large machine a performance bottleneck sooner (i.e.
fewer nodes) than other platforms, limiting scaling behavior on a large number
of nodes.

In the last few years, we have conducted a large and systematic analysis of
several properties of convective turbulence, using as our computational tool a
massively parallel GPU-based LBM code; physics results have been reported
elsewhere (see [9] and references therein). After an early development, see
[10, 11], and in parallel with physics simulations, our code has undergone a
systematic process of further refinements, improving optimization strategies,
adapting to new GPU generations and exploiting improved GPU-to-GPU com-
munications tools.

In this paper we cover the computational aspects of this work, discussing
the structure of the code, the optimization strategies appropriate to boost per-
formances on just one GPU, and the possible approaches to improve the scaling
behavior of the code on a large GPU cluster; we study and analyze in details a
number of issues related to state-of-the-art computing systems based on GPUs,
and identify the corresponding ways-out; in other words, what we offer here is
an attempt at building a sound optimization approach for GPUs; while our anal-
ysis is based on a specific (but computationally relevant) application, we trust
that our results may provide useful guidance for those adapting and optimizing
a wider class of computational applications for GPU-based computing.

Analyses on the best options to port LBM codes on massively parallel sys-
tems have recently appeared [12], and detailed studies have focused on the
impact on performance of several memory allocation and access strategies [13,
14, 15, 16]. Comparisons of results on several multi-core processors and GPUs
have also been presented in [17, 18, 19, 20]. Here we improve and extend those

2

results, further optimizing the codes and exploiting recent improvements in
GPU-to-GPU data exchange.

This paper is structured as follows: the next section describes the LBM
model that we consider; the following section reviews the architecture of GPU
processors and GPU-based systems. This is followed by a detailed analysis of
our optimization work, divided in two successive sections, considering first the
single GPU case, and then parallelization on a large number of GPUs. We
then discuss our performance results, including a comparison with similar codes
optimized for different CPU architectures; our conclusions and outlook end the
paper. An appendix collects and annotates several critical code segments, better
documenting our implementation choices.

2. Lattice Boltzmann methods

In this section, we sketchily introduce the computational method that we
adopt, based on an advanced thermal Lattice Boltzmann scheme. LBM methods
(see, e.g. [21] for an extended introduction) are discrete in both position and
momentum spaces; they are based on the synthetic dynamics of populations
sitting at the sites of a discrete lattice.

This computational method simulates the behavior of a compressible gas/fluid.
The Thermal-Kinetic description of a compressible gas/fluid of variable density,
ρ, local velocity u, internal energy, K and subject to a local body force density,
g, is given by the following equations:

∂tρ+ ∂i(ρui) = 0 (1)

∂t(ρuk) + ∂i(Pik) = ρgk (2)

∂tK +
1

2
∂iqi = ρgiui (3)

where Pik and qi are the momentum and energy fluxes.
In the continuum, one shows that it is possible to recover these equations,

starting from a continuum Boltzmann Equations and introducing a suitable
shift of the velocity and temperature fields entering in the local equilibrium
[22], f (eq)(ξ; ρ, T,u) → f (eq)(ξ; ρ, T̄ , ū). The new Boltzmann formulation is
then:

∂f

∂t
+ ξ ·∇f = −1

τ
(f − f (eq)) (4)

f (eq)(ξ; ρ, T̄ , ū) =
ρ

(2πT̄)D/2
e−|ξ−ū|

2/2T̄ , (5)

and the shifted local velocity and temperature take the following form ū =
u+ τg, T̄ = T − τ2g2/D (D is the space dimensionality).

The discretized counterpart of the continuum description (that we use in
this paper) uses a set of fields fl(x, t) associated to the so-called populations; the
latter can be visualized as pseudo-particles moving in appropriate directions on
a discrete mesh (see Figure 1). In this paper we consider a 2D LBM algorithm,

3

that uses 37 populations (a so called D2Q37 model), recently developed in [22,
23]. The master evolution equation in the discrete world is:

fl(x+ cl∆t, t+ ∆t)− fl(x, t) = −∆t

τ

(
fl(x, t)− f (eq)

l

)
; (6)

subscript l runs over the discrete set of velocities, cl (see again Figure 1) and

equilibrium is expressed in terms of hydrodynamical fields on the lattice, f
(eq)
l =

f
(eq)
l (x, ρ, ū, T̄).

To first approximation, the macroscopic fields are defined in terms of the lat-
tice Boltzmann populations: ρ =

∑
l fl, ρu =

∑
l clfl, DρT =

∑
l |cl − u|

2
fl.

When going into all mathematical details, one finds that shifts and renormaliza-
tions have to be applied to the averaged hydrodinamical quantities to correct for
lattice discretization effects. After performing these manipulations, one recovers
the correct thermo-hydrodynamical equations:

Dtρ = −ρ∂iu(H)
i (7)

ρDtu
(H)
i = −∂ip− ρgδi,3 + ν∂jju

(H)
i (8)

ρcvDtT
(H) + p∂iu

(H)
i = k∂iiT

(H) (9)

where we have introduced the material derivative, Dt = ∂t + u
(H)
j ∂j , neglected

viscous dissipation in the heat equation and the superscript H denotes the
lattice-corrected quantities; cv is the specific heat at constant volume for an
ideal gas p = ρT (H), ν and k are the transport coefficients.

The LBM model considered in this paper correctly reproduces the thermo-
hydrodynamical equations of motions of a fluid in two dimensions, and auto-
matically enforces the equation of state of a perfect gas (p = ρT). This is a
substantial improvement over simpler LBM schemes in two or three dimensions
(e.g., D2Q9 or D3Q19) that regard the fluid as incompressible, and introduce
ad hoc approximations (e.g., the Boussinesq approximation) to partially model
the dependence of density on temperature, relevant for convection.

An LBM code starts with an initial assignment of the populations, in ac-
cordance with a given initial condition at t = 0 on some spatial domain, and
then iterates Eq. 6 for each point in the domain and for as many time-steps as
needed; at each time step, populations hops from lattice-site to lattice-site and
then incoming populations collide among one another. In this step populations
mix and their values change accordingly. Boundary-conditions are enforced at
the boundary of the integration domain after each time-step by appropriately
modifying the population values at and close to the boundary.

From the computational point of view, the LBM approach offers a huge
degree of available parallelism. Defining y = x + cl∆t and rewriting the main
evolution equation as:

fl(y, t+ ∆t) = fl(y − cl∆t, t)−
∆t

τ

(
fl(y − cl∆t, t)− f (eq)

l

)
(10)

4

Figure 1: Left: Velocity vectors for populations in the D2Q37 model, associated to the lattice
hop that they perform in the propagate phase. Right: each population is identified by an
arbitrary label.

one easily identifies the overall structure of the computation that evolves the
system by one time step ∆t; for each point y in the discrete grid one:

1. gathers from neighboring sites the values of the fields fl corresponding to
populations drifting towards y with velocity cl and then

2. performs all mathematical processing needed to compute the quantities
appearing in the r.h.s. of Eq. (10), for each point in the grid.

Both steps above are completely uncorrelated for different lattice-points, so they
can be computed in parallel according to any convenient schedule, as long as
one makes sure that, for all grid points, step 1 is performed before step 2.

At each iteration of the loop over time, every lattice-point is processed ap-
plying in sequence the following three main kernels:

• propagate: for each lattice-site we move populations according to the
pattern of Figure 1 left. This process does not perform any mathematics
but only moves blocks of memory locations allocated at sparse addresses.
It collects at each site all populations that will interact at the next compu-
tational phase (collide). In this step each site accesses the populations
of the neighbor cells at distance up to 3 in the grid.

• bc adjusts values of the populations at the top and bottom edges of the
lattice to enforce appropriate boundary conditions (e.g., a constant given
temperature and zero velocity). This step is necessarily done after prop-
agation, since the latter changes the value of the populations close to the
boundary points and hence the macroscopic quantities that we must keep
constant in time. At the right and left boundaries, we apply periodic
boundary conditions. This is most easily done by allocating halo columns,
additional storage where copies of the 3 (in our case) rightmost and left-
most columns of the lattice are placed before performing the propagate

5

step. Points close to the right/left boundaries can then be processed as
those in the bulk. If needed, boundary conditions could of course be en-
forced in the same way as we do for the top and bottom edges.

• collide performs all the mathematical steps associated to Eq. 10 in
order to compute the population values at each lattice site at the new
time step (this is called “collision”, in LBM jargon). Input data for this
phase are the populations gathered by the previous propagate phase.
This step is the truly floating point intensive section of the code; it uses
only the population members of the site on which it operates, making the
processing of different sites fully uncorrelated.

The computational price to price to pay for this very accurate physics model
is that the implementation of the steps described above is much more complex
than for simpler LBM models. More severe computational requirements in terms
of memory bandwidth and floating-point throughput follow. Indeed, propagate
implies accessing 37 neighbor cells to gather all populations, while collide

requires ≈ 7000 double-precision floating point operations per lattice point.

3. NVIDIA GPU Architectures

In this work we experiment with two recent generations of NVIDIA GPUs:
the Tesla processors, C2050 and C2070, based on the GF100 GPU belong-
ing to the Fermi generation, and the latest K20X, K40 and K80 processors,
based on the Kepler architecture. The K20X uses a GK110 GPU, the K40 a
GK110B GPU, and the K80 is a dual GK210 GPU. In the following we use
interchangeably the name of the systems or that of the corresponding GPUs,
unless ambiguities arise.

NVIDIA GPUs are multi-core processors. Processing units are called SM
(Streaming Multiprocessors) on Fermi and SMX on Kepler (as they have en-
hanced capabilities). Each processing unit has 32 (Fermi) or 192 (Kepler) com-
pute units called CUDA-cores in NVIDIA jargon; at each clock-cycle SMs exe-
cutes multiple warps, i.e. groups of 32 operations called CUDA-threads which
proceed in SIMT fashion 1.

At variance with CPU threads, context switches among active CUDA-threads
are instantaneous due to maintaining many thread states. Typically one CUDA-
thread processes one element of the data-set of the application. This helps ex-
ploit all available parallelism of the algorithm and hide latencies by switching
among threads waiting for data coming from memory and threads ready to run.
This structure has remained stable across both generations. Several enhance-
ments are available in the more recent Kepler processors; for instance, Kepler
has 256 32-bit registers addressable by each CUDA-thread (a 4X increase over

1 Single Instructions Multiple Threads (SIMT) execution is related to SIMD execution but
more flexible, e.g. different threads of a SIMT group are allowed to take different branches
(at a performance penalty).

6

Table 1: Selected hardware features of the GPU systems considered in this paper: the C2050
and C2070 are based on the Fermi architecture, while the K20X, K40 and K80 follow the
Kepler architecture.

C2050 / C2070 K20X K40 K80

GPU GF100 GK110 GK110B GK210 × 2
Number of SMs 16 14 15 13 × 2
Number of CUDA-cores 448 2688 2880 2496 × 2
Nominal clock frequency (MHz) 1.15 735 745 562
Nominal DP performance (Gflops) 515 1310 1430 935 × 2
Boosted clock frequency (MHz) – – 875 875
Boosted DP performance(Gflops) – – 1660 1455 × 2

Total available memory (GB) 3 / 6 6 12 12 × 2
Memory bus width (bit) 384 384 384 384 × 2
Peak mem. BW (ECC-off) (GB/s) 144 250 288 240 × 2

Max Power (Watt) 215 235 235 300

Fermi) and each SMX has 65536 registers (a 2X increase). Kepler GPUs are
also able to increase their clock frequency beyond the nominal value, if power
and thermal constraints allow to do so (GPUBoost, in NVIDIA jargon).

Within each generation, minor differences occur: the C2050 and C2070 pro-
cessors differ in the amount of available global memory; the K40 processor has
more global memory than the K20 and slightly improves memory bandwidth
and floating-point throughput; finally the K80 has two enhanced Kepler GPUs
with more registers and shared memory than K20/K40 and extended GPUB-
oost features. The Tesla C2050 system has a peak performance of ≈ 1 Tflops in
single-precision (SP), and ≈ 500 Gflops in double-precision (DP); on the Kepler
K20 and K40, the peak SP (DP) performance is ≈ 5 Tflops (≈ 1.5 Tflops),
while on the K80 the aggregate performance of the two GPUs delivers a peak
SP (DP) of ≈ 5.6 Tflops (≈ 1.9 Tflops).

Fast access to memory strongly correlates with performance: peak band-
width is 144 GB/s for the C2050 and C2070 processors, and 250 and 288 GB/s
respectively for the K20X and the K4 0;on the K80, the aggregate peak is 480
GB/s. The memory system has an error detection and correction system (ECC)
to increase reliability when running large codes. We have always used this fea-
ture, even if it slightly reduces available memory and bandwidth (e.g. on the
Tesla C2050 available memory is reduced by ≈ 12%; for the propagate ker-
nel measured bandwidth is reduced by ≈ 20 · · · 25%). For a more complete
description, see [24, 25]; Table 1 summarizes just a few relevant parameters.

We have developed all our codes using CUDA-C [26], a GPU-specific pro-
gramming language with several features intended to help exploit the parallelism
available in the algorithm. A CUDA-C program consists of one or more func-
tions that run either on the host, a standard CPU, or on a GPU. Functions
with no (or limited) parallelism run on the host, while those exhibiting a large
degree of data parallelism go onto the GPU. A CUDA-C program is a modified
C (or C++) program including keyword extensions defining data parallel func-

7

Figure 2: Execution times (arbitrary units) of the propagate and collide kernels as a function
of the number of threads per block, using the AoS and SoA data layouts.

tions, called kernels. Kernel functions typically translate into a large number of
threads, i.e. a large number of independent operations processing independent
data items. Threads are grouped into blocks which in turn form the execution
grid. The grid can be configured as a 1-, 2- or 3-dimensional array of blocks,
each block is itself a 1-, 2- or 3-dimensional array of threads, running on the
same SM, and sharing data through a fast shared memory. When all threads of
a kernel complete their execution, the corresponding grid terminates. CUDA-
threads run in parallel with CPU threads, so it is possible to overlap in time
processing on the host and the accelerator. For our purposes this is useful to
concurrently schedule computation and GPU-to-GPU communication.

4. Single-GPU Implementation

In this section we describe data-structures options, the overall organization
of the code and optimizing features considering only one GPU. The extension
to a multi-GPU cluster will be considered in the next section.

Data Structure Analysis

A major decision affecting the overall structure of the code has to do with
the choice of an appropriate data organization, which has a strong impact on
the ability of the system to fetch from memory all the data elements needed
by the processor. In LBM popular data organizations are array of structures
(AoS) or structure of arrays (SoA). With AoS, all populations associated to each
lattice site are stored one after the other in memory; conversely, SoA stores data
items corresponding to each population at all lattice sites one after the other.
For serial computations on cache-based architectures, like traditional CPUs, the

8

Figure 3: Left: Allocation of lattice data in global memory; green regions are the halo frames,
the white area is the physical lattice. Right: sketchy view of the mapping of the lattice on
CUDA thread-blocks and block-grids.

AoS scheme is preferable as it improves the locality of populations associated
to each lattice point, and better suits the cache structure and hierarchy of these
processors. On the other hand SoA is required for data parallelism computation
typical of GPUs, since it allows to process data associated to several lattice
sites in parallel and allows coalescing of memory accesses, that helps achieve
high sustained memory bandwidth. This is substantiated in figure 2, showing a
preliminary performance analysis of two critical kernels; propagate (a memory-
bound kernel, see later for details) is at least a factor 5X faster using the SoA
scheme, while collide (a compute-bound kernel) is roughly 2X faster.

Having settled for an SoA structure, we store the lattice in column-major or-
der in the Y direction (we arbitrarily select one of the two possible choices), and
keep in memory two copies of the lattice. Code sections alternatively read one
copy and write on the other copy; this technique is known as double-buffering.
This helps maximize parallelism, allowing to map one thread per lattice site,
and then processing all sites in parallel.

We surround the physical lattice by halo-columns and rows, see Figure 3:
for a physical lattice of size Lx × Ly, we allocate an array of NX ×NY lattice
points, NX = Hx + Lx + Hx, and NY = Hy + Ly + Hy. This makes the
computation uniform for all sites and avoid thread divergences which break data-
parallelism and degrade performances. The algorithm requires a halo-thickness
of just 3 points, since populations move up to three sites at each time step. It
is convenient to use a larger halo thickness in the Y directions (Hy = 16), in
order to keep data aligned (multiples of 32, the size of the warp, permit more
efficient access through “coalescing”) and to maintain also cache-line alignment
in multiples of 128 Bytes.

9

Figure 4: Performance (ECC enabled) of misaligned-read-aligned-write (mraw) and aligned-
write-misaligned-read (armw) accesses on the C2050 (GF100 GPU), and K40 (GK110B GPU)
systems.

Code Organization

Our code starts on the host, and at each iteration four main steps execute:
first the pbc kernel update halos, and then three kernels – propagate, bc and
collide – perform the required computational tasks. Each kernel corresponds
to a CUDA-C function.

For a single GPU implementation the pbc kernel updates only the left and
right halos, as we enforce periodic boundary conditions along X; this amounts
to copying data from the three right-most columns of the physical lattice to
the left halo columns, and vice-versa. In this case, we move data stored at
contiguous elements in memory, so we handle it by efficient CUDA-C memory-
copy library functions. We make two calls to the cudaMemcpyAsync function;
execution overlaps in time, substantially increasing performance.

The propagate and bc Kernels

The propagate kernel moves populations at each site according to the pat-
tern shown in Figure 1. Two options are possible: i) push moves all populations
of each lattice site to the appropriate neighbor sites; or ii) pull gathers popula-
tions from neighbor sites to each destination site. push performs aligned reads
and misaligned writes, while the opposite happens in pull. In both cases, mis-
aligned memory operations are needed. Figure 4 plots the measured bandwidth
of a memory-copy kernel using misaligned reads and aligned writes (mraw) and
vice-versa (armw). The mraw scheme is faster on both GPU generations even if
the performance gain, large for the C2050 system, is smaller for the more recent
K20 and K40 GPUs. This test obviously suggests to adopt the pull scheme.

For this kernel, each CUDA-block is configured as a unidimensional array

10

Figure 5: Performance of the propagate kernel (ECC enabled), on C2050 (GF100 GPU),
K20X (GK110 GPU), K40 (GK110B GPU) systems and on one GPU of a K80 (GK210 GPU)
board, vs. number of threads per block, on a lattice of ≈ 4 million of cells.

of N THREAD threads, processing data allocated at successive locations in mem-
ory, while the grid of blocks is a bi-dimensional array of (Ly/N THREAD × Lx)

blocks, see Figure 3, right. N THREAD, in principle a free parameter, must be
accurately tuned for performance: N THREAD should be large enough because it
translates in long and efficient memory access sequences. On the other hand,
(Ly/N THREAD × Lx) should also be large, because it translates into many in-
dependent sequences, so some sequence is almost always ready to execute while
other are waiting for data incoming from memory. Figure 5 shows the impact of
this parameter on performance, displaying the effective memory bandwidth as a
function of the number of threads per block. We see that performance stabilizes
to a reasonable level as long as N THREAD ≥ 64; on the C2050 processor, we
reach a bandwidth of ≈ 85 GB/s that increases to ≈ 180 GB/s on the K40; on
K20X, it is around 160 GB/s and on one GPU of a K80 board is ≈ 150 GB/s.
These figures nicely agree with benchmark results presented in figure 4.

The bc kernel enforces boundary conditions (constant temperature and zero
velocity of the fluid) at the top and bottom of the lattice; it runs only on
the threads corresponding to lattice sites with coordinate y = 0, 1, 2 and y =
Ly − 1, Ly − 2, Ly − 3. The layout of each CUDA block is the same as for
the propagate kernel, and the code uses if statements to disable threads not
involved in the computation. This causes thread divergence, but, as we show
later, the computational cost of the bc kernel is negligible compared to all other
steps, so performance drops in this kernel have a minor global impact.

The collide Kernel

The collide kernel takes care of the collision of populations gathered by
the propagate step. At each time step, each thread reads populations of each

11

Table 2: Output of the NVIDIA nvprof profiler for collide on a lattice of 2048× 1024 sites.
The table shows the number of ADD, MUL and FMA (fused Multiply-Add) operations, the
total number of floating-point operations per site and the fraction of cycles in which the ALU
is used (ALU Utilization).

FLOPS (Double Add) 704684032
FLOPS (Double Mul) 1530290176
FLOPS (Double FMA) 5629132825

FLOPS per site 6472

ALU Utilization High (70%)

lattice site from the prv arrays, performs all needed mathematical operations
and stores the resulting populations onto the nxt array. The roles of nxt and
prv are swapped at each iteration. In this scheme, memory reads and writes
are always sequential and properly aligned, enabling memory coalescing.

collide is a strongly compute bound routine. This is shown in Tab. 2, col-
lecting the output of the NVIDIA nvprof execution profiler. After compilation
and optimization the collide kernel executes 6472 double-precision mathe-
matical operations for each lattice site, but only ≈ 72% are executed as more
efficient Fused-Multiply-Add (FMA), slightly reducing the overall performance.
Data from the table translate into an arithmetic intensity of ≈ 11 Flops/byte;
using this figure and the ALU utilization, the needed memory bandwidth is only
one third of the peak available on the GPU. This confirms that the kernel is
limited by arithmetic throughput, rather than memory bandwidth. The thread
and block organization here is the same as for propagate, see again Figure 3
right, and the corresponding parameters should again be tuned for performance.
There is tension between the gains arising from a large number of data points
being processed together and the limited register space available to store the
huge number of constants and intermediate results that need to be maintained
inside the processor as different data blocks are processed in turn.

Going into more technical details, we use data prefetch to hide memory ac-
cesses and on Kepler all loops accessing the thread-private prefetch array have
been unrolled via #pragma unroll. This allows the compiler to keep the ele-
ments of the prefetch array in registers exploiting the larger register file available
on the Kepler GPUs. We experimentally searched for the best tradeoff between
register spilling and device occupancy manually setting the maximum number
of threads per block and the minimum number of blocks per SM. This can be
done using the launch bounds directive [26]; this handcrafted optimization
step improves performances by ≈ 20%.

Performance Analysis

Figure 6 shows the performance of the collide kernel as a function of the
number of threads per block. On the C2050, it basically reaches a plateau for
a number of threads larger than 64, and the sustained performance is ≈ 210
GF/s, that is ≈ 40% of peak. On the K20X and K40, the behavior is different:

12

Figure 6: Performance of the collide kernel on C2050 (GF100), K20X (GK110), K40 (GK110B)
systems and on one GPU of a K80 (GK210) board vs. the number of threads per block, on a
lattice of ≈ 4 million of cells.

performance improves up to 256 threads per block reaching a peak value of≈ 570
GF/s for the K20X and ≈ 730 GF/s for the K40, that is, respectively ≈ 43%
and ≈ 51% of peak. Finally on one GPU of the K80 board, top performance is
the same as the K40, but it is obtained with a larger value of threads per block,
and performance decreases less sharply if this parameter is further increased.

As we try to use a larger number of threads, performance drops because
the number of needed registers is larger than the available resources on the
SMs. Indeed, as already remarked, the Kepler version of the collide kernel
holds the values of the prefetch array in registers. Since the size of the register
file is limited, more and more registers must be spilled to global memory if
more threads per block are used. The L1 cache is too small to handle all spills
and although the available device memory bandwidth for the spilling is not a
bottleneck this has a negative impact on performance. The larger register file
of the enhanced Kepler SMX on the Tesla K80 helps with that: this is why on
this processor performance is more stable as the number of threads per block
increases. In conclusion, the collide kernel is limited by memory latencies as
the large amount of state per thread does not allow to run enough threads
concurrently on the SMs to cover all latencies.

Further optimization steps are possible and have already been discussed in
the literature, such as fusing the propagate and collide steps [14]; also, pbc
can be overlapped with the execution of these steps, with some change in the
scheduling of operations. The details of these optimizations depend significantly
on how the lattice is split across processors in a multi-GPU implementations,
so we defer this discussion to the next section.

13

5. Multi-GPU implementation

In this section we describe the structure and implementation of our code
for a (large) multi-GPU cluster. We divide this section in three parts: we
first discuss some simple theoretical model of performance that have guided our
parallelization strategies; we then review the programming environment and
tools available to support GPU-to-GPU communication, and finally present
details of our implementation.

Modelling the impact of communications

A parallel multi-processor LBM code is in principle straightforward: one just
maps regular tiles of the physical lattice on the processors; the processing load
is balanced among processing elements if all domains have the same size; finally
tile-to-tile communication patterns are regular and predictable and only involve
(logically) nearest-neighbor processors. Still, node-to-node communications are
an unavoidable overhead that may become serious, hampering performance scal-
ing of the program, as the number of nodes increases. The amount of data to
be moved is roughly proportional to the surface of each computational domain,
while computing scales as the domain volume, so, in order to ensure better
scaling figures, one should i) identify the domain decomposition that minimizes
the surface-over-volume ratio and ii) overlap communications with parts of the
computation that have no dependency with data incoming from neighbor nodes.

Simple performance models may guide actual program development. For a
lattice with N points in D dimensions (i.e., with linear size L = N1/D) one
maps regular tiles onto Np processors; each tile contains points associated to all
coordinate values in D−d dimensions and an equal number of coordinate values
in the remaining d dimensions (d ≤ D). One easily finds that the surface-over-
volume ratio (S/V) is

S/V ' d N1/d
p , (11)

so in principle d = D (d = 2 in our case) should have the best scaling perfor-
mance.

In practice, things are more complex for several reasons. One relevant point
is that communications of data elements corresponding to borders in differ-
ent directions may have widely different bandwidths. This depends on the
data layout in memory, as this dictates which surface elements are stored at
non-contiguous addresses, usually at fixed distance (stride) from each other.
For memory-contiguous data words, a node-to-node communication involves a
stream of data items from memory elements to the network interface, and then
from the network interface again to contiguous memory cells. However data from
sparse memory location has to be first gathered into a contiguous buffer, then
transmitted and finally scattered to memory cells at sparse addresses. These ac-
cess patterns may be much slower than for contiguous memory cells, so effective
bandwidths may be widely different.

Consider a 2D lattice of Lx × Ly sites, that we partition on Np processing
elements. Each processing element handles a tile of (Lx/nx) × (Ly/ny) sites

14

(nx×ny = Np). Assume that transfers in the X and Y directions have effective
(and in general different) bandwidths Bx and By. The time needed to move
information across all boundaries of each domain is proportional to TC (through
a factor S that counts how many bytes have to be moved for each boundary
site):

TC =
Ly

Byny
+

Lx

Bxnx
, (12)

We now ask what is the optimal choice for nx and ny corresponding to the
minimum of Eq. 12, with nx × ny = Np. One easily finds that:

nx =
√
NpR, ny =

√
Np/R (13)

with R =
√

LxBy

LyBx
a factor taking into account the aspect-ratio of the lattice and

the mismatch of the bandwidth values. Using these optimal choices, we further
obtain:

Tmin
C =

2√
Np

√
LxLy

BxBy
. (14)

Total processing time T is the sum of communication time and (on-node) pro-
cessing time TP ; the latter grows as the number of lattice sites handled by each
processor, TP = βN/Np, so, T = TP + TC ,

T = β
N

Np
{1 +

4S

β

1√
BxBy

√
Np/N} (15)

In this and in the following equations, we always write T as a scaling term
(βN/NP) multiplied by a scale violating one 2 (in braces). For comparison, if
we tile the lattice in just one dimension (e.g., Y), a similar reasoning tells us
that

T = β
N

Np
{1 +

2SLy

βBy
Np/N} (16)

which has obviously more severe asymptotic (large Np) scaling violations.
It may be interesting to look at Eqs. 15 and 16 from the point of view of

Brent’s theorem [27], that, in the framework of a PRAM model, states that

T ≤ SN +
WN − SN

Np
, (17)

with WN the overall number of operations to be performed, and SN the longest
path in the dependency graph of the algorithm. In our case, WN depends
linearly on the lattice size, WN = w × N , with w counting the number of
operations to be performed on each lattice site, while SN is N independent,

2we use throughout the term “scaling” to mean “linear-scaling behaviour”, and the term
“scale violation” for “violation of linear scaling behaviour”.

15

Figure 7: Scaling violations predicted by our performance model (Eqs. 15 to 20) on a lattice
of 1940 × 1940 sites, using experimentally measured single-node processing performance and
node-to-node bandwidths for contiguous and non-contiguous data buffers. In 2D we use the
possibly not-optimal choice nx = ny .

SN = w, since operations on different points of the lattice have no dependencies
among them. In this case, Eq. 17 reads

T = w +
w(N − 1)

Np
= w(1 +

N − 1

Np
) ≈ wN/Np; (18)

our model (Eqs. 15 and 16) obtains the same result, apart from a correction due
to communication overheads, that is not considered by Brent’s theorem since
the PRAM model assumes shared-memory with uniform access time.

A further key observation is that, for each tile, all lattice points belonging
to the bulk (i.e., away from the tile boundary by more than 3 lattice points)
have no dependency from data of other nodes. This suggests to overlap bulk
processing and data transfer. For an 1-D tiling, the corresponding estimated
processing times is

T = β
N

Np
{max (1− 6LyNp/N,

2SLy

βBy
Np/N) + 6LyNp/N}. (19)

Going to 2-D tiling we need to gather not contiguous data in GPU memory for
efficient node-to-node communication, which impacts overlap possibilities, or
work with multiple small and less efficient node-to-node communication steps.
Details of this will be explained in a later section. One is then forced to per-
form a communication step for non-contiguous data first (in the Y direction in
our case), followed by overlapped bulk computation and communication of con-
tiguous buffers and finally by computation of border data. The corresponding
estimate, that for simplicity we write only for square lattices and for the not

16

#ifdef MPI REGULAR
cudaMemcpy (sndbuf_h , sndbuf_d , N , cudaMemcpyDeviceToHost) ;
MPI_Sendrecv (

sndbuf_h , N , MPI_DATATYPE , nxt , 0 ,
rcvbuf_h , N , MPI_DATATYPE , prv , 0 ,
MPI_COMM_WORLD ; MPI_STATUS_IGNORE) ;

cudaMemcpy (rcvbuf_d , rcvbuf_h , N , cudaMemcpyHostToDevice) ;
#endif

#ifdef CUDA AWARE MPI
MPI_Sendrecv (

sndbuf_d , N , MPI_DATATYPE , nxt , 0 ,
rcvbuf_d , N , MPI_DATATYPE , prv , 0 ,
MPI_COMM_WORLD ; MPI_STATUS_IGNORE) ;

#endif

Figure 8: Definition of two CUDA-codes for a bi-directional memory-copy of buffers allocated
on two GPUs; the first case is a regular MPI implementation requiring to move explicitly
data from GPU to host and vice-versa; the latter case uses CUDA-aware MPI allowing to call
directly the MPI Sendrecv with pointers to buffers in GPU memory as source and destination
parameters.

necessarily optimal case nx = ny =
√
Np, is:

T = β
N

Np
{max ((1− 12

√
Np/N),

2S

βBy

√
Np/N) +

2S

βBx

√
Np/N + 12

√
Np/N}

(20)
Extracting accurate predictions from Eqs. 15 to 20 is made more difficult

by the fact that communications bandwidths depend on the transfer direction
(as already remarked) and also on buffer size. We have performed direct band-
width measurements for relevant values of the buffer sizes (shown later, see
Figure 12, where several important details of this measurement are discussed);
putting those data into our model equations, we predict a pattern of scaling
violations shown in Figure 7 for one typical lattice size. Several neglected fac-
tors may change the details of our predictions, so we stress again that we use
our theoretical estimates for guidance only. Two main lessons emerge from our
models: i) overlapping communication and computation has a strong impact on
performance; if we do so to the extent made possible by system features, one can
expect limited violations to scaling on reasonably-sized lattices and on a fairly
large number of GPUs, and, ii) contrary to naive expectation, an 1-D tiling of
the lattice may have good performances up to a reasonably large number of
processors.

Based on this overall picture, we have prepared and tested several parallel
versions of the code that we describe and compare in the following.

Programming Models for Multi-GPU applications

In this sub-section we briefly overview programming models relevant for
multi-GPU codes. The goal is to make code development and management
easier and communications more efficient.

Large GPU clusters are widely heterogeneous computing systems: compute
nodes have one or (usually) more CPUs; each CPU acts as host for a variable

17

number of GPUs, ranging typically from 1 to 4; in the cluster that we have used
for our tests each node has 2 CPUs and each CPU hosts 4 GPUs. GPUs are
directly connected to their host through a PCIe interface, which has reasonably
high bandwidth (several Gbytes/sec) but also long startup latency (≥ 1µsec).
The network interface is also connected to one of the CPUs via PCIe. The com-
plexity of this structure implies that what, at the application level, is a plain
GPU-to-GPU communication may involve different routes, different communi-
cation strategies, and correspondingly different performances. We discuss here
two key aspects of the problem, namely i) a programming environment able to
specify in a unified way all different communication patterns and, ii) the ensem-
ble of run-time support features that help maximize effective communication
bandwidth for any possible pair of communication end-points.

Concerning the first point, a reasonable approach is to use the well known
MPI communication libraries that currently also support GPUs; we then asso-
ciate one MPI process to each GPU, so MPI libraries are able to automatically
handle the transfer of data buffers from GPU to GPU in the most appropriate
way. Transferred buffers must be allocated at contiguous locations on memory;
however, transfers of non-contiguous buffers can also be handled automatically
by MPI, using the derived vector data type: the vector data type describes
how data buffers are placed in memory and the library automatically packs data
into a contiguous buffer, perform the MPI communication and then unpack data
at destination. Note that in regular MPI versions – i.e. without GPU support –
these buffers had to be allocated on the host CPU, so each data transfer has to
be preceded and followed by an explicit data move from/to GPU and its host.
CUDA-aware MPI [28] improves on this, allowing to specify buffers allocated on
the GPU memory as arguments of the MPI operations, making codes terser and
more readable; Figure 8 compares the CUDA definitions of a function that per-
forms a bi-directional remote memory-copy of a buffer allocated on the memory
of two GPUs, using regular MPI and CUDA-aware MPI.

Armed with a clean way to specify the communication patterns needed by
our program, we must now make sure that all possible steps are taken to reduce
the latency of each communication, as this has a critical impact on the scaling
performance of the complete code. This is done by enabling a variety of features,
available in the low-level communication libraries; here we describe the most
relevant points.

For GPUs attached to the same host-CPU, CUDA-IPC moves data directly
across GPUs without staging on CPU-memory. This makes communication
faster [17]. GPUs attached to different CPUs of the same node communicate
through CPU-memory staging; here pipelining helps to shorten communication
latency. For GPUs belonging to different nodes GPUDirect RDMA moves short
data packets from the GPU to the network interface without any involvement
of the host CPU. For longer data packets due to PCIe architectural bottlenecks,
RDMA becomes less effective, see [29]. In this case, GPUDirect simplifies the
operation by sharing a common staging region between the GPU and the net-
work interface.

18

Figure 9: 1-D tiling of a lattice on Np GPUs virtually ordered along a ring.

1-D Splitting

In this case, we divide a lattice of size Lx×Ly on Np GPUs tiling along just
one dimension. In our case, since lattice is allocated by column-major order, we
split the lattice along the X dimension and then each GPU allocates a sub-lattice
of size Lx/Np×Ly, see Figure 9. This 1D tiling implies a virtual ordering of the
GPUs along a ring, so each GPU is connected with a previous and a next GPU;
at the beginning of each time-step, GPUs must exchange data, since cells close
to the right and left edges of the sub-lattice of each GPU needs data allocated
on the logically previous and next GPUs, see again Figure 9.

For processing, the lattice is divided in three regions: two regions of size
3×Ly include the three leftmost and the three rightmost column-borders, while
another region includes the central part of the lattice that we call the bulk.
Processing the left and right regions can start only after the left and right
halos have been updated, while processing on the bulk can start immediately
and overlaps with the update of halos. Each MPI process executes a code
structured as in Figure 10 top: it runs a CUDA-stream executing in sequence
the propagate, bc and collide kernels on the bulk region. In parallel, the
host-PC executes the pbc c (c stands for contiguous) function which performs
MPI communications to update left and right halos with neighbor GPUs in the
ring. After all data transfers are complete, two additional CUDA-streams start
propagate, bc and collide on the left and right border regions.

Figure 10 bottom shows the timeline execution of the code. We directly see
that an efficient implementation of pbc helps to enlarge the region in which linear
scaling is possible; as we partition the lattice onto a larger and larger number
of processors, the combined execution times of propagate, bc and collide

reduces accordingly, while the execution time of pbc remains approximately
constant. Eventually, pbc takes longer than the computational kernels, and
scaling violations occur. There is no way to escape this situation asymptotically,
but an efficient implementation of pbc c delays the onset of scaling violations.
We have found that the implementation of pbc c through a sequence of CUDA-
aware MPI operations gives good results; in our case, 26 populations must be
moved for each boundary site, corresponding to 52 MPI operations. If the lattice

19

// Computing propagate over l a t t i c e bulk
prop_Bulk <<< dimGridB , dimBlockB , 0 , stream [0] >>> (. . .) ;
bc_Bulk <<< dimGridB , dimBlockB , 0 , stream [0] >>> (. . .) ;
collide_Bulk <<< dimGridB , dimBlockB , 0 , stream [0] >>> (. . .) ;
// Update ha lo s
pbc_c () ;
// Computing propagate on l e f t columns
prop_L <<< dimGridLR , dimBlockLR , 0 , stream [1] >>> (. . .) ;
collide_L <<< dimGridB , dimBlockB , 0 , stream [1] >>> (. . .) ;
// Computing propagate on r i g h t columns
prop_R <<< dimGridLR , dimBlockLR , 0 , stream [2] >>> (. . .) ;
collide_R <<< dimGridLR , dimBlockLR , 0 , stream [2] >>> (. . .) ;

Figure 10: Sample code and timeline of a multi-GPU code executed by each MPI-process
using the 1-d tiling of the lattice. Communications are performed by pbc and use CUDA-
aware MPI; this step is then translated into CUDA device-to-device memory copies since
this example refers to GPUs allocated on the same host; communication overlaps with the
execution of the propagate, bc and collide kernels on the bulk of the lattice. After MPI
communications have completed, the computational kernels acting on the right and left edges
of the lattice can start; they do so as soon as GPU resources become available.

is large enough in the Y direction (≥ 512 points) the overheads associated to
separate MPI operations are negligible. For smaller lattices it may be useful to
pack data in a contiguous buffer and perform just one larger MPI transfer. We
discuss this further optimization in the next section, where we also consider the
fusion of propagate and collide into just one CUDA kernel.

2D Splitting

Code organization using a 2-D tiling is slightly more complex. We split the
lattice on a grid nx × ny GPUs, virtually arranged at the edges of a 2D mesh.
Each GPU needs data allocated on eight neighbor GPUs, see Figure 11, left.

All needed data transfers (from adjacent and from diagonal neighbor nodes)
can be done by performing a sequence (see again Figure 11, center and right) in
which first all nodes exchange data along one of the two directions, not including
halo elements; when this is completed a further step in the orthogonal direction
is started, including this time also halo elements.

One of the two communications steps (the one in the Y+ and Y- directions
in our case) implies non-contiguous data elements. As discussed in an earlier
section, communications of non contiguous buffers is automatically handled by
MPI using the vector derived data type. The corresponding standard library
gathers all data elements into an intermediate buffer, starts a transfer operation
for the intermediate buffer and finally scatters received data items to their final

20

Figure 11: 2-D tiling of the lattice on Np GPUs. Left: diagram of the tiles and of the
corresponding halos. Center: communication patterns to update halos belonging to a given
tile. Righ: halo regions surrounding the tile.

destination. We tested two well-known CUDA-aware MPI libraries, OpenMPI
and MVAPICH2. Results were unsatisfactory for two reasons: i) OpenMPI
is affected by high overheads because of the many calls to copy all the pieces
of data into the intermediate MPI buffer on the host; ii) MVAPICH2 do not
use persistent intermediate MPI buffers, that are allocated and de-allocated on
the GPU at each time step; the corresponding overhead in doing that is in
our case too large, and it can be easily avoided using persistent allocation of
communication buffers on GPU memory 3.

We have overcome these issues developing a custom communication library
that uses persistent send and receive buffers, allocated once on the GPUs at
program initialization. Every time a communication of non contiguous buffers
is needed, function pbc nc (nc stands for non-contiguous) starts the pack kernel
to gather non-contiguous data into a contiguous buffer allocated on the GPU.
When this is done, an MPI communication is started, followed by a final scatter
of the received data. Figure A.20 in the appendix shows a simplified CUDA
implementation of the pack and unpack kernels, and Figure A.21 shows a sample
code to handle data transfers among non contiguous buffers.

This strategy has the advantage that, for each halo update, only one MPI
communication is needed. This avoids overheads associated to start MPI trans-
fers, and keeps the size of MPI buffers large enough to minimize overheads
caused by CUDA-IPC set-up. The advantages of this approach are relevant
also for updating contiguous halos; for this reason we adopt it for communica-
tions in both directions.

Figure 12 reflects the global result of this optimization effort, showing the
effective bi-directional bandwidth measured in the update of memory-contiguous
and non contiguous halos as a function of the corresponding lattice size. This
test involves two K80 boards attached to two different host-CPUs interconnected
through Infiniband network. We see that, as expected, non-contiguous halos
have a reduced effective bandwidth, but the difference between the two cases

3 We provided these as feedbacks to OpenMPI and MVAPICH2 development communities;
for both MPI implementations improvements for the mentioned issues are planned for future
releases.

21

Figure 12: Measured effective bi-directional bandwidth to update contiguous and non con-
tiguous halos as a function of the size of the lattice tile. The test has been done on two K80
systems on two remote nodes, interconnected by an Infiniband FDR network with GPUDirect
RDMA enabled.

is not too large. The data shown in Figure 12 has been used in the scaling
prediction models that we have discussed before.

For the processing steps of the algorithm, the lattice is divided in five regions,
see Figure11, right: two regions of 3Ly sites, including the three leftmost and
the three rightmost columns, two regions of size 3Lx including the three topmost
and lowermost rows and the central part of the lattice including all bulk sites.
The code in Figure 13 shows how we schedule operations. We first exchange the
(non-contiguous) top and bottom halos; when this operation has completed, we
start processing the lattice bulk on a GPU stream, and in parallel we update
the contiguous left and right halos. After all halos have been updated, we start
separate GPU streams processing the left, right, top and bottom borders.

With this scheduling it is easy to merge propagate and collide for all
points on which bc kernel does not apply, belonging to the bulk, left and right
regions. On the other hand, top and bottom borders must be processed by a
sequence of propagate, bc and collide kernels. Figure A.22 shows the final
organization of the code including these improvements, and Figure 14 shows the
corresponding execution timeline as recorded by the NVIDIA profiler. The up-
date of non-contiguous halos can not overlap (see caption for details) with other
data-processing operation, because: i) MPI communications along Y direction
needs to be done before starting that along the X direction to update also ha-
los with data coming from diagonal neighbor sites, ii) and the corresponding
pack and unpack kernels needs to be executed before GPU resources become
busy in processing the sites of the lattice bulk. On the other hand, the update
of contiguous halos fully overlaps with processing of the bulk region. Finally,
unpack of received data for contiguous halos, and the processing of the 4 border
regions starts as soon as GPU resources are freed by the kernel processing the
bulk regions.

22

// Update non−cont iguous ha lo s
pbc_nc ()

// Computing over bulk
prop_Bulk <<< . dimGridB , dimBlockB , 0 , stream [0] >>> (. . .)
collide_Bulk <<< dimGridB , dimBlockB , 0 , stream [0] >>> (. . .) ;

// Update cont iguous ha lo s
pbc_c ()

// Computing propagate on l e f t columns o f the l a t t i c e
prop_L <<< dimGridLR , dimBlockLR , 0 , stream [1] >>> (. . .) ;
collide_L <<< dimGridLR , dimBlockLR , 0 , stream [1] >>> (. . .) ;

// Computing propagate on r i g h t columns o f the l a t t i c e
prop_R <<< dimGridLR , dimBlockLR , 0 , stream [2] >>> (. . .) ;
collide_R <<< dimGridLR , dimBlockLR , 0 , stream [2] >>> (. . .) ;

// Computing propagate on top rows o f the l a t t i c e
prop_T <<< dimGridTB , dimBlockTB , 0 , stream [3] >>> (. . .) ;
bc_T <<< dimGridTB , dimBlockTB , 0 , stream [3] >>> (. . .) ;
collide_T <<< dimGridTB , dimBlockTB , 0 , stream [3] >>> (. . .) ;

// Computing propagate on bottom rows o f the l a t t i c e
prop_B <<< dimGridTB , dimBlockTB , 0 , stream [4] >>> (. . .) ;
bc_B <<< dimGridTB , dimBlockTB , 0 , stream [4] >>> (. . .) ;
collide_B <<< dimGridTB , dimBlockTB , 0 , stream [4] >>> (. . .) ;

Figure 13: Scheduling of operations for the code using 2-D tiles.

Figure 14: Execution timeline of the code using a 2-d tiling, as shown by the NVIDIA profiler.
In this example, we first execute update of non-contiguous halos starting first the pack bot

kernel, and after MPI communication the unpack tot. These operations can not overlap with
other data-processing. After we start the pack left and pack right to pack data to update
contiguous halos, and in parallel we execute the propagateCollideBulk kernel to process all
sites belonging to lattice bulk. As soon as propagateCollideBulk kernel frees GPU resources,
unpack left and unpack right kernels are executed to update contiguous halos, followed by
the processing of the 4 border regions.

23

Table 3: Performance of our full production-ready code, measured on a lattice of 1024×8192
sites. We show the execution time of each phase of the code, the performance of the propagate

and collide kernels, the effective performance of the complete code (Global P), and the
MLUPS (Million Lattice Updates per second) metric. The clock frequencies for the SMs of
the K40 and K80 boards are set at the “boosted” values of 875 MHz.

GF100 2×GF100 GK110B 2×GK110B GK210 2×GK210

Tprop (ms) 60.6 30.9 25.8 12.2 32.3 19.0
Tbc (ms) 6.5 3.6 2.8 1.4 1.4 0.8
Tcoll (ms) 276.0 158.0 78.0 39.0 71.1 38.1

Propagate (GB/s) 81 155 187 376 155 261
Collide (GF/s) 197 344 696 1388 764 1544

Global P . (GF/s) 158 281 506 1010 519 988
MLUPS 24 43 78 156 80 153

6. Results Analysis

In this section we present results for our full production-grade codes, that
consistently use all paths to performance discussed in the previous sections.

One GPU

We first examine results for just one (or two) GPUs: Table 3 collects per-
formance results of the full production-ready code running on one host with
one or two GPUs on a lattice of 1024 × 8192 points; the main computational
load is associated to the propagate and collide kernels, as expected. Mem-
ory bandwidth (relevant for propagate) is close to 55% of the theoretical peak
for the C2050 accelerator; it reaches ≈ 65% of peak for the K40 and the K80.
The Kepler processor is more efficient from the point of view of floating-point
throughput, as measured by the FP performance of the collide kernel, reach-
ing ≈ 43% versus ≈ 38% for the C2050 board; the K80 board exploits its larger
register file and shared memory to reach ≈ 53% of peak. On a dual-K40 system
and on a K80 board using both GPUs, the collide kernel largely breaks the
sustained double precision 1 Tflops performance barrier; also the global perfor-
mance figures of the full code, which take into account all execution phases, are
satisfactory: we measure an efficiency of respectively ≈ 31% and ≈ 34% of the
raw peak floating-point throughput.

Performance Comparison

It is interesting to compare the performance delivered by GPUs with that of
other recent processors; this is done in Table 4, where we compare performance
figures on GPUs systems with those of implementations of the same code devel-
oped and optimized for multi- and many-core Intel systems. We consider a dual-
E5-2630 V3 system, with two eight-core Haswell V3 processors, and a 61-core
Xeon-Phi processor, the latest accelerator based on the Intel MIC many-core
architecture. For these architectures we have optimized the code parallelizing
the execution over all available cores and using SIMD instructions within the

24

Table 4: Performance comparison of the propagate and collide kernels running on several
systems: a dual eight-core E5-2630 2.4 GHz (Intel Haswell V3) processor, an Intel Xeon-Phi
accelerator and a K40 and K80 board. ε is the effective performance w.r.t. peak performance.
For collide we also measure performance in Million Lattice Updates per Second (MLUPS).
Finally we list the energy needed to update one lattice cell, estimating the power used by
processors from published data on their Thermal Design Point (TDP).

dual E5-2630 v3 Xeon-Phi 7120X Tesla K40 Tesla K80

propagate (GB/s) 88 98 187 261
ε 75% 28% 65% 54%

collide (GF/s) 222 362 696 1544
ε 36% 30% 42% 53%
MLUPS 29 54 107 220

TDP (Watt) 2×85 300 235 300
Energy (µJ/site) 7.3 5.5 2.5 1.2

cores; for details, see [30, 31] and [32, 33]. Performances of the propagate and
collide kernels are significantly faster on the the K40 and K80 boards than on
the other systems: the propagate kernel is approximately 2 − 3X faster than
the dual-CPU systems, and 1.9X and 2.7X faster than the Xeon-Phi; this is
also true for collide, where GPUs are 3.7X and 7.6X faster than CPUs, and
2.0X and 4.0X faster than the Xeon-Phi.

Energy Efficiency

Table 4 also shows data on energy efficiency (that we normalize to the average
energy needed to process one lattice site). We estimate this quantity using
published data on the Thermal Design Point (TDP), an upper bound of the
power consumption of the processors; this gives only a rough estimate of the
energy efficiency, also because all other sources of power consumption (host,
memories, devices, . . .) are neglected. Taking these reservations into account,
GPUs are more energy-efficient than the other processors: for instance, the
K80 system is ≈ 7X better than the dual-CPU system and ≈ 4X better than
the Xeon-Phi. When considering these results one must keep in mind that co-
processors (GPUs and Xeon-Phi) operates with the support of a host processor:
even if the latter is little used during the computation, it still draws an amount
of power that is not necessarily a small fraction of the total energy budget.

Multi-GPU

We now move to consider scaling results for multi-GPU codes. Following
our introductory discussion, we expect that – contrary to expectation – an 1D
tiling of the lattice may be as efficient or even more efficient than a 2D tiling
up to relatively large number of GPUs. We settle the question experimentally,
measuring the performance of the codes described in the previous sections on
several medium-size to large lattices, using all possible tilings consistent with
the number of available GPUs. Our tests have been run on a GPU cluster

25

Figure 15: Benchmark results on a lattice of 3600×3600 sites. For a varying number of GPUs
(n) we plot (in arbitrary units) n × T (n) for all possible 1-D and 2-D decompositions of the
lattice (T (n) is the wall-clock execution time); this product stays constant if the code enjoys
perfect scalability.

installed at the NVIDIA Technology Center. Each node is a dual socket 10-core
Ivy Bridge E5-2690 v2 at 3.00GHz, with 4 K80 GPUs. Nodes are interconnected
with an Infiniband FDR network, and up to 32 GPUs are available.

Figure 15 presents a sample subset of our results, plotting n × T (n) (in
arbitrary units) on a lattice of 3600×3600 points for almost all possible 1-D and
2-D tilings of the lattice on n GPUs. This quantity is constant if the program
enjoys perfect scaling, so it is a direct measurement of scaling violations. Scaling
violations are less than 10% up to 32 GPUs, and some tiling choices are clearly
more efficient then others; as predicted by our model, the 1D tiling enjoys good
scaling up to a reasonably large (24 in this case) number of GPUs. From this
data (and from equivalent data for other lattice sizes) and for each value of n,
we derive the best tiling choice; this is shown in Figure 16, that contains results
for all lattice sizes that we have considered. We see here that scaling violations
are relatively small (and of course smaller for larger lattices) on all lattices and
for all n that we have tested.

Figure 17 shows equivalent information, possibly in a more useful format:
we consider again all lattices showing Ts, the time (in nsec) required to handle
one lattice point by one GPU: we see an abrupt (and expected) transition as
we move from 1 GPU to more GPUs, then a large plateau for large lattices and
gentle scaling violations for the smaller lattices.

For physics users, the ultimate metric is the relative speed up and the ef-
fective performance as a function of n; this is shown in Figure 18, that wraps
up our results. Performance increases smoothly for all lattices and number of
GPUs: performance is not ideal but the bottom line of this analysis is that our
codes run efficiently on up to at least 32 GPUs for physics relevant lattice sizes,

26

Figure 16: Measured values (in arbitrary units) of n×T (n) for the more efficient decomposition
of the lattice, for several lattice sizes and for several numbers of GPUs (n); this product stays
constant if the code enjoys perfect scalability.

with a sustained performance in the range of tens of Tflops.

Overview of Physics Results

We finally mention that the codes described in this paper have been used
to perform extensive studies of thermally-driven turbulence in 2D systems. In
Figure 19 we show the temperature maps of a simulation of the Rayleigh-Taylor
instability at several stages during time evolution. This picture refers to a
sample lattice of 2048× 4096 cells. Detailed physics results are in [34, 35, 36].

7. Conclusions and Outlook

This paper presents a detailed account of the development and optimiza-
tion of a production-grade Lattice Boltzmann code on two recent generations
of GPUs. The strategies we have adopted are based on a quantitative approach
that uses specific benchmarks and simple theoretical models as a guide to effi-
cient implementation choices. We believe that the methodology that has guided
our main design decisions can be helpful to develop GPU codes for other scien-
tific applications.

We have obtained excellent sustained performance. This result admittedly
builds on a carefully handcrafted adjustment of key kernels in the code, that
takes into account the architecture of the target processor; however the effort
of writing the corresponding CUDA-C code remains within reasonable limits.

Our results build on the excellent floating point performance of GPUs and
on the capability of the memory-interface to support a large fraction of the peak
bandwidth if one pays appropriate attention to the memory access patterns.

27

Figure 17: Measured values (in nsec) of the average time needed by one GPU to process one
lattice site as a function of the number of GPUs (n), for the more efficient decomposition of
the lattice and for several lattice sizes.

When going to a large multi-GPU implementation, node-to-node communi-
cation quickly become a serious bottleneck, so an optimization effort is needed
both at the level of the algorithm and of the communication tools; algorithmic
optimizations strictly depend on the application, while for the second point the
CUDA-aware supports available on MPI libraries has significant benefits.

For problem sizes relevant for physics, fairly large systems (e.g. 32 GPUs)
have very good strong scaling results, and the aggregated performance is not
too far from ≈ 20 Tflops.

Take-away lessons, applicable to different applications and beyond the obvi-
ous fact that as much parallelism as possible must be exposed, are:

1. performance depends sharply on the number of used threads; this has a
big impact on the computing structure of the code which, in the case of
GPUs, must have a high level of data vectorization;

2. good data allocation strategies help the memory controller coalesce mem-
ory requests; for GPUs the SoA scheme is preferred; this may require a
complete or partial rewriting of existing applications since many codes use
the AoS scheme which better fits the cache structure of traditional CPUs;

3. data transfers in and out of the accelerator must be minimized and over-
lapped with computation. Currently this is a serious limit to strong scal-
ability for applications running on GPU clusters. CUDA-aware MPI li-
brary implementations, enabling specific GPU supports (CUDA-IPC and
GPUDirect RDMA) provide significant advantages.

A number of programming frameworks have been introduced recently, with
the aim to help programmers to write “portable” codes. Some of these like
OpenCL use a language approach like CUDA, but they target a wider range

28

Figure 18: Aggregate performance of the code for the best lattice tiling as a function of
the number of GPUs, for several lattice sizes. Results are shown as speedup values (left) or
effective sustained performance (Tflops, right).

of accelerator architectures. Other frameworks, e.g., OpenMP4 and OpenACC,
use directives, allowing programmers to annotate regions of codes where par-
allelism can be exploited, so they can be automatically mapped and optimized
by a compiler for several target parallel architectures. These environments are
still immature in some respects: i) they do not reach yet the same level of per-
formance as codes written using specific languages for the target accelerator,
or ii) they support efficiently just a limited subset of architectures, leaving the
portability issues partially solved. We are currently investigating the advan-
tages of these frameworks for LBM code developments; for preliminary results
see [37, 38, 39, 40, 41].

Acknowledgments

We would like to acknowledge the support of the NVIDIA-lab at the Jülich
Supercomputing Centre (Jülich, Germany), and of the NVIDIA Technology
Center to allow us to use the cluster of K80 GPUs. This work has been done
in the framework of the COKA, COSA and SUMA projects of INFN (Italy).
We thank GF. Bilardi for useful comments; AG has been supported by the
European Union’s Horizon 2020 research and innovation programme under the
Marie Sklodowska-Curie grant agreement No 642069.

References

[1] N. Maruyama, T. Aoki, Optimizing stencil computations for nvidia kepler
gpus, in: International Workshop on High-Performance Stencil Computa-
tions, 2014, pp. 1–7.

29

Figure 19: Temperature maps (red: highest temperature, blue: lowest temperature) of a
simulation of a Rayleigh-Taylor instability on a lattice of 2048 × 4096 cells at several stages
of its time evolution.

[2] A. Vizitiu, L. Itu, L. Lazar, C. Suciu, Double precision stencil computations
on kepler gpus, in: System Theory, Control and Computing (ICSTCC),
2014 18th International Conference, 2014, pp. 123–127. doi:10.1109/

ICSTCC.2014.6982402.

[3] J. Holewinski, L.-N. Pouchet, P. Sadayappan, High-performance code gen-
eration for stencil computations on gpu architectures, in: Proceedings of the
26th ACM International Conference on Supercomputing, ICS ’12, ACM,
New York, NY, USA, 2012, pp. 311–320. doi:10.1145/2304576.2304619.

[4] A. Vizitiu, L. Itu, C. Ni, C. Suciu, Optimized three-dimensional stencil
computation on fermi and kepler gpus, in: High Performance Extreme
Computing Conference (HPEC), 2014 IEEE, 2014, pp. 1–6. doi:10.1109/
HPEC.2014.7040968.

[5] C. Bonati, G. Cossu, M. D’Elia, P. Incardona, QCD simulations with
staggered fermions on GPUs, Computer Physics Communications 183 (4)
(2012) 853–863. doi:10.1016/j.cpc.2011.12.011.

[6] M. A. Clark, R. Babich, K. Barros, R. C. Brower, C. Rebbi, Solving Lattice
QCD systems of equations using mixed precision solvers on GPUs, Comput.
Phys. Commun. 181 (2010) 1517–1528. doi:10.1016/j.cpc.2010.05.002.

[7] J. Tölke, Implementation of a lattice boltzmann kernel using the compute
unified device architecture developed by nvidia, Computing and Visualiza-
tion in Science 13 (1) (2008) 29–39. doi:10.1007/s00791-008-0120-2.

[8] M. Bernaschi, M. Fatica, S. Melchionna, S. Succi, E. Kaxiras, A flexible
high-performance lattice boltzmann gpu code for the simulations of fluid

30

http://dx.doi.org/10.1109/ICSTCC.2014.6982402
http://dx.doi.org/10.1109/ICSTCC.2014.6982402
http://dx.doi.org/10.1145/2304576.2304619
http://dx.doi.org/10.1109/HPEC.2014.7040968
http://dx.doi.org/10.1109/HPEC.2014.7040968
http://dx.doi.org/10.1016/j.cpc.2011.12.011
http://dx.doi.org/10.1016/j.cpc.2010.05.002
http://dx.doi.org/10.1007/s00791-008-0120-2

flows in complex geometries, Concurrency and Computation: Practice and
Experience 22 (1) (2010) 1–14. doi:10.1002/cpe.1466.

[9] P. Ripesi, L. Biferale, S. F. Schifano, R. Tripiccione, Evolution of a double-
front rayleigh-taylor system using a graphics-processing-unit-based high-
resolution thermal lattice-boltzmann model, Physical Review E - Statisti-
cal, Nonlinear, and Soft Matter Physics 89 (4). doi:10.1103/PhysRevE.

89.043022.

[10] L. Biferale, F. Mantovani, M. Pivanti, M. Sbragaglia, A. Scagliarini, S. F.
Schifano, F. Toschi, R. Tripiccione, Lattice Boltzmann fluid-dynamics on
the QPACE supercomputer, Procedia Computer Science 1 (1) (2010) 1075–
1082, ICCS 2010. doi:10.1016/j.procs.2010.04.119.

[11] L. Biferale, F. Mantovani, M. Pivanti, F. Pozzati, M. Sbragaglia,
A. Scagliarini, S. F. Schifano, F. Toschi, R. Tripiccione, A multi-gpu im-
plementation of a d2q37 lattice boltzmann code, in: R. Wyrzykowski,
J. Dongarra, K. Karczewski, J. Waśniewski (Eds.), Parallel Processing and
Applied Mathematics: 9th International Conference, PPAM 2011, Torun,
Poland, September 11-14, 2011. Revised Selected Papers, Part I, Lecture
Notes in Computer Science, Springer Berlin Heidelberg, Berlin, Heidelberg,
2012, pp. 640–650. doi:10.1007/978-3-642-31464-3_65.

[12] G. Wellein, T. Zeiser, G. Hager, S. Donath, On the single processor perfor-
mance of simple lattice Boltzmann kernels, Computers & Fluids 35 (8–9)
(2006) 910–919, proceedings of the First International Conference for Meso-
scopic Methods in Engineering and Science. doi:10.1016/j.compfluid.

2005.02.008.

[13] T. Pohl, M. Kowarschik, J. Wilke, K. Iglberger, U. Rüde, Optimiza-
tion and profiling of the cache performance of parallel lattice boltzmann
codes, Parallel Processing Letters 13 (04) (2003) 549–560. doi:10.1142/

S0129626403001501.

[14] M. Wittmann, T. Zeiser, G. Hager, G. Wellein, Comparison of different
propagation steps for the lattice boltzmann method, CoRR abs/1111.0922.

[15] A. G. Shet, S. H. Sorathiya, S. Krithivasan, A. M. Deshpande, B. Kaul,
S. D. Sherlekar, S. Ansumali, Data structure and movement for lattice-
based simulations, Phys. Rev. E 88 (2013) 013314. doi:10.1103/

PhysRevE.88.013314.

[16] A. G. Shet, K. Siddharth, S. H. Sorathiya, A. M. Deshpande, S. D.
Sherlekar, B. Kaul, S. Ansumali, On vectorization for lattice based sim-
ulations, International Journal of Modern Physics C 24. doi:10.1142/

S0129183113400111.

31

http://dx.doi.org/10.1002/cpe.1466
http://dx.doi.org/10.1103/PhysRevE.89.043022
http://dx.doi.org/10.1103/PhysRevE.89.043022
http://dx.doi.org/10.1016/j.procs.2010.04.119
http://dx.doi.org/10.1007/978-3-642-31464-3_65
http://dx.doi.org/10.1016/j.compfluid.2005.02.008
http://dx.doi.org/10.1016/j.compfluid.2005.02.008
http://dx.doi.org/10.1142/S0129626403001501
http://dx.doi.org/10.1142/S0129626403001501
http://dx.doi.org/10.1103/PhysRevE.88.013314
http://dx.doi.org/10.1103/PhysRevE.88.013314
http://dx.doi.org/10.1142/S0129183113400111
http://dx.doi.org/10.1142/S0129183113400111

[17] J. Kraus, M. Pivanti, S. F. Schifano, R. Tripiccione, M. Zanella, Bench-
marking GPUs with a parallel Lattice-Boltzmann code, in: Computer Ar-
chitecture and High Performance Computing (SBAC-PAD), 25th Interna-
tional Symposium on, IEEE, 2013, pp. 160–167. doi:10.1109/SBAC-PAD.
2013.37.

[18] L. Biferale, F. Mantovani, M. Pivanti, F. Pozzati, M. Sbragaglia,
A. Scagliarini, S. F. Schifano, F. Toschi, R. Tripiccione, Optimization of
Multi-Phase Compressible Lattice Boltzmann Codes on Massively Parallel
Multi-Core Systems, Procedia Computer Science 4 (2011) 994–1003, pro-
ceedings of the International Conference on Computational Science, ICCS
2011. doi:10.1016/j.procs.2011.04.105.

[19] L. Biferale, F. Mantovani, M. Pivanti, F. Pozzati, M. Sbragaglia,
A. Scagliarini, S. F. Schifano, F. Toschi, R. Tripiccione, An optimized d2q37
lattice boltzmann code on gp-gpus, Computers & Fluids 80 (2013) 55 – 62.
doi:10.1016/j.compfluid.2012.06.003.

[20] M. Pivanti, F. Mantovani, S. F. Schifano, R. Tripiccione, L. Zenesini, An
optimized lattice boltzmann code for BlueGene/Q, in: R. Wyrzykowski,
J. Dongarra, K. Karczewski, J. Waśniewski (Eds.), Parallel Processing
and Applied Mathematics: 10th International Conference, PPAM 2013,
Warsaw, Poland, September 8-11, 2013, Revised Selected Papers, Part II,
Lecture Notes in Computer Science, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2014, pp. 385–394. doi:10.1007/978-3-642-55195-6_36.

[21] S. Succi, The Lattice-Boltzmann Equation, Oxford university press, Ox-
ford, 2001.

[22] M. Sbragaglia, R. Benzi, L. Biferale, H. Chen, X. Shan, S. Succi, Lat-
tice Boltzmann method with self-consistent thermo-hydrodynamic equi-
libria, Journal of Fluid Mechanics 628 (2009) 299–309. doi:10.1017/

S002211200900665X.

[23] A. Scagliarini, L. Biferale, M. Sbragaglia, K. Sugiyama, F. Toschi, Lattice
Boltzmann methods for thermal flows: Continuum limit and applications
to compressible Rayleigh–Taylor systems, Physics of Fluids (1994-present)
22 (5) (2010) 055101. doi:10.1063/1.3392774.

[24] Nvidia, fermi.
URL http://www.nvidia.com/content/PDF/fermi_white_papers/

NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

[25] Nvidia, kepler gk110.
URL http://www.nvidia.com/content/PDF/kepler/

NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

[26] Nvidia cuda c programming guide.
URL http://docs.nvidia.com/cuda/cuda-c-programming-guide

32

http://dx.doi.org/10.1109/SBAC-PAD.2013.37
http://dx.doi.org/10.1109/SBAC-PAD.2013.37
http://dx.doi.org/10.1016/j.procs.2011.04.105
http://dx.doi.org/10.1016/j.compfluid.2012.06.003
http://dx.doi.org/10.1007/978-3-642-55195-6_36
http://dx.doi.org/10.1017/S002211200900665X
http://dx.doi.org/10.1017/S002211200900665X
http://dx.doi.org/10.1063/1.3392774
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://docs.nvidia.com/cuda/cuda-c-programming-guide
http://docs.nvidia.com/cuda/cuda-c-programming-guide

[27] R. P. Brent, The parallel evaluation of general arithmetic expressions, J.
ACM 21 (2) (1974) 201–206. doi:10.1145/321812.321815.

[28] An introduction to cuda-aware mpi.
URL http://developer.nvidia.com/content/

introduction-cuda-aware-mpi

[29] Benchmarking gpudirect rdma on modern server platforms.
URL http://devblogs.nvidia.com/parallelforall/

benchmarking-gpudirect-rdma-on-modern-server-platforms

[30] F. Mantovani, M. Pivanti, S. F. Schifano, R. Tripiccione, Performance is-
sues on many-core processors: A d2q37 lattice boltzmann scheme as a
test-case, Computers & Fluids 88 (2013) 743 – 752. doi:10.1016/j.

compfluid.2013.05.014.

[31] F. Mantovani, M. Pivanti, S. F. Schifano, R. Tripiccione, Exploiting paral-
lelism in many-core architectures: Lattice boltzmann models as a test case,
Journal of Physics: Conference Series 454 (1). doi:10.1088/1742-6596/

454/1/012015.

[32] G. Crimi, F. Mantovani, M. Pivanti, S. F. Schifano, R. Tripiccione, Early
Experience on Porting and Running a Lattice Boltzmann Code on the
Xeon-phi Co-Processor, Procedia Computer Science 18 (2013) 551–560.
doi:10.1016/j.procs.2013.05.219.

[33] G. Bortolotti, M. Caberletti, G. Crimi, A. Ferraro, F. Giacomini, M. Man-
zali, G. Maron, M. Pivanti, D. Salomoni, S. F. Schifano, R. Tripiccione,
M. Zanella, Computing on knights and kepler architectures, Journal of
Physics: Conference Series 513 (5) (2014) 052032.

[34] L. Biferale, F. Mantovani, M. Sbragaglia, A. Scagliarini, F. Toschi,
R. Tripiccione, Second-order closure in stratified turbulence: Simulations
and modeling of bulk and entrainment regions, Physical Review E 84 (1)
(2011) 016305. doi:10.1103/PhysRevE.84.016305.

[35] L. Biferale, F. Mantovani, M. Sbragaglia, A. Scagliarini, F. Toschi,
R. Tripiccione, Reactive Rayleigh-Taylor systems: Front propagation and
non-stationarity, EPL 94 (5) (2011) 54004. doi:10.1209/0295-5075/94/

54004.

[36] A. Scagliarini, L. Biferale, F. Mantovani, M. Pivanti, F. Pozzati, M. Sbra-
gaglia, S. F. Schifano, F. Toschi, R. Tripiccione, Front propagation in
Rayleigh-Taylor systems with reaction, in: Journal of Physics: Confer-
ence Series, Vol. 318, IOP Publishing, 2011, pp. 1–10. doi:10.1088/

1742-6596/318/9/092024.

[37] E. Calore, S. F. Schifano, R. Tripiccione, A Portable OpenCL Lattice Boltz-
mann Code for Multi-and Many-core Processor Architectures, Procedia
Computer Science 29 (2014) 40–49. doi:10.1016/j.procs.2014.05.004.

33

http://dx.doi.org/10.1145/321812.321815
http://developer.nvidia.com/content/introduction-cuda-aware-mpi
http://developer.nvidia.com/content/introduction-cuda-aware-mpi
http://developer.nvidia.com/content/introduction-cuda-aware-mpi
http://devblogs.nvidia.com/parallelforall/benchmarking-gpudirect-rdma-on-modern-server-platforms
http://devblogs.nvidia.com/parallelforall/benchmarking-gpudirect-rdma-on-modern-server-platforms
http://devblogs.nvidia.com/parallelforall/benchmarking-gpudirect-rdma-on-modern-server-platforms
http://dx.doi.org/10.1016/j.compfluid.2013.05.014
http://dx.doi.org/10.1016/j.compfluid.2013.05.014
http://dx.doi.org/10.1088/1742-6596/454/1/012015
http://dx.doi.org/10.1088/1742-6596/454/1/012015
http://dx.doi.org/10.1016/j.procs.2013.05.219
http://dx.doi.org/10.1103/PhysRevE.84.016305
http://dx.doi.org/10.1209/0295-5075/94/54004
http://dx.doi.org/10.1209/0295-5075/94/54004
http://dx.doi.org/10.1088/1742-6596/318/9/092024
http://dx.doi.org/10.1088/1742-6596/318/9/092024
http://dx.doi.org/10.1016/j.procs.2014.05.004

[38] E. Calore, S. F. Schifano, R. Tripiccione, On portability, performance
and scalability of an mpi opencl lattice boltzmann code, in: L. Lopes,
J. Žilinskas, A. Costan, R. G. Cascella, G. Kecskemeti, E. Jeannot,
M. Cannataro, L. Ricci, S. Benkner, S. Petit, V. Scarano, J. Gracia,
S. Hunold, S. L. Scott, S. Lankes, C. Lengauer, J. Carretero, J. Bre-
itbart, M. Alexander (Eds.), Euro-Par 2014: Parallel Processing Work-
shops: Euro-Par 2014 International Workshops, Porto, Portugal, August
25-26, 2014, Revised Selected Papers, Part II, Lecture Notes in Com-
puter Science, Springer International Publishing, Cham, 2014, pp. 438–449.
doi:10.1007/978-3-319-14313-2_37.

[39] E. Calore, J. Kraus, S. F. Schifano, R. Tripiccione, Accelerating lat-
tice boltzmann applications with openacc, in: L. J. Träff, S. Hunold,
F. Versaci (Eds.), Euro-Par 2015: Parallel Processing: 21st Interna-
tional Conference on Parallel and Distributed Computing, Vienna, Aus-
tria, August 24-28, 2015, Proceedings, Lecture Notes in Computer Sci-
ence, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015, pp. 613–624.
doi:10.1007/978-3-662-48096-0_47.

[40] J. Kraus, M. Schlottke, A. Adinetz, D. Pleiter, Accelerating a c++ cfd code
with openacc, in: Accelerator Programming using Directives (WACCPD),
2014 First Workshop on, 2014, pp. 47–54. doi:10.1109/WACCPD.2014.11.

[41] E. Calore, A. Gabbana, J. Kraus, S. F. Schifano, R. Tripiccione, Perfor-
mance and portability of accelerated lattice boltzmann applications with
openacc, Concurrency and Computation: Practice and Experiencedoi:
10.1002/cpe.3862.

34

http://dx.doi.org/10.1007/978-3-319-14313-2_37
http://dx.doi.org/10.1007/978-3-662-48096-0_47
http://dx.doi.org/10.1109/WACCPD.2014.11
http://dx.doi.org/10.1002/cpe.3862
http://dx.doi.org/10.1002/cpe.3862

Appendix A. Code Listings

// Pack non−cont iguous b u f f e r in a cont iguous b u f f e r
__global__ void pack (data_t ∗f , data_t ∗sndBuf){

int idx_c , idx_nc ;
idx_c = (blockIdx . y ∗ blockDim . y ∗ blockDim . x) +

(threadIdx . y ∗ blockDim . x) +
(threadIdx . x) ;

idx_nc = (blockIdx . y ∗ blockDim . y ∗ NY) +
(threadIdx . y ∗ NY) +
(threadIdx . x) ;

if (threadIdx . x < blockDim . x)
sndBuf [idx_c] = f [idx_nc] ;

}

// Unpack a cont iguous b u f f e r in a non−cont iguous b u f f e r
__global__ void unpack (data_t ∗rcvBuf , data_t ∗f){

int idx_c , idx_nc ;
idx_c = (blockIdx . y ∗ blockDim . y ∗ blockDim . x) +

(threadIdx . y ∗ blockDim . x) +
(threadIdx . x) ;

idx_nc = (blockIdx . y ∗ blockDim . y ∗ NY) +
(threadIdx . y ∗ NY) +
(threadIdx . x) ;

if (threadIdx . x < blockDim . x)
f [idx_nc] = rcvBuf [idx_c] ;

}

Figure A.20: CUDA implementation of the pack and unpack kernels. pack starts a CUDA
grid, and each thread reads a data item from a lattice site and stores it into an array at
consecutive address. unpack does the opposite.

35

// send/ r e c e i v e b u f f e r a l l o c a t i o n
cudaMalloc ((void ∗∗) &sndTopBuf , LY∗HX∗sizeof (data_t)) ;
cudaMalloc ((void ∗∗) &rcvBotBuf , LY∗HX∗sizeof (data_t)) ;
cudaMalloc ((void ∗∗) &sndBotBuf , LY∗HX∗sizeof (data_t)) ;
cudaMalloc ((void ∗∗) &rcvTopBuf , LY∗HX∗sizeof (data_t)) ;

// func t i on to t r a n s f e r non−cont iguous borders
void pbc_nc () {

// Pack top non−cont iguous border
pack <<<dimGrid , dimBlock>>> (src_p , sndTopBuf) ;

// Wait the end o f pack−ke rne l
cudaDeviceSynchronize () ;

// Exchange the cont iguous b u f f e r us ing CUDA−aware MPI
MPI_Sendrecv (

sndTopBuf , LY∗HX , MPI_DOUBLE , mpi_left , 0 ,
rcvBotBuf , LY∗HX , MPI_DOUBLE , mpi_right , 0 ,
MPI_COMM_WORLD , MPI_STATUS_IGNORE

) ;

// Unpack data on bottom halo
unpack <<< dimGrid , dimBlock >>> (rcvBotBuf , dst_p) ;

// Pack bottom non−cont iguous border
pack <<<dimGrid , dimBlock>>> (src_p , sndBotBuf) ;

// Wait the end o f pack−ke rne l
cudaDeviceSynchronize () ;

// Exchange the cont iguous b u f f e r us ing CUDA−aware MPI
MPI_Sendrecv (

sndBotBuf , LY∗HX , MPI_DOUBLE , mpi_left , 0 ,
rcvTopBuf , LY∗HX , MPI_DOUBLE , mpi_right , 0 ,
MPI_COMM_WORLD , MPI_STATUS_IGNORE

) ;

// Unpack data on bottom halo
unpack <<< dimGrid , dimBlock >>> (rcvTopBuf , dst_p) ;

// Wait end o f unpack ke rne l
cudaDeviceSynchronize () ;

}

Figure A.21: Sample code to handle data transfers among non contiguous buffers. Two
buffers sndBuf and rcvBuf are persistently allocated on the GPU. Function pbc nc performs the
transfers of the data associated to the left and right halos. Real code we use is more complex
because we overlaps the two transfers as much as possible running pack and unpack kernels
on separate streams, and using asynchronous MPI operations. Execution of this function has
to be completed before starting operations on lattice bulk and update of contiguous halos to
ensure that halos are correctly updated.

36

// update non−cont iguous ha los
pbc_nc (f2_soa_d) ;

// pack r i gh t / l e f t borders
pack_right <<< . . . , stream [1] >>> (. . .) ;
pack_left <<< . . . , stream [2] >>> (. . .) ;

// run propagateAndColl ide over Bulk
propagateCollideBulk <<< . . . , stream [0] >>> (. . .) ;

// wait end o f pack r i gh t borders
cudaStreamSynchronize (stream [1]) ;
// perform MPI opera t i ons
MPI_Sendrecv () ;

// wait end o f pack l e f t borders
cudaStreamSynchronize (stream [2]) ;
MPI_Sendrecv () ;

// unpack r i gh t / l e f t ha los
unpack_left <<< . . . , stream [1] >>> (. . .) ;
unpack_right <<< . . . , stream [2] >>> (. . .) ;

// wait end o f unpack r i gh t / l e f t ha los
// (r equ i r ed be fo r e s t a r t i n g proce s s i ng l e f t , r ight , top and bottom borders)
cudaStreamSynchronize (stream [1]) ;
cudaStreamSynchronize (stream [2]) ;

// proce s s l e f t / r i gh t borders
propagateCollideL <<< . . . , stream [1] >>> (. . .) ;
propagateCollideR <<< . . . , stream [2] >>> (. . .) ;

// proce s s top/bottom borders
if (uppermost−rank){

propagateT <<< . . . , stream [3] >>> (. . .) ;
bcT <<< . . . , stream [3] >>> (. . .) ;
collideT <<< . . . , stream [3] >>> (. . .) ;

} else {
propagateCollideT <<< . . . , stream [3] >>> (. . .) ;

}

if (lowermost−rank){
propagateB <<< . . . , stream [4] >>> (. . .) ;
bcB <<< . . . , stream [4] >>> (. . .) ;
collideB <<< . . . , stream [4] >>> (. . .) ;

} else {
propagateCollideB <<< . . . , stream [4] >>> (. . .) ;

}

cudaDeviceSynchronize () ;

Figure A.22: Overall organization of the code for a 2-D tiling of the lattice, fusing the
propagate and collide kernels in one step. The code first update non contiguous halos calling
function pbc nc explained in Figure A.21. After this is fully completed, starts pack of left and
right borders on two GPU streams, and in parallel starts execution of propagateCollideBulk
kernel processing lattice bulk. As MPI operations complete, data are unpacked on left and
right halos, and we start processing of left, right, top and bottom borders. For left and right
borders, we apply kernels propagateCollideL and propagateCollideR computing propagate
and collide phases in one step. For top and bottom borders, we apply in sequence propgate,
bc and collide kernels is the GPU is associated to a tile at top and bottom region of the
lattice. Otherwise we only run propagateCollideT and propagateCollideB.

37

	1 Overview
	2 Lattice Boltzmann methods
	3 NVIDIA GPU Architectures
	4 Single-GPU Implementation
	5 Multi-GPU implementation
	6 Results Analysis
	7 Conclusions and Outlook
	Appendix A Code Listings

