Document downloaded from:

http://hdl.handle.net/10251/104230
This paper must be cited as:

Penaranda Cebrian, R.; Gdmez Requena, C.; Gomez Requena, ME.; Lépez Rodriguez, PJ.
(2017). XOR-based HoL-blocking Reduction Routing Mechanisms for Direct Networks.
Parallel Computing. 67:57-74. doi:10.1016/j.parco.2017.06.004

The final publication is available at

http://doi.org/10.1016/j.parco.2017.06.004

Copyright E|sevier

Additional Information

*Manuscript

Click here to view linked References

XOR-based Hol.-blocking Reduction Routing
Mechanisms for Direct Networks

Roberto Penaranda®*, Crispin Gémez*, Maria Engracia Gémez®, Pedro
Loépez®

@ Universidad Politécnica de Valencia, Spain

Abstract

Routing is a key design parameter in the interconnection network of large paral-
lel computers. Routing algorithms are classified into two different categories de-
pending on the number of routing options available for each source-destination
pair: deterministic (there is one path available) and adaptive (there are sev-
eral ones). Adaptive routing has two opposed effects on network performance.
On one hand, it provides routing flexibility that may help on avoiding a con-
gested network area, thus improving network performance. On the other hand,
it also may increase the Head-of-Line blocking effect due to more destination
nodes sharing the port queues. Usually, adaptive routing uses virtual channels
to provide routing flexibility and to guarantee deadlock freedom. Deterministic
routing is simpler, which implies lower routing delay and it introduces less Head-
of-Line blocking effect. In this paper, we propose an adaptive and HoL-blocking
reduction routing algorithm for direct topologies that tries to combine the good
properties of both worlds: It provides routing flexibility but also reduces the
Head-of-Line blocking effect. To do that, this paper proposes several functions
which use the XOR operation to efficiently distribute the packets among virtual
channels based on their destination node. The resulting routing mechanisms
have different properties depending on whether they enforce routing flexibility

or Head-of-Line blocking reduction.

*Corresponding author
Email address: ropeaceb@gap.upv.es (Roberto Pefiaranda)

Preprint submitted to Journal of NTEX Templates March 31, 2017

10

15

20

25

Keywords: direct topology, adaptive routing, deterministic routing, Head of

Line blocking, routing algorithms

1. Introduction

A key component in the performance of large parallel computers is the inter-
connection network. Performance of these systems is increasingly determined
by how data is communicated among the huge number of computing resources.
Latency and throughput are the key performance metrics of interconnection
networks [1, 2]. Latency is the elapsed time between message injection into the
network and its arrival at its destination, and it is the sum of two components,
one related to the time required to traverse the network in absence of traffic
(base latency) and the other one related to the delay suffered by messages due
to contention. If minimal routing is used, as commonly done, then the base
latency is constant for each source-destination pair as the number of hops does
not change. The second component of latency depends on network contention.
Throughput refers to the maximum amount of data the network can deliver
per time unit. The main goal is to minimize message latency while maximizing
network throughput. To achieve this goal, we have to consider, among others,
two main parameters [1, 2]: topology and routing. The topology provides the
connection pattern among the nodes. This paper focuses on direct topologies,
which are one of the options used to build large parallel machines. In fact,
several machines that have occupied the topmost positions of the Top500 list of
supercomputers [3] are based on direct topologies, like the ones that occupy the
3rd, 4th and 5th positions in the June 2016 list.

The routing algorithm decides the paths followed by messages through the
network. A routing algorithm can be either deterministic or adaptive. In deter-
ministic routing, an injected packet traverses a unique, predetermined path be-
tween each source-destination pair. Opposite to this, adaptive routing schemes
allow several paths for each source-destination pair. This, on the one hand,

helps avoiding congested network areas by allowing packets to take alternative

30

35

40

45

50

55

paths to reach their destination. However, this flexibility has a negative impact
on packet contention because it may increase the Head-of-Line (HoL) blocking
effect. This effect occurs when a packet at the head of a queue blocks, and
prevents the rest of packets in that queue from advancing, even if they could
do so because the required resources are free. The Hol-blocking effect may
be highly pernicious and may limit the throughput of the switch up to about
58% of its peak value [4, 5, 6]. In order to reduce the HoL-blocking effect, it is
very important to isolate as much as possible those packets destined to different
nodes [7, 8]. However, adaptive routing tends to spread packet destinations all
over the network, which may have a very negative effect when a destination is
saturated since it will spread the congestion to other network areas and prevent
more packets to arrive to other non-saturated destinations.

Adaptive and deterministic routing algorithms have different properties.
While adaptive routing algorithms outperform deterministic ones [1] for some
traffic patterns because of their routing flexibility, thus improving network
throughput and reducing message latency deterministic routing better isolates
destinations reducing the HoL blocking effect, which enables deterministic rout-
ing to outperform adaptive routing for some other traffic patterns such as traffic
with hot-spot destinations. Moreover, adaptive routing usually leads to a more
complex implementation and it is more deadlock-prone [9, 10]. Adaptive rout-
ing usually relies on the use of virtual channels (VCs) [11] to avoid deadlocks.
On the other hand, adaptive routing requires a selection function to choose the
path that will be finally used, as several paths are available for each packet. As
a consequence, routing delay for adaptive routing is usually higher compared to
deterministic routing [12, 13, 14].

In this paper we focus on combining the good properties of adaptive (routing
flexibility) and deterministic routing (reduced HoL blocking effect) to design a
hybrid routing algorithm. The idea behind this routing algorithm is to take
advantage of virtual channels, usually used in adaptive routing to provide flex-
ibility, but with a revisited aim: confining destinations in subsets of virtual

channels in order to reduce the HoL.-blocking effect while providing some degree

60

65

70

75

80

85

of flexibility. In order to select the VCs that can be used by a given packet, the
proposed routing algorithm uses a XOR function of the destination identifier
which provides a balanced usage of VCs for all traffic patterns. A deterministic
version of the proposed routing algorithm was presented in [15] and a first ver-
sion of the adaptive routing algorithm based on the XOR function was published
in [16]. The current paper unifies both proposals under a common framework,
explaining in more depth how the use of the XOR operation helps reducing the
Head-of-Line blocking effect both for deterministic and adaptive routing. This
paper also include new performance evaluation results.

The rest of the paper is organized as follows. Section 2 introduces some
background on routing in direct topologies. In Section 3, we present some
previous deterministic routing algorithms that use virtual channels to reduce the
HoL-blocking effect. In Section 4.1, we present the XOR-based Hol-blocking
reduction deterministic routing algorithm. And, in Section 4.2, we extend the
proposal of Section 4.1 to propose the HolL-blocking reduction adaptive routing
algorithm that is able to combine the benefits of deterministic and adaptive
routing algorithms. These algorithms are evaluated in Section 5. Finally, some

conclusions are drawn.

2. Direct Topologies

A direct network consists of a set of nodes, each one being directly con-
nected to a subset of other nodes in the network. The most popular direct
topologies organize nodes in an orthogonal n—dimensional space. The regular-
ity of these networks greatly simplifies their deployment and routing algorithm
implementation. The movement of a packet in a dimension does not modify the
number of remaining hops in the other dimensions to reach the packet destina-
tion. The most commonly—used direct topologies are the mesh, the torus, and
the hypercube. These topologies have been used in several of the most powerful
supercomputers (see the Top500 list [3]).

The distance between source and destination nodes is computed as the sum

90

95

100

105

110

115

of the offsets in each dimension. Minimal routing algorithms will reduce one
of those offsets at each routing step. The simplest minimal routing algorithm,
known as dimension-order routing (DOR) [1], consists of reducing an offset to
zero before considering the offset in the next dimension. For n-dimensional
meshes, to enforce deadlock-freedom, DOR routes packets by crossing dimen-
sions in strictly increasing (or decreasing) order.

However, in tori, crossing network dimensions in order is not enough to ob-
tain a deadlock-free routing algorithm as the channel dependency graph is cyclic
[1]. Cycles are broken by splitting each physical channel into two virtual chan-
nels (VCs) [17]. More than two VCs may be used for performance improvement
purposes [11]. Another technique used to avoid deadlocks in tori with determin-
istic routing is the bubble flow control mechanism [18]. This mechanism avoids
deadlocks in each ring of the torus by ensuring that there is always an empty
buffer that allows packets to advance along the ring. This technique does not
rely on virtual channels.

Many adaptive routing algorithms have been published in the literature
[19, 20, 21, 22]. Fully adaptive routing [23, 1] in meshes and tori allows packets
to reduce dimension offsets following in any order. Therefore, all the minimal
paths between each source-destination pair can be used by packets. However,
this may introduce cycles and deadlock-freedom has to be ensured with ad-
ditional mechanisms. According to [23], VCs may be used to cross network
dimensions in any order if deadlock freedom is guaranteed by providing an es-
cape path to packets. This escape path is provided by means of a deadlock-free
routing algorithm (for instance, DOR) in another set of VCs. Notice that with
the bubble flow control mechanism, only one VC is required for escape path
implementation in tori and meshes, and the remaining VCs can be used for
adaptive routing.

In the routing algorithtms analyzed in this paper we will assume the bubble

flow control mechanism to break cycles in torus.

120

125

130

135

140

145

3. Related Work

As mentioned in the previous section, adaptive routing provides flexibility in
the path followed by packets and in the use of VCs since it uses VCs with com-
plete freedom, except the ones used as escape channels. This routing freedom
has two opposite effects over performance. The positive one is that temporally
congested network areas can be avoided and therefore, for some traffic patterns,
packets can make a better use of the network resources. However, the negative
effect is that packets with different destination nodes may be highly interleaved
in the switch queues, which significantly increases the HoL-blocking effect with
hot-spot traffic patterns, leading to degrade network performance for all the
network (as we can see in Section 5). On the other hand, deterministic routing
does not provide that flexibility, which may negatively affect performance for
some traffic patterns, but its contribution to the HoL-blocking effect is lower.

The idea of reducing the Hol.-blocking effect by using VCs has been pursued
before by previously proposed deterministic routing algorithms. The key idea
behind these proposals is to classify destinations into VCs, according to some
criteria. Virtual Output Queueing at network level (VOQnet) [24] needs as many
V(s as nodes in the network and associates each destination to a different VC.
VOQnet completely removes the HoL-blocking effect from the network, but the
required number of VCs is unaffordable even in small networks since it grows
linearly with the network size. However, it is often used for comparison purposes
since it provides an upper bound that could be achieved by completely removing
Hol-blocking from a network. Another option is Virtual Output Queueing at
switch level (VOQsw) [25], which requires as many VCs as switch output ports,
and associates the set of reachable destinations through a given output port to
the same VC. Therefore, VCs are selected according to the next output port the
packet will use. VOQsw leads to a worse classification of packets than the one
obtained with VOQnet and it is also not scalable, as the number of required
VCs depends on switch degree.

Destination-Based Buffer Management (DBBM) was introduced in [26], as

150

155

or 1) @ 3 e s (&
-) NG -) A VvC o0

vl ()

- R - - vez O

r M !) —

Bt R) ves O

f160 117) f19) Q20 (21 @ 23)
{247 (25) 27 28 (29) (31)
f32: 133) 735) {367 (37 739)

‘a0’

(&)

Y

N
Iy

{ w

Y

W

‘a4

(é:)
®
[’L;".
N
®

{48’ (52

‘o
O/
{g)
G
2

561 (57) {60’

Figure 1: How DBBM assigns destinations to VCs in a 8 x 8 mesh with 4 VCs.

Dim VC#0 VC#1 VC#2 VC#3
X 8 16 16 16
Y 7 No dest. No dest. No dest.

Table 1: How many destinations DBBM assigns to node 0 VCs in a 8 X 8 mesh with 4 VCs.

an attempt to obtain a scalable version of VOQnet. This mechanism selects
VCs by using the destination node identifier modulo the number of VCs. While
it works for other topologies, when using DBBM in a 2D mesh or torus, all
the nodes in a given column are assigned to the same VC, as shown in Figure
1 for an 8x8 mesh with 4 VCs per physical channel. Indeed, Table 1 shows
the number of destinations assigned to different VCs for a node of the network
(node 0). For instance, VC#0 of the X-dimension is used to reach 8 nodes (the
4* row), while VC#1 of the X-dimension is used to reach 16 nodes (the 1°¢
and 5% row). As it can be seen, all the VCs in the Y-dimension are never used
but one per port. This lack of classification in the last dimension (V) lead to
congestion due to the HoL-blocking effect that, at the end, could be propagated
to the whole network due to upstream flow control pressure.

If we analyze the implementation complexity of the VC selection mechanism,

160

165

170

175

180

01234567 01234567 dim1 (Y) dim0 (X)

Dest. Id Dest. Id Dest. Id

vc

—
vC vC MUX
—

e

(a) DBBM (b) BBQ (c) IODET

Figure 2: Implementation of VC selection for a 256-node 2D network and 4 VCs.

DBBM is very simple, provided that the number of VCs is a power of two. This
mechanism uses the modulo operation by the #VCs and its implementation is as
easy as selecting the log(#V Cs) least significant bits of the packet destination
(see Figure 2(a)). Additionally, notice that, as VC assignment depends only on
the packet destination, packets use the same VC while it traverses the network.
This is a nice feature, as VC assignment can be done once at the source node,
and the rest of nodes that a packet crosses across the network merely forwards
the packet through the same VC from which the packet arrived to, like in virtual
networks [27], without requiring VC transitioning [17]. Furthermore, this fact
also leads to a reduced switch complexity. As there is not need to move packets
from one input VC to another output VC inside switches, the internal switch
of the nodes can be implemented as one independent switch per VC, instead of
deploying a fully-connected crossbar. We will further analyze switch complexity
later considering all these aspects.

Band-Based Queuing (BBQ) mechanism [28] was proposed in order to over-
come the bad classification of packets in the last dimension of DBBM. BBQ also
uses some bits of the destination identifier to choose the VC for each packet,
but opposite to DBBM, BBQ uses the destination log(#V C's) most significant
bits (see Figure 2(b)). That is, BBQ divides the network in as many horizontal
bands as VCs, in such a way that the nodes in each column are distributed as
much as possible among the VCs. However, the problem is that all the nodes
inside each horizontal band use the same VC, and, therefore they may suffer

from HoL-blocking in the first dimension. As in DBBM, BBQ never changes

185

190

195

200

Dim VC#0 VC#1 VC#2 VC#3
X 8 16 16 16
Y 1 2 2 2

Table 2: How IODET assigns destinations to node 0 VCs in a 8 X 8 mesh. #VCs is 4

the VC of a packet during its path in the network. It can be assigned once at
injection time keeping the same VC along its path in the network.

In-Order DETerministic routing (IODET) [29] follows a different approach
and it selects the VC by considering not the whole destination identifier but the
component of the packet destination corresponding to the dimension in which
the packet is being routed. The VC to be used by a packet is obtained by per-
forming the modulo operation of the dimension coordinates of the destination.
That is, given a packet destined to node {p,—_1,...,p1,P0}, when routed in di-
mension d it will use the VC given by pg mod #VC's. This mechanism does
a better job classifying packets than DBBM as can be seen in Table 2, which
shows the number of destinations assigned to different VCs for node 0 for an
8x8 mesh with 4 VCs. As it can be seen, all the VCs in both dimensions are
used when applying IODET to distribute destination among VCs.

Considering the implementation complexity of the VC selection, IODET is
also very simple, as displayed in Figure 2(¢) which shows an example for 4 VCs.
As it can be seen, the least significant bits of the component for each dimension
is used to select the VC. However, as the assignment of destinations to VCs
depends on the dimension the packet is traversing, the VC is changed when
there is a dimension change and, therefore, in those nodes the new VC to use
must be computed. As a consequence, the node internal switch must allow the
change in the VC assignment and the switch implementation is not as easy as

the DBBM one. We will analyze this issue later.

205

210

215

220

225

230

4. XOR-based HoL-blocking Reduction Routing

In this section, we present a mechanism to assign destinations to VCs. In
order to obtain the VC, the mechanism applies a function to the destination
identifier A function that considers all the components of the identifier should be
used. In particular, the mechanism uses of bitwise XOR function. Bitwise XOR
has extensively been used for hashing, reducing conflict misses in caches [30]
or in branch predictors [31]. We apply the XOR-based destination distribution
to two different routing algorithms: first a deterministic routing mechanism
(XORDET) [15] is designed, and then an adaptive version (XORADAP) [16] is
proposed. The idea of this second algorithm is to combine the good properties
of both, deterministic and adaptive routing, to adapt to any traffic pattern to
obtain optimized performance results.

This XOR function, opposite to the previously presented deterministic algo-
rithms that use a subset of the node destination bits, distributes destinations
among VCs by performing a bitwise XOR operation to all the bits of the desti-
nation node, as follows. Assume that there are o assignment options available,
that can be virtual channels or groups of virtual channels (as we will see later).
Then, | = log, o bits are required to denote an assignment option. If destina-
tion identifiers are n bits long, then, for each destination, the assignment option
to use is obtained by performing [XOR operations in parallel. In each XOR
operation 7 bits of the destination are XORed, taking them in an interleaved
fashion. In particular, given a packet destined to node {pn—1,...,p1,po}, it will
use the assignment option given by the bits {VCj_1,...,VC1,VCy}, computed
as follows:

VCo = po ® Po+1 € Po+al - - - B Po (7 -1

VO =p1 ®p141 @ pigar-- - B pi(n -1y

VOt =pio1 @ pi—141 B Pi—1420 - S PI-14(7 1)1

Notice that the number of options (VCs or groups of VCs) must be a power
of two.

As we can see, the assignment only depends on the destination identifier.

10

Dest. Id

01234567

V

(a) XORDET

vC

Figure 3: Implementation of VC selection in XORDET for a 256-node 2D network and 4 VCs.

a0
{48)

(56)

7;

57

10
(18}

(26)

347

f27:
(35)
(a3)
51

r12)
<

::.20:1

760

D5t

(21)

(29)

745"

30

547

©)

15:

I39:

VvCo
vC1
vC2
VvC3

\
s

AR

Figure 4: How XORDET assigns destinations to VCs in a 8 X 8 mesh with 4 VCs.

25 Indeed, as it does not depend on the particular topology, the XOR function

should work well to distribute destinations on any topology. In this paper, we

have only focused on direct topologies and specifically on Torus topologies.

4.1. XORDET: XOR DETerministic Routing

XORDET is a deterministic routing algorithm that reduces the HoL-blocking

a0 effect and performs a balanced distribution of destinations among VCs. For

doing that, this algorithm uses the XOR function that was described above. In

this case, we use this function to obtain the virtual channel to use.

11

245

250

255

260

265

Dim VC#0 VC#1 VC#2 VC#3
X 14 14 14 14
Y 1 2 2 2

Table 3: How many destinations XORDET assigns to node 0 VCs in a 8 X 8 mesh with 4 VCs.

Figure 3 shows how the VC selection will be implemented in a network with
4 VCs and 8-bit node identifiers. Each VC bit is obtained by XORing 4 bits of
the node destination identifier in an interleaved fashion. Notice that XORDET
implementation of VC selection is very simple, as only some XOR gates are
required per source node. In particular, for v VCs, | = logv XOR gates are
required. Each one of them will have 7 inputs, n being the number of bits of
the destination identifier. If n is not divisible by [, some gates will have an extra
input. Notice that this implementation assumes that the number of VCs is a
power of two. On the other hand, we would like to highlight that, as in DBBM,
the assignment of destinations to VCs does not change as packet travels through
the network. Therefore, this assignment can be performed only once when the
packet is injected into the network. As a consequence, the network could be con-
sidered as several virtual independent networks, without interconnection among
them, and the internal node switch can be implemented as several independent
switches. As a consequence, the implementation of XORDET is very simple
(as in DBBM) but, as will we shown in Section 5, it also allows the VCs to
maximize its utilization (as in IODET).

XORDET is able to isolate traffic destined to different nodes and also balanc-
ing destinations among VCs. Figure 4 shows how destinations are distributed
among VCs in a network with 64 nodes and 4 VCs. As it can be seen, XORDET
does a very good job, as traffic destined to either rows or columns will be dis-
tributed among the VCs.

Table 3 shows how many destinations are assigned to each VC of node 0 of
the network.

As shown, XORDET balances node destinations among VCs which will bal-

12

270

275

280

285

290

295

ance traffic for uniform random traffic pattern. But XORDET is a deterministic
routing algorithm and this means that, for some adversarial traffic patterns, it
may suffer from performance drops due to the limited routing flexibility. While
XORDET works very well to avoid congestion caused by hot-spots, for some
other traffic patterns, adaptive routing is able to outperform deterministic rout-
ing in general and, in particular, XORDET. For this reason, in this paper we
propose an adaptive HoL-blocking reduction routing algorithm that is able to
combine the routing flexibility provided by adaptive routing with the destina-
tion isolation provided by HoL-blocking reduction routing to obtain optimized

performance results for all traffic patterns.

4.2. XORADAP: XOR ADAPtive Routing

As mentioned above, deterministic routing lacks flexibility to adapt to some
adversarial traffic patterns while adaptive routing does not encourage HolL-
blocking effect reduction, which is very important for some traffic patterns.
In particular, with a hot-spot node in the network, a Hol-blocking reduction
deterministic algorithm that isolates the hot-spot traffic works better than adap-
tive routing [15] that spreads that traffic over the network avoiding other traffic
to progress in the network. Let us analyze what happens in this case.

With adaptive routing, the problem arises in the VCs of all the network
dimensions that provide the routing flexibility (i.e. the ones that can be used to
cross the network dimensions without following any order). When there is a hot-
spot node, adaptive routing trends to distribute traffic among all the available
Vs, filling all the buffers with packets destined to the hot-spot node. Those
packets will interfere with other traffic flows all over the network, thus creating
the HoL-blocking problem.

On the contrary, HoL-blocking reduction algorithms like IODET or XORDET
have a very good behavior with hot-spot traffic because they confine the hot-spot
traffic in just one of the VCs, allowing the rest of traffic to progress normally
across other VCs. These routing algorithms also work well with uniform random

traffic pattern as it will be shown, but they obtain a poor performance for some

13

300

305

310

[Bottleneck

o O O o o o o o
o 0O O 0o o o o o
o 0O O o o o o o
o 0O O o o o o o
o 0O O O O o o o
c 0O O 0O o o o o
O O O o O O o o
O O O o O o o o
O O O o O O o o

—~
&

N\
—
=
~

Figure 5: Paths of source-destination pairs of the first row with different pattern traffics: (a)

Bit-reversal and (b) Matrix Transpose.

adversarial traffic patterns. For instance, consider the bit-reversal or matrix
transpose traffic patterns [1]. In these cases, if deterministic routing is used, a
lot of source-destination pairs will use the same links due to the destination dis-
tribution leaving many links unused. This fact creates a bottleneck since many
messages have to cross the same link. We can see this behavior in Figure 5.
This figure shows the paths used by the source nodes belonging to the first row
in a 2D torus for the bit-reversal and matrix transpose traffic patterns using a
deterministic routing algorithm. In particular, DOR was used. As it can be ob-
served in the figure, the links of the topmost leftmost node become a bottleneck
with deterministic routing. For these kinds of traffic patterns, adaptive routing
can take advantage of all the network resources, providing a better utilization
of the network links and therefore, improving overall network performance for
this adversarial traffic pattens.

In order to provide flexibility for adversarial traffic patterns and also reduce
the negative effects of HoL-blocking, we propose an adaptive HoL blocking re-

duction routing algorithm. In this routing algorithm, VCs are organized as in a

14

315

320

325

330

2 Groups 4 Groups 8 Groups
(4 VCs) (2 VCs) (1 VCs)

Adaptive channels

A

L] .

— [.
. .
. . [777777]
N] AN
[(I RRFHRR

Escape channel

Figure 6: How XORADAP may assign VCs to groups with 8 VCs.

fully adaptive routing algorithm: there is a group of adaptive VCs, that can be
used to cross the network dimensions in any order, and also there is an escape
channel. We assume that bubble flow control is used in the escape channel.
However, this routing algorithm confines each node destination identifier in a
subset of the adaptive VCs instead of allowing the use of any of them. Con-
trary to deterministic routing, the routing algorithm allows crossing the network
dimensions following any order (and therefore allowing more flexibility) but re-
stricting the use of VCs depending on the destination node and thus confining
the congested destinations in some VCs and allowing the packets located in the
rest of VCs to progress. As a consequence, it provides some degree of flexibility
but, at the same time, it limits the impact of the HoL-blocking effect because
only a subset of the VCs can be used for a given destination.

To assign destinations to VCs, any mechanism could be used. In this paper,
we propose to use the bitwise XOR function. For this reason, the resulting
routing algorithm will be referred to as XORADAP (XOR ADAPtive). The VC
assignment works as follows. We split the adaptive VCs into several groups.
Each group can be composed of 1, 2 or more VCs. Given a packet, it will be
forwarded to one of those groups depending on the packet destination, and any
of the VCs of that group could be used.

As mentioned above, we use the same function to classify destinations as

15

335

340

345

350

355

360

XORDET, but, in this case, we select a group of VCs for each destination
instead of just a single VC to classify traffic. In particular, with g groups of
VCs, | = logg XOR gates are required. Notice that the number of groups of
VCs must be a power of two.

As stated above, each group is composed of one or more VCs. Several
configurations can be used. If there are V,, VCs available for adaptive routing,
each group may contain from 1 to V, virtual channels. Notice that, if we use
only one group with all the virtual channels, we obtain the generic fully adaptive
algorithm. On the contrary, if each group has only one VC, we obtain an
adaptive version of XORDET, that allows packets to cross dimensions following
any order. Figure 6 shows an example of the different configurations that can
be set for 9 VCs, one escape VC and 8 adaptive VCs. In this case, three
configurations are possible for XORADAP: 2, 4 and 8 groups (with 4, 2 and 1
VC per group, respectively). In addition to those configurations, the one using
only one group of VCs is also possible, which leads to the fully adaptive routing
algorithm, as stated above. As it can be seen, the resulting network is a set of
different virtual networks, each one with several VCs. This means that packets
of the different virtual networks are not mixed together, effectively separating

flows. The escape channel can be used by all the groups of virtual networks.

4.3. Implementation issues

As stated above, the different routing algorithms analyzed in this paper de-
mand different implementation complexity in the internal switch of the nodes.
A fully demultiplexed crossbar [11] provides the highest flexibility, allowing con-
nections among all input VCs to all the output VCs (i.e. it can map any input
VC onto any output VC). In fact, such a switch is required for adaptive routing,
where any input port can forward packets to any output port. However, in the
case of deterministic routing, some of the connections provided by the internal
switch are unused due to routing restrictions. For instance, if DOR determinis-
tic routing is used, a packet can only use those ports that connect to the same or

higher dimensions than the one it arrived. Therefore, the switches could be sim-

16

365

370

375

380

385

390

plified if routing restrictions are considered, most important, without affecting
performance.

Let us consider the routing algorithms proposed in this paper. In XORDET,
as the VC is selected as a function of the destination node, packets do not change
the VC while they travel across the network, thus leading to a even simpler
internal switch design than the traditional deterministic routing with the same
number of VCs. Indeed, in XORDET, VC assignment can be done once at the
source node, and the rest of nodes that a packet crosses across the network
merely forwards the packet through the same VC from which the packet arrived
to. Traditional deterministic routing with multiple VCs would have to select
the output VC to forward the packet. As a consequence, as there is no need to
move packets in a switch from one input VC to another output VC, the internal
switch of the nodes can be implemented as one independent switch per VC (i.e.
several virtual networks), instead of deploying a fully-connected crossbar, which
is cheaper and faster, as switch delay depends on the number of switch ports
[12, 13, 14].

In the same way, XORADAP also simplifies switch implementation. In this
case, packets may change the VC used but they do not change the assigned
group of VCs. The internal switch of the nodes can be implemented as one
independent switch per group of VCs. Therefore, we could use a simpler internal
switch design than fully adaptive routing. Notice that, for a configuration of
one group of all of the adaptive VCs, the complexity will be the same as fully
adaptive routing.

We will analyze in more depth switch complexity for different routing algo-
rithms in Section 5.2.

Concerning routing mechanics, deterministic routing only requires applying
the routing function [1] while adaptive routing requires the use of both the
routing and the selection function [1]. In any case, both the output port and the
VC to be used will be returned by the routing algorithm. For both XORDET
and XORADAP, a few XOR logic gates are required at the source nodes to
compute the corresponding VC or group of VCs, respectively. In XORADAP,

17

395

400

405

410

415

420

a selection function is also required to select the VC inside the assigned group.
However, the number of routing choices is smaller than with fully adaptive
routing. As routing delay depends on the number of routing choices [12, 13, 14],
XORADAP may lead to a faster implementation than fully adaptive routing.

5. Experimental Evaluation

In this section, we evaluate the HoL-blocking reduction routing algorithms
described in this paper (XORADAP and XORDET) by simulation, comparing
them with previously proposed ones. We have used a simulation environment
developed at our research group. A prior version of this tool was used to pro-
vide evaluation results in [1]. First, we will compare XORDET with other
HoL-blocking reduction deterministic algorithms like IODET, DBBM, BBQ,
VOQnet and VOQsw. We will also consider a fully adaptive routing algorithm
and a DOR deterministic routing which allows packets to use all the VCs of the
selected dimension, that is a deterministic routing algorithm without destina-
tion node classification. Notice that this latter algorithm is actually partially
adaptive (as it allows several routing options) and does not guarantee in-order
delivery of packets. For this reason, we will refer to it as Out of Order DETer-
ministic routing (OODET). To guarantee deadlock-freedom in tori, the bubble
flow control mechanism [18] was used (either in all the VCs for deterministic
routing or in the escape VC for fully adaptive routing). Therefore, when a
packet is going to be injected to a new ring of the torus topology, either because
it is a newly injected packet or it is going to change to another network dimen-
sion, the routing algorithm will allow to use the next output port if there is
enough buffer space to store more than one packet, providing a bubble to avoid
deadlocks.

Regarding adaptive and escape channels, the algorithm firstly provides the
adaptive channels that are available to use. If they cannot be used because they
are full due to congestion or deadlocks in the adaptive channels, the algorithm

provides the escape channel.

18

425

430

435

440

445

450

After the evaluation of XORDET, we will evaluate XORADAP to analyze
how it behaves under different traffic patterns and we will show how a hybrid
approach is able to combine the best of two worlds and obtain good performance
results for any traffic pattern.

Regarding the number of VCs per physical channel, it must be a power of
two in XORDET. In XORADAP, the number of groups of VCs must be also a
power of two and an escape channel is required. To perform a fair comparison,
for traditional fully adaptive routing we will use the same number of VCs as the
one used in XORADAP. Each node has a switch based on a full crossbar with
4-packet queues both at their input and output ports. Packet length is 16 flits.
We assume a pipelined router with a latency of 4 clock cycles, and switch and
link bandwidth is assumed to be one flit per clock cycle. To avoid HoL-blocking
at injection that will interfere in the obtained results, source nodes implement
VOQnet. This means that messages with different destinations do not harm the
injection of each other. We have modeled different network sizes with different
number of dimensions: 64 and 256 nodes with 2 dimensions and 512 nodes with
3 dimensions.

Regarding network traffic, we have considered several widely-used synthetic
traffic patterns [1]: uniform random, matrix transpose, and bit-reversal. In
addition, as we are interested in analyzing the impact of the HoL-blocking effect,
we also evaluated a hot-spot traffic pattern, whose parameters will be described

in detail later.

5.1. Performance analysis
5.1.1. XORDET evaluation

First, we will analyze the behavior of XORDET versus the other HoL-
blocking reduction deterministic routing algorithms. Figure 7 shows the ob-
tained results for a 2D torus with 256 nodes and uniform random traffic pattern.
With only a few number of VCs (4 or 8), any HoL-blocking reduction algorithm
is able to reach nearly the same performance as VOQnet, which is the upper

bound. The exception is DBBM that, due to its poor destination classification

19

455

460

Accepted traffic (flits/cycle/node)

Accepted traffic (flits/cycle/node)

0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

DBBM 4VC —+—
BBQ 4VC
IODET 4VC = 1
OODET 4VC — ®
Adaptive routing 4VC
XORDET 4VC ——
r VOQnet 256VC -~ 1

0 0.1

VOQsw 5VC =

0 0.1 0.2 0.3 0.4 0.5
Offered traffic (flits/cycle/node)
(a)

F DBBM 8VC —+—
BBQ 8VC
r IODET8VC 1

OODET8VC — ®
Adaptive routing 8VC
XORDET8VC ——
r VOQnet 256VC -~ 1
VOQsw5VC =
0.2 03 0.4

Offered traffic (flits/cycle/node)

()

0.5

Avg. Msg. Lat. from Gen. Time (cycles)

Avg. Msg. Lat. from Gen. Time (cycles)

4000
3500

3000 -

2500
2000
1500
1000

500

4000
3500
3000
2500
2000
1500
1000

500

—+— DBBM 4VC /
L BBQ 4VC
* IODET 4VC
o OODET 4VC
Adaptive routing 4VC
L —— XORDET 4VC
A VOQnet 256VC
8 4 VOQsw 5VC
"
L — ﬁ” 1
L / Fi 1
/ I
I /o |
. /*/ V‘/K
0 0.1 0.2 0.3 0.4 0.5
Offered traffic (flits/cycle/node)
(b)
—+— DBBM 8VC /
L BBQ 8VC
* IODET 8VC
L G OODET 8VC
Adaptive routing 8VC
t —=— XORDET 8VC
. VOQnet 256VC
L = VOQsw5VC
L / s |
0 0.1 0.2 0.3 0.4 0.5

Offered traffic (flits/cycle/node)

(d)

Figure 7: Average packet latency and accepted traffic vs offered load. 256-node 2D-torus.
Uniform random traffic pattern. (a,b) 4 VCs and (c,d) 8 VCs.

in the last dimension (see Section 3), it obtains a worse performance. Notice the

importance of the dimension ordering followed by the routing algorithm. Unex-

pectedly, BBQ, which also considers a subset of the node destination identifier

bits to classify packets, works quite well. The difference between DBBM and

BBQ is that the former consider the least significant bits while the latter con-

siders the most significant ones. As XORDET considers all the node destination

bits to classify packets, it should not be affected by changes in the dimension

ordering followed by the routing algorithm. On the other hand, fully adaptive

routing suffers the typical performance rollback after network saturation [32].

Figure 8 shows the results for a 3D torus with 512 nodes and uniform random

20

465

470

475

480

2000

—+— DBBM 4VC | |
BBQ 4VC |
< IODET4VC | |
1500 o OODET 4VC | M
Adaptive routing 4YC |
XORDET 4VC |

e VOQnet 512VC | |
1000 S VOQsw 7VC “ M
| 4 e

| |

st

DBBM 4VC —+—— 1
BBQ 4VC
IODET 4VC %
OODET4VC ©
Adaptive routing 4VC
XORDET 4VC ——
VOQnet 512VC -~

500

Acepted traffic (flits/cycle/node)
(=]
S

Avg. Msg. Lat. from Gen. Time (cycles)

ok VogswTve - o Basenseesnpenerbisite s S5
0 01 02 03 04 05 06 07 08 0 01 02 03 04 05 06 07 08
Offered traffic (flits/cycle/node) Offered traffic (flits/cycle/node)

(a) (b)

Figure 8: Average packet latency and accepted traffic vs offered load. 512-node 3D-torus.
Uniform random traffic pattern. 4VCs.

traffic. As it can be seen, results are qualitatively the same.

In Figure 7, the traditional DOR routing following XY order was used. How-
ever, using other deterministic routing algorithms could be interesting. For in-
stance, in [33], X4+Y+Z+X-Y-Z- direction-order routing was proposed instead
of dimension order routing for fault tolerance purposes. Direction order routing
allows routing packets through non-minimal paths by routing in both directions
of a dimension and, therefore, offers greater flexibility to avoid faults. For 2D
networks, the X+Y+X-Y- direction order routing counterpart would be used.
Packets are routed following an ascending dimension order, but taking first the
positive dimension directions, and then the negative ones. Figure 9 shows eval-
uation results for the different HOL-blocking reduction mechanisms but using
X+Y+X-Y- with minimal paths as the baseline deterministic routing. We can
see how the fact of traversing dimensions in a different order (depending on
the directions) changes the behavior of some algorithms like BBQ, which drives
down its performance significantly. This effect is similar to the one produced
by DBBM before and is due to the fact of using a subset of the destination
node identifier bits to select the VC to use. The dimension ordering followed by
the routing algorithm may generate an unfair use of the VCs, overloading some

of them while others are barely used. However, XORDET or IODET, which

21

485

490

0.4 : ————— 7 4000 : ; ‘ .
_ igia & —— DBBM4VC ‘\ o
Z 035+ 't 5 3500 | BBQ 4VC loe
2 < - JODET 4VC | N
< 03+ 2 3000 b o OODET 4VC [7 e]
5] e XORDET 4VC [
2 025 L 1 2 2500 I —— VOQnet 256VC |8 xjf/%
2 3 * VOQsw 5VC o
= 02t {1 £ 2000t S# g
2 a DBBM4VC —+— | £ /1
s 0.15 BBQ 4VC = 1500 L P-'l‘ b
=z IODET 4VC — * 3 /4
z 01 OODET4VC = 1 5 1000 | / []
T A XORDET 4VC < 7 %/
< 0057 VOQnet 256VC —s— | 7, 500 F / 1
0 ‘ VOQsw SVC -« =z 0 ‘ aaia. ‘
0 01 02 03 04 05 0 0.1 0.2 0.3 0.4 0.5
Offered traffic (flits/cycle/node) Offered traftic (flits/cycle/node)

(a) (b)

0.4 : : : — Z 4000 : : ‘ -

= Ty & DBBM 4VC |
Z o035t S0ue 1 o 3500 F BBQ 4VC / E:
g b s *-— IODET 4VC | 5
5 03t $¥.g4 £ 3000 = OODET4VC 7 o5
] T XORDET 4VC | &.®
S 025t 1 = 2500 F VOQnet 256VC | A]
Z K = VOQsw 5VC S
= -
= 02f 1 g 2000 f i
o b VTN ="
s B DBBM 4VC £ /&
k=) 015 ¢ BBQ 4VC 1 = 1500 - s ¥ 1
= IODET 4VC - 3 J
Z 0l OODET4VC & | s 1000 - VN i il
3 ~ XORDET 4VC ﬁ / /
- | Yogm e v | z 0 7%.%%'4"”}/9 1

o ‘ vogswsve e | 2 ‘ e ‘

0 01 02 03 04 05 0 0.1 0.2 0.3 04 0.5
Offered traffic (flits/cycle/node) Offered traffic (flits/cycle/node)

() (d)

Figure 9: Average packet latency and accepted traffic vs offered load. 256-node 2D-torus.
Uniform random traffic pattern. (a,b) XY routing and (c,d) X+Y+X-Y- routing. 4 VCs.

consider all the destination node identifier bits, are less affected by the change
in the routing algorithm and obtain roughly the same performance as the one
obtained with XY routing.

After analyzing the behavior of the different algorithms under uniform ran-
dom traffic pattern, next we analyze them under other traffic patterns. First,
we will analyze a scenario where the HoL-blocking reduction ability of the rout-
ing algorithm may have a great impact. Assume that we have uniform random
traffic pattern in the network, but we also introduce a hot-spot node: 25% of

network nodes send packets only to one node (the hot-spot node) during some

22

495

500

505

510

37.500

— Adaptive routing $35.000 - Qggptwe routing
- ,
0,325 [B)ggM ,'\“*»_ 032,500 - DBBM
3 - IODET 'Y 2 30.000] - IODET ‘
€ 039 - oopET [227500 QODET il
£ \ . i
Y XORDET ‘ E XORDET L
$0,275| - voQnet | = 25,0001 VOQnet w\‘ | ’l‘\'\\ \ .
K - VOQsw | @ 22.500] ~ VOQsw ‘\ | M‘M,‘u\\\‘,("J/
£0,250 i © Iy,
g il £ 20.000 I \ \ ‘M\\
) ‘e d H | |
go.225 MMWMMM £17.500 m’“ \ M
5 [T >15.000 I Wil
0,200 il I il 2 i LULT
o i W yHMfLHW 812,500 ;‘\ | Hy,
@ | Ut | -] f |
80,175 ('\(7‘(\\r‘ = 10.000 'W‘,"q“”]w
¢ | g 7.500 Wy
< ‘h\\h E . Wy
< 0,150 \‘“‘ = 5000
>
2500
0,125 < Wy,

oLl
100.000 200.000 300.000 400.000 500.000 600.000 700.00C
Time (cycles)

(b)

100.000 200.000 300.000 400.000 500.000 600.000 700.000
Time (cycles)

(a)
Figure 10: Results for hot-spot. 256-node 2D-torus and 8 VCs.

period of time. Traffic injection rate to the hot-spot is computed in such a
way that it does not exceed the node ejection bandwidth (1 flit/cycle). The
hot-spot traffic starts at clock cycle 100,000 and is active until a number of
packets (10,000 in our experiment) have been delivered. This corresponds to
clock cycle 260,000. In addition, the remaining nodes (75%) continue generat-
ing traffic following a uniform random traffic pattern, that is, sending packets
to all the destinations except the hot-spot node. Therefore, during this period
of time, the network has two traffic flows: 75% of nodes generate packets with
an uniform random traffic pattern and 25% generate packets destined to the
hot-spot node. In such a situation, a HoL-blocking reduction routing algorithm
should be able to isolate the traffic destined to the hot-spot (i.e. hot flows), thus
avoiding interfering the other flows (i.e. cold flows). On the other hand, a fully
adaptive algorithm mixes the different flows, spreading the possible congestion
to the whole network. To perform this experiment, we have implemented large
injection queues at source nodes so that they always can queue a packet if the
packet cannot be injected into the network.

This scenario is evaluated in Figure 10 for a 256-node 2D torus. We can see a
completely different behavior for the different analyzed routing algorithms. On

the one hand, fully adaptive routing, OODET and VOQsw rapidly spread con-

23

515

520

525

0.35
03 - .
)
Q
s
Z 025 F :
=)
o
2 Ll 11 l -
E=}
B 0.2 -
&
3
<
0.15 - :
0.1

Adap. routing [
BBQ
DBBM [
IODET
OODET [
XORDET
VOQnet [
VOQsw |-

Configurations

Figure 11: How the hot-spot traffic affects the different routing algorithms.

gestion as packets destined to the hot-spot node interferes other packets, leading
to a high reduction in the delivered traffic rate (Figure 10.(a)) and strongly in-
creasing latency (Figure 10.(b)). Only when the hot-spot traffic disappears and
after a high number of cycles, the network recovers. Notice that, after the hot-
spot traffic is removed, accepted traffic increases for some cycles, due to the
high number of messages that have been queued at the injection nodes.

On the other hand, the HoL-blocking reduction deterministic routing algo-
rithms show a much better behavior, close to the one of VOQnet (which requires
256 VCs) without impacting the network throughput and latency in spite of the
hot-spot traffic. The exception is DBBM, which requires a higher number of
cycles to recover from the hot-spot traffic. This is because the injected uni-
form random traffic pattern is on the edge of saturation in DBBM. For a better
understanding of this behavior, Figure 11, shows the maximum, minimum and
average values of accepted traffic in Figure 10.(a). The average value represents

the accepted traffic corresponding to uniform random traffic pattern, when it is

24

530

535

540

545

550

555

not affected by the hot-spot. The minimum value is reached when the hot-spot
is active. And, finally, the maximum value is the one reached after the end of
the hot-spot traffic, where queued messages at the injection nodes begin to be
received. The closer the three plotted values, the better the behavior of the
routing algorithm as it is less affected by the hot-spot traffic. We can see how
fully adaptive routing, OODET and VOQsw are strongly affected, obtaining a
minimum value more distant to the average value than the remaining routing
algorithms.

To summarize, XORDET and IODET were able to reach (with only a few
VCs) the same performance as fully adaptive algorithm for uniform random
traffic pattern (see Figure 7). Contrary to DBBM and BBQ, they are less
affected by changes in the routing algorithm (i.e. the order in which dimensions
are crossed, see Figure 9) and they are able to efficiently isolate the hot-spot
traffic (see Figure 10). The advantage of XORDET versus IODET is that it
is simpler to implement at the internal switch. Remember that XORDET uses
virtual networks, but IODET performs VCs changes in the network, which

requires additional internal switch connections.

5.1.2. XORADAP evaluation

We will first analyze XORADAP with uniform random traffic pattern. Fig-
ure 12 shows the results (8 VCs for fully adaptive routing and 1 VC for the
escape path). For XORADAP, we selected three different configurations with 9
VCs: two groups with 4 VCs each, 4 groups with 2 VCs and 8 groups with only
one VC per group. Remember that more groups of VCs leads to a better packet
classification but a lower routing flexibility. Regarding fully adaptive routing,
we used the same number of VCs as XORADAP for the sake of fairness. As the
number of VCs in XORDET must be a power of two, we evaluated it by using
both 8 and 16 VCs.

We can see that all the routing algorithms evaluated obtain roughly the
same throughput. Notice, though, that the fully adaptive algorithms suffer

a performance degradation after its saturation point [32]. Regarding latency,

25

560

0.4 ——————— 2 500 —
PR 2 —— Adaptive routing 9 VCs Fe
2 03t rﬁ*‘ﬁ%mﬁ S XORADAP 9 VCs 8 Gs |
g € 40l * XORADAP9VCs4Gs ;f]
S 03 o~ 1] 5 XORADAP9 VCs2Gs /*¢
] « fs XORDET 8 VCs
S 025t - o - XORDET 16 VCs J
z 300 | 1
£ f. I /
£ 02t '.,’F- 1 =
2 o
© g | |
a;g 0.15 - " Adaptive routing 9 VCs ——— 1 s 200
hat " XORADAP 9 VCs 8 Gs 3
g 0y - XORADAP 9 VCs4Gs — x| 9 100 | |
g -~ XORADAP9 VCs2Gs @ < p——
< 005 ¢ X XORDET 8 VCs 1 .y
<" . XORDETIOVGs, = E: ‘ .

0 . 0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 025 03 035 04 045 05
Offered traffic (flits/cycle/node) Offered traffic (flits/cycle/node)

(a) (b)

Figure 12: 256-node 2D-torus. Uniform random traffic pattern. (a) Accepted traffic and (b)

average packet latency vs. offered traffic.

500

0.8 8 —— ‘Adap‘tive r‘outiné 5VCs I ‘ ‘
_ . 58 XORADAP5VCs4Gs [
3 o7} gty 2,00 -+ XORADAP5VCs2Gs /* |
E g o XORDET 4 VCs /e
3 06) 1 & XORDET 8 VCs i
> e =1 ¢
3 st o J 300 1
2 03 e S
S 04 e 1 g
=1 S 200 1
£ o3t o~ i s 0
.5 = Adaptive routing 5 VCs —+— ~
g 02y o XORADAP 5 VCs 4 Gs 1T % 100 i
g P XORADAP 5 VCs 2 Gs 3
2 ol g XORDET4VCs o |
XORDET 8 VCs >
0 L L L L L L L L L < 0 L L L L L L L L L
0 0l 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Offered traffic (flits/cycle/node) Offered traffic (flits/cycle/node)

(a) (b)

Figure 13: 64-node 2D-torus. Uniform random traffic pattern. (a) Accepted traffic and (b)

average packet latency vs. offered traffic.

(Figure 12.(b)), for medium to high traffic rates (i.e. 0.3 flits/cycle/node),
a higher routing flexibility (i.e., fully adaptive routing or XORADAP with less
number of groups of VCs) leads to higher latency values due to the HoL-blocking
effect generated by interfering traffic flows. We can see how the XORADAP
routing algorithm with more groups of VCs, less adaptive behavior, obtains
a slightly lower latency. Both configurations of XORDET obtain the lowest

latency values, with almost no differences between them.

26

565

570

575

580

400

0.7 T - - 8 e ‘Adap‘tive rbutiné 5VCs x ¥
- BBy 5 3s0f XORADAP 5 VCs 4 Gs q
g o6t W I <%~ XORADAP 5 VCs 2 Gs
2 P;V'W £ 300} —© XORDET4VCs
S 05t e = XORDET 8 VCs
& P g 250}
g o S om0
=1

o
g " p - S asof
.“; 02 L o Adaptive routing 5 VCs —+— | 3
g ¥ XORADAP 5 VCs 4 Gs PR —
5 ool & XORADAP 5 VCs 2Gs ¥ < —
< 4 XORDET 4 VCs @ S 0f

#ﬁ XORDET 8 VCs z

R . 0 L . L L . .
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 0.7 08 09 1
Offered traffic (flits/cycle/node) Offered traffic (flits/cycle/node)

(a) (b)

Figure 14: 512-node 3D-torus. Uniform random traffic pattern. (a) Accepted traffic and (b)

average packet latency vs. offered traffic.

Let us analyze networks with different geometry. Figure 13 shows some re-
sults for a smaller network with a lower number of nodes per dimension (64-node
2D torus). Figure 14 shows results for a larger network with a higher number
of dimensions (512-node 3D torus). In addition, we also tested a different num-
ber of virtual channels per physical channel. In particular, 5 VCs (4 adaptive
channels plus 1 escape channel) were used for XORADAP and fully adaptive
routing. In this case, for XORADAP, we have two groups with 2 VCs each and
4 groups with only one VC per group. 4 VCs and 8 VCs were used in XORDET.
As it can be seen, in both cases, the network shows the same behavior we saw
in the 256-node 2D torus. As expected, network throughput is higher in these
configurations, since we have 8 nodes per dimension instead of 16 and, thus,
a better bisection bandwidth. However, the results are qualitatively the same
obtained for the 256-node network: more routing flexibility (i.e. fully adaptive
routing or XORADAP with a low number of groups of VCs) leads to slightly
higher latency.

As we mentioned in Section 4.2, there are some adversarial traffic patterns
that significantly impact the performance of the network with deterministic

routing algorithms. Nevertheless, XORADAP obtains good performance results

27

585

590

595

2 1000 ; —— ; =

0.22 T k] —— Adaptive routing 9 VCs
_ 02 L P % XORADAP 9 VCs 8 Gs
) y ~ 800 * XORADAP 9 VCs 4 Gs
g 018r 2 @ XORADAP 9 VCs 2 Gs
2 0.16 = XORDET 8 VCs
2 ol S’ 0 L+ XORDET 16 VCs j
s M Lissrrasaransssersy B i
g O - | & 400 /
g 0.08 - Adaptive routing 9 VCs —+—— 1 =
s o006l XORADAP 9 VCs 8 Gs 4
g o XORADAP9VCs4Gs % 00 |
g 0.04 ” XORADAP 9 VCs 2 Gs 8 = . e
2 omlh / XORDET 8 VCs b FESENPRSSSS

o . XORDETI6VCs - g, .
0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.05 0.1 0.15 0.2 0.25 0.3
Offered traffic (flits/cycle/node) Offered traffic (flits/cycle/node)

(a) (b)

Figure 15: 256-node 2D-torus. Matrix transpose traffic. (a) Accepted traffic and (b) average
packet latency vs. offered traffic.

not only with uniform random traffic pattern, but it is also able to obtain good
results with those adversarial traffic patterns.

To illustrate this behavior, we have conducted some experiments with the
matrix-transpose and bit-reversal traffic patterns. In Figure 15, we compare the
behavior of XORDET, fully adaptive routing and the different configurations
of XORADAP for the matrix transpose traffic pattern in a 256-node 2D torus.
9 VCs (8 adaptive channels and 1 escape channel) were used in fully adaptive
and XORADAP routing algorithms, and 8 VCs and 16 VCs in XORDET. In
XORADAP, the three aforementioned configurations were tested: two groups
with 4 VCs each, 4 groups with 2VCs and 8 groups with only one per group.

As expected, XORDET obtains a significantly lower throughput than any
adaptive algorithm, in spite of using more VCs. In particular, fully adaptive
routing more than doubles XORDET performance. This is the weakest point
of deterministic routing. It is not able to efficiently cope with adversarial traffic
patterns. The poor behavior of XORDET, and, in general, of any deterministic
routing, is due to the unbalanced distribution of traffic for this pattern, which
leads to over-utilization of some links while other are unused [34]. Concerning
the hybrid routing algorithm proposed in this paper, XORADAP, it obtains

roughly the same results as fully adaptive routing, since it takes advantage of

28

600

605

1000 T

03 8 —— Adaptive routing 9 VCs
% x XORADAP 9 VCs 8 Gs il
— = L * XORADAP 9 VCs 4 Gs 1
g 025y y 80 5 XORADAPOVCs2Gs /7
:: [t XORDET 8 VCs @
R £ g0 | * XORDETI6VCs Pd |
z QO
€ oust £
£ 400]
<1 esessvsssssssesses s sl s =
=z 0.1 Adaptive routing 9 VCs ——— 1 S
2 XORADAP 9 VCs 8 Gs o
5 XORADAP 9 VCs 4 Gs % % 200 1
3 oost XORADAPOVCs2Gs o | =
XORDET 8 VCs) .
0 ‘ ‘ ‘ XORDET 16 VCs - ® Z 0
0 005 01 015 02 025 03 035 04 0 005 01 015 02 025 03 035 04
Offered traffic (flits/cycle/node) Offered traffic (flits/cycle/node)

(a) (b)

Figure 16: 256-node 2D-torus. Bit-reversal traffic. (a) Accepted traffic and (b) average packet

latency vs. offered traffic.

= Adaptive routing 9 VCs v",‘v, 170 = Adaptive routing 9 VCs
0325 «XORADAP 9 VCs 8 Gs Il _ 16:000} L XORADAP 9 VCs 8 Gs
XORADAP 9 VCs 4 Gs [¥ 15.000| - XORADAP 9 VCs 4 Gs
0,300] +~XORADAP 9 VCs 2 Gs p 4 'S,14.000| +XORADAP 9 VCs 2 Gs
= XORDET 16 VCs h | 1 L£13.000 - XORDET 16 VCs
0.275 XORDET 8 VCs I % XORDET 8 VCs
L4

0,250

0,2251

0,200

o
=
o]
&

Accepted traffic (flits/cycle/node)

°
i
I
=)

bl i [l
] ¥ it s TV
0,125 LA ,"Ei!l‘.".w‘ o)
0
100,000 150.000 200.000 250.000 300.000 350.000 100.000 150.000 200.000 250.000 300.000 350.000

Time (cycles) Time (cycles)

(a) (b)

Figure 17: 256-node 2D-torus. Uniform random traffic pattern with hot-spot. Accepted traffic

(a) and average packet latency (b) vs. simulation time.

its flexibility making a better use of the links.

We can see a similar behavior for the bit-reversal traffic pattern in Figure
16. Again, there is a bottleneck when using XORDET deterministic routing.
In particular, fully adaptive routing achieves almost 3X throughput than deter-
ministic routing. Any of the configurations of XORADAP is able to reach the
same performance obtained with fully adaptive routing.

Considering the results presented up to now, we can confirm that XORADAP

29

610

140.000 140.000

— = Adaptive routing 9 VCs = Adaptive routing 9 VCs
@ 130.000| +XORADAP 9 VCs 8 Gs 130.000| + XORADAP 9 VCs 8 Gs
< XORADAP 9 VCs 4 Gs XORADAP 9 VCs 4 Gs
$120-0001 . XORADAP 9 VCs 2 Gs 120.000) . XORADAP 9 VCs 2 Gs I
5 110.000| - XORDET 16 VCs 110.000{ - XORDET 16 VCs]

XORDET 8 VC 5 XORDET 8 VC: !
£ 100.000 s % 100.000 ° 7l
[~] 1
= 90.000 2 90.000 |
o < [
O 80.000 2 80.000
E H 7
5 70.000 8 70.000 |
5 60.000 3 60000
g 2
E 50.000 £ 50.000
T 40.000 2 40.000

H
2 30.000 30.000
2 20.000 b 20,000
2 e |y
Z 10.000 e iy 1, bl 10.000
0 AW T N 0 et A |
100.000 150.000 200.000 250.000 300.000 350.00C 100.000 150.000 200.000 350.000
Time (cycles) Time (cycles)

(a) (b)

Figure 18: 256-node 2D-torus. Uniform random traffic pattern with hot-spot. Average packet

latency (a) and network latency (b) for packets destined to the hot-spot vs. simulation time.

50 T T T T 100
—+— Adaptive routing 9 VCs #
45« XORADAP 9 VCs 8 Gs#] i
40 |~ XORADAP9 VCs4 Gy | 90
a XORADAP 9 VCs 2 Gs
. 35T XORDET 8 VCs 1 8 30
§ .|+ XORDETI16VCs | 2
2 2
=3 o
S 25t 1 2 70
& £
:\'; 20 o 6L Adaptive routing 9]
15 1 = x XORADAP 9 VCs &
* XORADAP 9 VCs 4 G
10 ¢ 1 50 © XORADAP9VCs2 1
5t R XORDET 8 VCs
. + - XORDET 16 VCs
0 ——— 40 ‘ : : :
100000 150000 200000 250000 300000 350000 100000 150000 200000 250000 300000 350000
Time (cycles) Time (cycles)

(a) (b)

Figure 19: 256-node 2D-torus. Uniform random traffic pattern with hot-spot. Completely full

(a) and empty (b) queues in the network vs. simulation time.

achieves its first design goals. It is as good as fully adaptive routing for adver-
sarial traffic patterns, thus improving XORDET and deterministic routing in
general.

Next, we will analyze XORADAP behavior in the hot-spot scenario, where
the HoL-blocking reduction is very important. Figure 17 shows the results for
the same experiment performed in Section 5.1.1. Remember that the hot-spot

traffic starts at clock cycle 100,000 and it is active until clock cycle 260,000.

30

615

620

625

630

635

640

As expected, XORADAP helps to achieve a better behavior than fully adaptive
routing. In particular, XORADAP configurations with more groups of VCs
can better isolate the hot-spot traffic flows, obtaining a more stable value of
accepted traffic (in fact very close to XORDET in the best case -XORADAP
with 8 groups of VCs-) and a smaller average packet latency. On the other hand,
if we use a XORADAP configuration with a few number of groups of VCs, two
for example, we obtain a result more close to fully adaptive routing, but with
smaller impact on the variability of delivered traffic and reducing packet latency
with respect to fully adaptive routing.

Figure 18 confirms this behavior It shows the average message latency and
network latency for packets destined to the hot-spot. As we can see in Figure
18-(a), latency strongly increases at cycle 260,000 (i.e. when the hot-spot traffic
becomes inactive) for XORDET and XORADAP. However, the network latency
(i.e. without considering the time spent at source queues) plotted in Figure 18-
(b) does not show the peak. As a consequence, this increase is due to packets
that were waiting for long at the injection queues. As the routing algorithm
restricted the resources (i.e. the VCs) they can use, packets destined to the
hot-spot can not enter the network and must wait at the injection queues. Once
the network is able to accept more traffic, these packets can be injected into the
network, but the high time they waited at the source injection queues leads to
a very high latency. Again, XORADAP with a high number of groups of VCs
shows a behavior close to XORDET, while XORADAP with a low number of
groups of VCs is close to fully adaptive routing. Therefore, despite for uniform
random and adversarial traffic patterns the number of XORADAP groups of
VCs did not affect the performance results, for hot-spot traffic a configuration
with a high number of groups of VCs seems the best design option.

Another interesting evidence of the behaviour of the evaluated routing al-
gorithms is shown in Figure 19, which shows the percentage of completely full
(Figure 19-(a)) or empty (Figure 19-(b)) VC queues in a 256-node 2D network.
In order to perform a fair comparison, the shown percentages are relative to

the number of VCs of the routing algorithm. As it can be seen, fully adaptive

31

645

650

655

660

665

670

routing tends to fill up queues along the time the hot-spot is active, which is
a symptom of spreading congestion. On the contrary, XORDET keeps most
queues empty thanks to the traffic classification it performs. As expected, XO-
RADAP shows a behavior that is half-way between fully adaptive and XORDET
routing, depending on the number of groups of VCs.

The analysis shown before demonstrates that XORADAP also achieves its
second design goal. It can be as good as a HoL-blocking reduction deterministic
routing algorithm to classify and isolate traffic, outperforming fully adaptive
routing under hot-spot traffic. To sum up, XORADAP routing algorithm com-
bines the flexibility of adaptive routing with HoL.-blocking reduction, being able
to efficiently cope with varying networks loads, including uniform random traf-
fic, adversarial or hot-spot traffic. Indeed, for a given number of VCs, several

configurations are possible.

5.2. Switch Complexity Analysis

As stated in Section 4.3, routing algorithms that do not perform virtual
channel transitions may lead to a simpler implementation of the router switch,
as it can be composed of as many small crossbars as virtual channels instead of
a larger monolithic crossbar. To quantify this claim, this section estimates the
complexity of the switch by using a simple model that takes into account the
number of required connections at the internal switch for each configuration.

Several internal switch configurations can be used with virtual channels [11].
We will assume a fully demultiplexed crossbar to implement the internal switch
of routers. Although multiplexed crossbar configurations lead to less hardware,
it requires more complex arbitration and also internal speedup.

However, although a full crossbar (i.e. with a number of ports equal to the
product of the number of physical channels per the number of VCs) is able to
cope with any of the analyzed routing algorithms, some connections are not
actually required for some of the analyzed routing algorithms. By removing
these connections, switch could be simpler. For instance, in all the routing

algorithms, packets are never forwarded to the same port it arrived. Indeed,

32

675

680

685

690

695

700

with DOR, packets may only be forwarded to dimensions higher than the one
they entered the router. As a consequence, if the crossbar is implemented by,
for instance, using a multiplexer at each output port, the ones corresponding to
higher dimensions will have more inputs (and hence, more switching elements)
than the ones located in the lower dimensions’ ports. On the other hand, with
fully adaptive routing, a packet entering through a port may be forwarded to any
other output port. When several VCs are used and/or the number of network
dimensions is high, the number of internal switch ports grows considerably. In
addition, the injection and ejection ports must be also taken into account in any
case.

To quantify switch complexity, we will measure the number of required
switching elements per switch. We assume that an i—input multiplexer needs ¢
switching elements. Table 4 shows the expressions of the number of switching
elements for each analyzed routing algorithm taking into account its routing
restrictions, n being the number of network dimensions, v the number of VCs
per physical channel, and g the number of groups of VCs in the case of XO-
RADAP routing algorithm. As an example, in OODET, output ports of last
dimension can be requested by all input ports of lower dimensions (for each
VC and for each direction) and by some ports of the same dimension (for each
VC from the another direction) and, finally, by the injection port. So, we have
2v(n — 1) 4+ v + 1 possible requests per virtual channel for each direction of the
last dimension and, in general, 2v(i — 1) 4+ v + 1 per virtual channel for each di-
rection of the ¢ dimension. Moreover, we have to add the necessary connections
to the ejection port from each virtual channel per direction per dimension, 2vn.
The total number of required switching elements is then given by:

n
203 (20(i — 1) +v+1)+2vn
i=1

Table 5 shows the number of required switching elements for the routing
algorithms analyzed in this paper for different network configurations (number of
network dimensions and number of VCs). Notice that we count an extra virtual

channel in adaptive algorithms because XORADAP needs a number of virtual

33

Routing Switching Elements

Fully adaptive 2030 (2nv —2n+2i —v+ 1) + 200
OODET 203" (2u(i—1)+v+1)+2vn
IODET 2037 (2u(i—1)+1+1)+2vn
XORADAP 230 2no =20 42— v+ 1) +2(0 =)T (T = 24200+ L) 4 2o
XORDET, DBBM, BBQ 2057 (26— 1) +1+1) +20n

Table 4: Number of switching elements for each routing algorithm.

#Dim #VC Fully OODET IODET XORADAP XORADAP XORADAP XORDET,

adaptive 2 Gs 4 Gs 8 Gs DBBM, BBQ

2 2(+1) 120 48 40 94 - - 32

3 2(+1) 270 96 84 210 - - 60

4 20+1) 480 160 144 368 - - 96

6 2(+1) 1080 336 312 816 - - 192
2 4(+1) 320 160 112 224 176 - 64

3 A(+1) 750 336 264 510 390 - 120
1 4(+1) 1360 576 480 912 688 - 192
6 4(+1) 3120 1248 1104 2064 1536 - 384
2 8(+1) 1008 576 352 624 432 336 128
3 8(+1) 2430 1248 912 1470 990 750 240
4 8(+1) 4464 2176 1728 2672 1776 1328 384
6 8(+1) 10368 4800 4128 6144 4032 2976 768
2 16(+1) 3536 2176 1216 2000 1232 848 256
3 16(+1) 8870 4800 3360 4830 2910 1950 480
4 16(+1) 16048 8448 6528 8880 5296 3504 768
6 16(+1) 37536 18816 15936 20640 12192 7968 1536

Table 5: Comparison of the number of switching elements

channels that needs to be power of to plus the escape channel. As expected,
XORDET, DBBM and BBQ requires a crossbar with the fewest number of
switching elements. This is due to two facts. First, messages traversing a given
dimension cannot return to the previous dimensions, since DOR routing is used.
Therefore, we could dispose those switching elements that connect input ports
with output ports of lower dimensions. Second, the VC used by a given packet
does not change along the path in the network, like in virtual networks. Hence,

there is no need to have a crossbar connection (and the corresponding switching

34

715

720

725

730

735

740

elements) to allow packets to perform VC transitioning in the same dimension
and in the dimension changes.

Both IODET and OODET with DOR routing take also advantage of the first
mentioned issue, that is, the connections to previous dimensions can be removed
internally at the switch. But regarding the use of virtual networks, neither
IODET nor OODET cannot use them. This is because IODET changes the VC
when the dimension changes and OODET allows using any of the VCs in the
dimension which is being currently crossed. However, for IODET, connections
among input and output VCs of the same dimension are not required, but for
OODET they are required. Regarding connections to the output VCs of higher
dimensions, they are required by both routing algorithms. The worst case is
the fully adaptive routing, as it requires a crossbar that enables almost all
combinations of physical and VCs (the only exception are connections related to
escape paths, which must be traversed in order). On the other hand, XORADAP
also needs all combinations to different physical channels since dimensions are
used in any order, but connecting only VCs of the same group. There is no
need to have a crossbar connection to allow packets to perform VC transitions
among different groups of VCs. The more the number of groups of VCs, the less
the number of VCs per group and the simpler the crossbar. The connections of
escape paths are also required. XORADAP requires a switch complexity that
is always lower than fully adaptive routing and, depending on the number of
groups of VCs, it can be strongly reduced.

In all cases, as the number of VCs is increased, the number of required
switching elements further increases, specially for fully adaptive routing with
a high number of dimensions. The deterministic routing design, XORDET,
obtains the lowest number of required switching elements. Therefore, XORDET
is a good option because of its low complexity. But if what is required is
an algorithm which provides flexibility in addition to HoL-blocking reduction,
XORADAP is a very good choice because it strongly reduces these requirements
compared to fully adaptive routing algorithm, specially for the configurations

with a high number of groups of VCs.

35

745

750

755

760

765

770

6. Conclusions

This paper presents a XOR-based routing mechanism which reduces the
HoL-Blocking effect taking advantage of the available virtual channels. Pack-
ets are classified in the VCs by performing a XOR bitwise function of their
destination node identifiers. This mechanism is used to design both determinis-
tic and adaptive routing algorithms (XORDET and XORADAP, respectively).
XORDET deterministic routing obtains performance results close to traditional
fully adaptive routing under uniform random traffic pattern. Most important,
with hot-spot traffic situations, it is able to isolate the packets destined to the
hot-spot node, reducing the interference to the rest of traffic. Furthermore,
XORDET keeps the good properties of deterministic routing such as in-order
delivery of packets, and simpler switch implementation. However, there are
some adversarial traffic patterns which reduce accepted traffic rate with de-
terministic routing, and XORDET is not an exception. XORADAP routing
algorithm tries to combine the best features of both adaptive routing (flexibility
under some adversarial traffic patterns) and deterministic routing algorithms
specially designed to reduce the HoL-blocking effect (destination isolation) to
have the best performance results under any traffic pattern. The evaluation
results show that XORADAP: (i) obtains similar performance results to either
deterministic or fully adaptive routing with uniform random traffic pattern; (ii)
achieves a similar behavior to traditional fully adaptive routing for those traffic
patterns where routing flexibility is required to avoid bottlenecks by balancing
link utilization; and (iii) copes with hot-spot traffic situations, being able to
isolate the packets destined to hot-spots, reducing the interference to the rest of
traffic, like HoL-blocking reduction deterministic routing does. Indeed, several
configurations of the VCs are possible in XORADAP to enhance either its rout-
ing flexibility (i.e. adaptive routing behavior flavor) or its destination isolation

(i.e. HoL-blocking reduction deterministic routing behavior flavor).

36

775

780

785

790

795

Acknowledgment

This work was supported by the Spanish Ministerio de Economia y Compet-
itividad (MINECO) and by FEDER funds under Grant TIN2015-66972-C5-1-R
and by Programa de Ayudas de Investigacién y Desarrollo (PAID) from Uni-

versitat Politecnica de Valencia.

References

[1] J. Duato, S. Yalamanchili, N. Lionel, Interconnection Networks: An Engi-

neering Approach, Morgan Kaufmann Publishers Inc., USA, 2002.

[2] W. Dally, B. Towles, Principles and practices of interconnection networks,

Morgan Kaufmann, 2004.

[3] TOP500 Supercomputer Site, http://www.top500.o0rg Accessed 3 Feb
2016.

[4] M. Karol, M. Hluchyj, S. Morgan, Input vs. Output Queueing on a Space-
Division Packet Switch, Communications, IEEE Trans. on 35 (12) (1987)
1347-1356. doi:10.1109/TCOM. 1987.1096719.

[5] J. Bennett, C. Partridge, N. Shectman, Packet reordering is not patho-
logical network behavior, Networking, IEEE/ACM Trans. on 7 (6) (1999)
789-798. doi:10.1109/90.811445.

[6] N. McKeown, V. Anantharam, J. Walrand, Achieving 100% through-
put in an input-queued switch, in: INFOCOM ’96. Fifteenth An-
nual Joint Conference of the IEEE Computer Societies. Networking the
Next Generation. Proceedings IEEE, Vol. 1, 1996, pp. 296-302 vol.l.
doi:10.1109/INFCOM. 1996 .497906.

[7] C. Gémez, F. Gilabert, M. Gémez, P. Lépez, J. Duato, Deterministic ver-
sus Adaptive Routing in Fat-Trees, in: Parallel and Distributed Process-
ing Symposium, 2007. IPDPS 2007. IEEE International, 2007, pp. 1-8.
doi:10.1109/IPDPS.2007.370482.

37

800

805

810

815

820

[8] X.-Y. Lin, Y.-C. Chung, T.-Y. Huang, A Multiple LID Routing Scheme for
Fat-Tree-Based InfiniBand Networks, in: IPDPS, 2004.

[9] C. chun Su, K. G. Shin, Adaptive fault-tolerant deadlock-free routing in
meshes and hypercubes, IEEE Transactions on Computers 45 (1995) 672—
683.

[10] M. Thottethodi, A. R. Lebeck, S. S. Mukherjee,
Blam: A high-performance routing algorithm for virtual cut-through networks,
in: Proceedings of the 17th International Symposium on Parallel and
Distributed Processing, IPDPS ’03, IEEE Computer Society, Washington,
DC, USA, 2003, pp. 45.2—.

URL http://dl.acm.org/citation.cfm?id=838237.838513

[11] W. Dally, Virtual-channel flow control, Parallel and Distributed Systems,
IEEE Transactions on 3 (2) (1992) 194-205. doi:10.1109/71.127260.

[12] A. Chien, A cost and speed model for k-ary n-cube wormbhole routers, in:

Hot Interconnects 93, 1993.

[13] J. Duato, P. Lépez, Performance evaluation of adaptive routing algorithms
for k-ary n-cubes, in: K. Bolding, L. Snyder (Eds.), Parallel Computer
Routing and Communication, Vol. 853 of Lecture Notes in Computer Sci-

ence, Springer Berlin, Heidelberg, 1994, pp. 45-59.

[14] L.-S. Peh, W. J. Dally, A delay model and speculative architecture for pipelined routers,

in: Proceedings of the 7th International Symposium on High-Performance
Computer Architecture, HPCA ’01, IEEE Computer Society, Washington,
DC, USA, 2001, pp. 255—.

URL http://dl.acm.org/citation.cfm?id=580550.876446

[15] R. Pefiaranda, C. Gémez, M. E. Gémez, P. Lépez, J. Duato, HoL-blocking
Avoidance Routing Algorithms in Direct Topologies, in: HPCC, IEEE
Computer Society, 2014, pp. 11-18.

38

825

830

835

840

845

850

[16]

[17]

[19]

[20]

[21]

R. Penaranda, C. G. Requena, M. E. Goémez, P. Ldbpez,
XORAdap: A HoL-Blocking Aware Adaptive Routing Algorithm., in:
M. Daneshtalab, M. Aldinucci, V. Leppénen, J. Lilius, M. Brorsson (Eds.),
PDP, IEEE Computer Society, 2015, pp. 48-52.

URL http://doi.ieeecomputersociety.org/10.1109/PDP.2015.50

W. Dally, C. Seitz, Deadlock-Free Message Routing in Multiprocessor In-
terconnection Networks, Computers, IEEE Transactions on C-36 (5) (1987)
547-553. doi:10.1109/TC.1987.1676939.

C. Carrién, R. Beivide, J.-A. Gregorio, F. Vallejo,

A flow control mechanism to avoid message deadlock in k-ary n-cube networks.,

in: HiPC, IEEE Computer Society, 1997, pp. 322—-329.
URL http://doi.ieeecomputersociety.org/10.1109/HIPC.1997.634510

L. Gravano, G. D. Pifarré, P. E. Berman, J. L. C. Sangz,

Adaptive Deadlock- and Livelock-Free Routing with All Minimal Paths in Torus Networks.,

IEEE Trans. Parallel Distrib. Syst. 5 (12) (1994) 1233-1251.
URL http://doi.ieeecomputersociety.org/10.1109/71.334898

K. D. Underwood, E. Borch, A Unified Algorithm for Both Randomized Deterministic and Adaptive Rout

in: IPDPS Workshops, IEEE, 2011, pp. 723-732.
URL http://doi.ieeecomputersociety.org/10.1109/IPDPS.2011.214

A. Singh, W. J. Dally, A. K. Gupta, B. Towles,
GOAL: A Load-Balanced Adaptive Routing Algorithm for Torus Networks.,
in: A. Gottlieb, K. Li (Eds.), ISCA, IEEE Computer Society, 2003, pp.
194-205.

URL http://doi.acm.org/10.1145/859618.859641

L. G. Valiant, G. J. Brebner, Universal Schemes for Parallel Communication,
in: STOC, ACM, 1981, pp. 263-277.
URL http://doi.acm.org/10.1145/800076.802479

39

855

860

865

870

875

[23] J. Duato, A Necessary and Sufficient Condition for Deadlock-Free
Routing in Cut-Through and Store-and-Forward Networks, IEEE
Transactions on Parallel and Distributed Systems 7 (1996) 841-854.
doi:10.1109/71.532115.

[24] W. Dally, P. Carvey, L. Dennison, Architecture of the avici terabit

switch/router, in:Proceedings of Hot Interconnects 6.

[25] T. E. Anderson, S. S. Owicki, J. B. Saxe, C. P. Thacker, High-speed switch
scheduling for local-area networks, ACM Trans. Comput. Syst. 11 (4)
(1993) 319-352. doi:10.1145/161541.161736.

[26] J. Duato, J. Flich, T. N. Frinés, A Cost-Effective Technique to Reduce HOL Blocking in Single-Stage and
in: PDP, IEEE Computer Society, 2004, pp. 48-53.
URL http://doi.ieeecomputersociety.org/10.1109/EMPDP.2004.1271426

[27] T. Skeie, O. Lysne, I. Theiss, Layered shortest path (LASH) routing in irregular system area networks,
in: 16th International Parallel and Distributed Processing Symposium
(IPDPS 2002), 15-19 April 2002, Fort Lauderdale, FL, USA, CD-
ROM/Abstracts Proceedings, 2002. doi:10.1109/IPDPS.2002.1016559.
URL http://dx.doi.org/10.1109/IPDPS.2002.1016559

[28] P. Yebenes, J. Escudero-Sahuquillo, C. Gomez, P. J. Garcia, F. J. Quiles,
J. Duato, BBQ: a straightforward queuing scheme to reduce hol-blocking
in high-performance hybrid networks, in: Euro-Par 2013, Springer, 2013,
pp. 699-712.

[29] R. Peniaranda, C. Gémez, M. E. Gémez, P. Lépez, J. Duato, IODET: A
HoL-blocking-aware Deterministic Routing Algorithm for Direct Topolo-
gies., in: ICCS, IEEE Computer Society, 2012, pp. 702-703.

[30] A. Gonzdlez, M. Valero, N. Topham, J. M. Parcerisa,
Eliminating cache conflict misses through xor-based placement functions,

in: Proceedings of the 11th International Conference on Super-

computing, ICS 97, ACM, New York, NY, USA, 1997, pp. 76-83.

40

880

885

890

895

doi:10.1145/263580.263599.
URL http://doi.acm.org/10.1145/263580.263599

S. McFarling, Combining branch predictors, Tech. rep., Technical Report
TN-36, Digital Western Research Laboratory (1993).

P. Lépez, J. Duato, Deadlock-Free Adaptive Routing Algorithms for the
3D-Torus: Limitations and Solutions, in: A. Bode, M. Reeve, G. Wolf
(Eds.), PARLE’93, Parallel Architectures and Languages Europe, Vol. 694
of Lecture Notes in Computer Science, Springer Berlin, Heidelberg, 1993,
pp. 684—687.

M. E. Gémez, J. Duato, J. Flich, P. Lépez, A. Robles, N. A. Nordbotten,
T. Skeie, O. Lysne, A New Adaptive Fault-Tolerant Routing Methodology
for Direct Networks., in: L. Bougé, V. K. Prasanna (Eds.), HiPC, Vol. 3296
of Lecture Notes in Computer Science, Springer, 2004, pp. 462—473.

T. Hoefler, T. Schneider, A. Lumsdaine,

Multistage switches are not crossbars: Effects of static routing in high-performance networks.,
in: CLUSTER, IEEE Computer Society, 2008, pp. 116-125.

URL http://doi.ieeecomputersociety.org/10.1109/CLUSTR.2008.4663762

41

