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Abstract. We present high performance implementations of the QR and the singular value de-

composition of a batch of small matrices hosted on the GPU with applications in the compression
of hierarchical matrices. The one-sided Jacobi algorithm is used for its simplicity and inherent

parallelism as a building block for the SVD of low rank blocks using randomized methods. We

implement multiple kernels based on the level of the GPU memory hierarchy in which the matri-
ces can reside and show substantial speedups against streamed cuSOLVER SVDs. The resulting

batched routine is a key component of hierarchical matrix compression, opening up opportunities

to perform H-matrix arithmetic efficiently on GPUs.

1. Introduction

The singular value decomposition (SVD) is a factorization of a general m × n matrix A of the
form

A = UΣV ∗.

U is an m ×m orthonormal matrix whose columns Ui are called the left singular vectors. Σ is an
m × n diagonal matrix whose diagonal entries σi are called the singular values and are sorted in
decreasing order. V is an n× n orthonormal matrix whose columns Vi are called the right singular
vectors. When m > n, we can compute a reduced form A = Û Σ̂V ∗ where Û is an m × n matrix
and Σ̂ is an n × n diagonal matrix. One can easily obtain the full form from the reduced one by
extending Û with (m− n) orthogonal vectors and Σ̂ with an (m− n) zero block row. Without any
loss of generality, we will focus on the reduced SVD of real matrices in our discussions.

The SVD of a matrix is a crucial component in many applications in signal processing and
statistics as well as matrix compression, where truncating the (n − k) singular values that are

smaller than some threshold gives us a rank-k approximation Ã of the matrix A. This matrix is
the unique minimizer of the function fk(B) = ||A − B||F . In the context of hierarchical matrix
operations, effective compression relies on the ability to perform the computation of large batches of
independent SVDs of small matrices of low numerical rank. Randomized methods [1] are well suited
for computing a truncated SVD of these types of matrices and are built on three computational
kernels: the QR factorization, matrix-matrix multiplications and SVDs of smaller k × k matrices.
Motivated by this task, we discuss the implementation of high performance batched QR and SVD
kernels on the GPU, focusing on the more challenging SVD tasks.

The remainder of this paper is organized as follows. Section 2 presents different algorithms used
to compute the QR factorization and the SVD as well as some considerations when optimizing
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2 BATCHED QR AND SVD ALGORITHMS

Algorithm 1 Householder QR

1: procedure QR(A,Q,R)
2: [Q,R] = [I, A]
3: for i = 1→ A.n do
4: v = house(R(i))
5: R = (I − 2vvT )R
6: Q = Q(I − 2vvT )

for GPUs. Section 3 discusses the batched QR factorization and compares its performance with
existing libraries. Sections 4, 5 and 6 discuss the various implementations of the SVD based on the
level of the memory hierarchy in which the matrices can reside. Specifically, Section 4 describes
the implementation for very small matrix sizes that can fit in registers, Section 5 describes the
implementation for matrices that can reside in shared memory, and Section 6 describes the block
Jacobi implementation for larger matrix sizes that must reside in global memory. Section 7 details
the implementation of the batched randomized SVD routine. We then discuss some details of the
application to hierarchical matrix compression in Section 8. We conclude and discuss future work
in Section 9.

2. Background

In this section we give a review of the most common algorithms used to compute the QR fac-
torization and the SVD of a matrix as well as discuss some considerations when optimizing on the
GPU.

2.1. QR Factorization

The QR factorization decomposes an m× n matrix A into the product of an orthogonal m×m
matrix Q and an upper triangular m × n matrix R [2]. We can also compute a reduced form
of the decomposition where Q is an m × n matrix and R is n × n upper triangular. The most
common QR algorithm is based on transforming A into an upper triangular matrix using a series
of orthogonal transformations generated using Householder reflectors. Other algorithms such as the
Gram-Schmidt or Modified Gram-Schmidt can produce the QR factorization by orthogonalizing a
column with all previous columns; however, these methods are less stable than the Householder
orthogonalization and the orthogonality of the resulting Q factor suffers with the condition number
of the matrix. Another method is based on Givens rotations, where entries in the subdiagonal part
of the matrix are zeroed out to form the triangular factor and the rotations are accumulated to form
the orthogonal factor. This method is very stable and has more parallelism than the Householder
method; however it is more expensive, doing about 50% more work, and it is more challenging to
extract the parallelism efficiently on the GPU. For our implementation, we rely on the Householder
method due to its numerical stability and simplicity. The method is described in pseudo-code in
Algorithm 1.

2.2. SVD Algorithms

Most implementations of the SVD are based on the two-phase approach popularized by Tre-
fethen et al. [3], where the matrix A first undergoes bidiagonalization of the form A = QUBQ

T
V

where QU and QV are orthonormal matrices and B is a bidiagonal matrix. The matrix B is then
diagonalized using some variant of the QR algorithm, the divide and conquer method or a combi-
nation of both to produce a decomposition B = UBΣV T

B . The complete SVD is then determined
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as A = (QUUB)Σ(QV VB)T during the backward transformation. These methods require significant
algorithmic and programming effort to become robust and efficient while still suffering from a loss
of relative accuracy [4].

An alternative is the one-sided Jacobi method where all n(n−1)/2 pairs of columns are repeatedly
orthogonalized in sweeps using plane rotations until all columns are mutually orthogonal. When the
process converges (i.e., all columns are mutually orthogonal up to machine precision), the left singular
vectors are the normalized columns of the modified matrix with the singular values as the norms of
those columns. The right singular vectors can be computed either by accumulating the rotations or
by solving a system of equations. Our application does not need the right vectors, so we omit the
details of computing them. Algorithm 2 describes the one-sided Jacobi method. Since each pair of
columns can be orthogonalized independently, the method is also easily parallelized. The simplicity
and inherent parallelism of the method make it an attractive first choice for an implementation on
the GPU.

2.3. GPU Optimization Considerations

GPU kernels are launched by specifying a grid configuration which lets us organize threads into
blocks and blocks into a grid. Launching a GPU kernel causes a short stall (as much as 10 microsec-
onds) as the kernel is prepared for execution. This kernel launch overhead prevents kernels that
complete their work faster than the overhead from executing in parallel, essentially serializing them.
To overcome this limitation when processing small workloads, the work is batched into a single
kernel call when possible [5, 6]. All operations can then be executed in parallel without incurring
the kernel launch overhead, with the grid configuration used to determine thread work assignment.

A warp is a group of threads (32 threads in current generation GPUs, such as the NVIDIA
K40) within a block that executes a single instruction in lockstep, without requiring any explicit
synchronization. The occupancy of a kernel tells us the ratio of active warps to the maximum number
of warps that a multiprocessor can host. This metric is dependent on the amount of resources that a
kernel uses, such as register and shared memory usage and kernel launch configuration, as well as the
compute capability of the card ([7] for more details). While not a requirement for good performance
[8], it is generally a good idea to aim for high occupancy.

Memory on the GPU is organized into a hierarchy of memory spaces as shown in Figure 1. At the
bottom, we have global memory which is accessible by all threads and is the most plentiful but the
slowest memory. The next space of interest is the shared memory which is accessible only by threads
within the same block and is configurable with the L1 cache to be at most 48KB per thread block on
current generation GPUs. Shared memory is very fast and acts as a programmer controllable cache.
Finally, we have the registers which are local to the threads. Registers are the fastest of all memory,
but the total number of registers usable by a thread without performance implications is limited. If
a kernel needs more registers than the limit, then registers are spilled to “local” memory, which is in
the slow but cached global memory. Making good use of the faster memories and avoiding excessive

Algorithm 2 One-sided Jacobi SVD

1: while not converged do
2: for each pair of columns Aij = [Ai, Aj ] do
3: G = AT

ijAij

4: R = rot(G)
5: Aij = AijR
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Figure 1. The memory hierarchy of a modern GPU.

accesses to the slower ones is key to good performance on the GPU. As such, it is common to use
blocking techniques in many algorithms, where a block of data is brought in from global memory
and processed in one of the faster memories.

2.4. Related Work

Batched GPU routines for LU, Cholesky and QR factorizations have been developed in [5, 6, 9]
using a block recursive approach which increases data reuse and leads to very good performance for
relatively large matrix sizes. GPU routines optimized for computing the QR decomposition of very
tall and skinny matrices are presented in [10] where they develop an efficient transpose matrix-vector
computation that is employed with some minor changes in this work. GPU-CPU hybrid algorithms
for batched SVD using Jacobi and bidiagonalization methods are introduced in [11] where pair
generation for the Jacobi method and the solver phase of the bidiagonalization are handled on the
CPU. The work in [12] employs the power method to construct a rank 1 approximation for 2D
filters in convolutional neural networks. Routines to handle the SVD of many matrices on GPUs is
presented in [13] where each thread within a warp computes the SVD of a single matrix.

3. Batched QR Decomposition

In this section, we discuss implementation details of our batched QR kernel and compare it with
other implementations from the MAGMA 2.2 [14] and CUBLAS 8 [15] libraries.

3.1. Implementation

One benefit of the Householder algorithm is that the application of reflectors to the trailing matrix
(line 5 of the algorithm) can be blocked together and expressed as a matrix-matrix multiplication
(Level 3 BLAS) instead of multiple matrix-vector multiplications (Level 2 BLAS). The increased
arithmetic intensity typically allows performance to improve when the trailing matrix is large. How-
ever, for small matrix blocks, the overhead of generating the blocked reflectors from their vector
form as well as the lower performance of the matrix-matrix multiplication for small matrices hinder
performance. We can obtain better performance by applying multiple reflectors in their vector form
and performing the transpose matrix-vector multiplication efficiently within a thread block [10].
First, we perform the regular factorization on a column block P (called a panel). The entire panel is
stored in registers, with each thread storing one row of the panel, and the transpose matrix-vector
product is computed using a series of reductions using shared memory and warp shuffles [16] which
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Figure 2. Left: matrix rows allocated to thread registers in a warp. Right: parallel
warp reduction using shuffles within registers.

allow threads within a warp to read each other’s registers. Figure 2 shows the data layout for a
theoretical warp of size 8 with 4 columns in registers and a warp reduction using shuffles. Once
we factor the panel, we can apply the reflectors to the trailing sub-matrix in a separate kernel that
is optimized for performing the core matrix-vector product in the update. In this second kernel,
we load both the factored panel P and a panel Mi of the trailing sub-matrix M to registers and
apply the reflectors one at a time, updating the trailing panel in registers. Let us take an example
of a 32 × 8 trailing panel Mi. For each reflector, we compute the matrix-vector product MT

i v by
flattening the 32×8 product into a reduction of a 256 vector in shared memory that has been padded
to avoid bank conflicts. The reduction can then be serialized until it reaches a size of 32, where a
partial reduction to a vector of size 8 can take place in 2 steps. This final vector is the product MT

i v
which can then be quickly applied to the registers storing Mi. This process is repeated for each
trailing panel within the same kernel to maximize the use of the reflectors which have been stored
in registers. Figure 3 shows one step of a panel factorization and the application of its reflectors
to the trailing submatrix. Since threads are limited to 1024 per block on current architectures, we
use the approach developed in [17] to factorize larger matrices. We first factorize panels up to the
thread block limit in a single kernel call. The panels below the first are then factorized by first
loading the triangular factor into shared memory and then proceeding with the panel factorization
as before, taking the triangular portion into consideration when computing reflectors and updates.
To keep occupancy up for the small matrices on devices where the resident block limit could be
reached before the thread limit, we assign multiple operations to a single thread block. For a batch
of N matrices of dimensions m× n, kernels can be launched using N/b thread blocks of size m× b,
where each thread block handles b operations.

3.2. Performance

Figures 4a and 4b show the performance of our batched QR for 1000 square and rectangular
matrices with a panel width of 16, tuned for the P100 GPU. We compare against the vendor im-
plementation in CUBLAS as well as the high performance library MAGMA. We can see that our
proposed version performs well for rectangular matrices with column size of 32 and starts losing
ground against MAGMA for the larger square matrix sizes where the blocked algorithm starts to
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Figure 4. Comparing batched QR kernels for 1000 matrices of varying size on a
P100 GPU in single and double precision.

show its performance benefits. A nested implementation where our kernel can be used to factor rela-
tively large panels in a blocked algorithm will likely show some additional performance improvements
for the large square matrices, but we leave that as future work.

4. Register Memory One-Sided Jacobi

In this section we will discuss the first batched SVD kernel where the matrix data is hosted in
registers and analyze the performance of the resulting kernel.

4.1. Implementation

In this implementation, to avoid repeated global memory accesses, we attempt to fit the matrix
in register memory using the same layout as the panel in the QR factorization, i.e. one row per
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Figure 5. Performance of the batched register memory SVD on a P100 GPU for
1000 matrices of varying size in single and double precision arithmetics.

thread; however, the number of registers that a thread uses has an impact on occupancy which can
potentially lead to lower performance. In addition, once the register count exceeds the limit set by
the GPU’s compute capability, the registers spill into “local” memory which resides in cached slow
global memory. Since we store an entire matrix row in the registers of one thread, we use the serial
one-sided Jacobi algorithm to compute the SVD where column pairs are processed by the threads
one at a time. The bulk of the work lies in the computation of the Gram matrix G = AT

ijAij (line
3 of Algorithm 2) and in the update of the columns (line 5). Since the Gram matrix is symmetric,
this boils down to three dot products which are executed as parallel reductions within the warp
using warp shuffles. The computation of the 2× 2 rotation matrix as well as the convergence test is
performed redundantly in each thread. Finally, the column update is done in parallel by each thread
on its own register data. As with the QR kernel, we keep occupancy up for the smaller matrix sizes
by assigning multiple SVD operations to a single block of threads with each operation assigned to a
warp to avoid unnecessary synchronizations.

4.2. Performance

We generate batches of 1000 test matrices with varying condition numbers using the latms LA-
PACK routine and calculate performance based on the total number of rotations needed for conver-
gence. Figures 5a and 5b show the performance on a P100 GPU of the register-based batched SVD
kernel and the effect increased register usage has on occupancy. Profiling the kernel, we see that
the Gram matrix computation takes about 500 cycles, column rotations take about 240 cycles, and
the redundantly computed convergence test and rotation matrices dominate at 1900 cycles. The
fact that the redundant portion of the computation dominates means that it is preferable to assign
as few threads as possible when processing column pairs. Due to the low occupancy for the larger
matrix sizes and the register spills to local memory for matrices larger than 30, it is obvious that the
register approach will not suffice for larger matrix sizes. This leads us to our next implementation
based on the slower but more parallel-friendly shared memory.
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5. Shared Memory One-Sided Jacobi

While the register based SVD performs well for very small matrix sizes, we need a kernel that
can handle larger sizes and maintain reasonably high occupancy. This leads us to building a kernel
based on shared memory, the next level of the GPU memory hierarchy. This section discusses the
implementation details of this kernel and analyze its performance when compared with the register
kernel.

5.1. Implementation

In this version, the matrix is stored entirely in shared memory, which is limited to at most 48 KB
per thread block on current generation GPUs. Using the same thread assignment as the register
based kernel would lead to very poor occupancy due to the high shared memory consumption, where
potentially only a few warps will be active in a multiprocessor. Instead, we exploit the inherent
parallelism of the one-sided Jacobi to assign a warp to a pair of columns, i.e., there are n/2 warps
processing an m×n matrix stored in shared memory. There are a total of n(n−1)/2 pairs of columns,
so we must generate all pairings in n−1 steps, with each step processing n/2 pairs in parallel. There
are many ways of generating these pairs, including round robin, odd-even, and ring ordering [18, 19].
We implement the round robin ordering using shared memory to keep track of the column indexes
of the pairs with the first warp in the block responsible for updating the index list after each step.
Figure 6 shows this ordering for a matrix with 8 columns. When the number of matrix rows exceeds
the size of the warp, the thread-per-row assignment no longer allows us to use fast warp reductions,
which would force us to use even more resources, as the reductions would now have to be done in
shared memory. Instead, we assign multiple rows to a thread, serializing a portion of the reduction
over those rows until warp reductions can be used. This follows our observation in Section 4.2 to
assign as few threads as possible to process column pairs, frees up valuable resources and increases
the overall performance of the reduction. Row padding is used to keep the rows at multiples of the
warp size, and column padding is used to keep the number of columns even. Kernels can then be
launched using 32 × n/2 threads to process each matrix. Figures 7a and 7b show examples of the
thread allocation and reductions for a 8× 8 matrix using a theoretical warp size of 4.
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Figure 7. Shared memory kernel implementation details.

5.2. Performance

Figures 8a and 8b show the performance of the parallel shared SVD kernel compared to the
serial register SVD kernel on a P100 GPU. We can see the improved growth in performance in the
shared memory kernel due to the greater occupancy as well as the absence of any local memory
transactions. Looking at the double precision occupancy, we notice two dips in occupancy at matrix
sizes 22 and 32 as the number of resident blocks become limited by the registers/block limits of the
device, dropping to 2 and then 1 resident blocks. Performance increases steadily from there as we
increase the number of threads assigned to the operation until we reach a matrix size of 64 × 64
where we reach the block limit of 1024 threads. To handle larger sizes, we must use a blocked version
of the algorithm or the randomized SVD as we see in Sections 6 and 7, respectively.

6. Global Memory One-Sided Block Jacobi

When we can no longer store the entire matrix in shared memory, we have to operate on the
matrix in the slower global memory. Instead of repeatedly reading and updating the columns one
at a time, block algorithms that facilitate cache reuse have been developed [20, 21, 22]. The main
benefit of the block Jacobi algorithm is its high degree of parallelism; however, since we implement
a batched routine for independent operations, we will use the serial block Jacobi algorithm for
individual matrices and rely on the parallelism of the batch processing. The parallel version, where
multiple blocks are processed simultaneously, can still be used when the batch size is very small, but
we will focus on the serial version. In this section we will discuss the implementation details for two
global memory block Jacobi algorithms that differ only in the way block columns are orthogonalized
and compare their performance with parallel streamed calls to the cuSOLVER 8 [23] library routines.

6.1. Gram Matrix Block Jacobi SVD

The block Jacobi algorithm is very similar to the vector Algorithm 2, orthogonalizing pairs of
blocks columns instead of vectors. The first method of orthogonalizing pairs of block columns is based

on the SVD of their Gram matrix. During the p-th sweep, each pair of m×k block columns A
(p)
i and
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A
(p)
j is orthogonalized by forming a 2k× 2k Gram matrix G

(p)
ij = [A

(p)
i A

(p)
j ]

T
[A

(p)
i A

(p)
j ] = A

(p)
ij

T
A

(p)
ij

and generating a block rotation matrix U
(p)
ij , computed as the left singular vectors of G

(p)
ij (or

equivalently its eigenvectors, since it is symmetric positive definite). Updating Ap+1
ij = Ap

ijU
(p)
ij

orthogonalizes the block columns, since we have

Ap+1
ij

T
Ap+1

ij = U
(p)
ij

T
Ap

ij
T
Ap

ijU
(p)
ij = U

(p)
ij

T
G

(p)
ij U

(p)
ij = Λp

ij ,

where Λp
ij is a diagonal matrix of the singular values of G

(p)
ij . Orthogonalizing all pairs of block

columns until the entire matrix is orthogonal will give us the left singular vectors as the normalized
columns and the singular values as the corresponding column norms. If the right singular vectors are
needed, we can accumulate the action of the block rotation matrices on the identity matrix. For our
batched implementation, we use highly optimized batched syrk and gemm routines from MAGMA
to compute G and to apply the block rotations, while the SVD is computed by our shared memory
batched kernel. Since different matrices will converge in different numbers of sweeps, we keep track
of the convergence of each operation l by computing the norm el of the off-diagonal entries of G
scaled by its diagonal entries. While this term is an inexact approximation of the off-diagonal terms
of the full matrix in each sweep, it is still a good indication of convergence and will cost us at most
an extra cheap sweep, since the final sweep will not actually perform any rotations within the SVD of
G. The entire batched operation will then converge when e = max el < ε, where ε is our convergence
tolerance. This gives us the Gram matrix path of the batched block Jacobi Algorithm 3 to compute
the SVD of a batch of matrices in global memory. It is worth noting that the computation of the
Gram matrix can be optimized by taking advantage of the special structure of G, but since the bulk
of the computation is in the SVD of G, it will not result in any significant performance gains.

6.2. Direct Block Jacobi SVD

The Gram matrix method is an indirect way of orthogonalizing block columns and may fail to
converge if the matrix is very ill-conditioned. Ill-conditioned matrices can be handled by directly
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Algorithm 3 Batched One-sided block Jacobi SVD

1: while e > ε do
2: el = 0
3: for each pair of block columns Aij = [Ai, Aj ] do
4: if method = GRAM then
5: G = batchSyrk(Aij)
6: else
7: [Aij , G] = batchQR(Aij)

8: el = max(el, scaledOffdiag(G))
9: U = batchSvd(G)

10: Aij = batchGemm(Aij , U)

11: e = max(el)

orthogonalizing the columns using their SVD. Since the block columns are rectangular, we first
compute their QR decomposition followed by the SVD of the triangular factor R. Overwriting the
block column Ap

ij by the orthogonal factor Q and multiplying it by the left singular vectors of R

scaled by the singular values will give us the new block column Ap+1
ij :

Ap
ij = Qp

ijR
p
ij =

(
Qp

ijU
p
ijΣ

p
ij

)
V p
ij

T
= Ap+1

ij V p
ij

T
.

If the right singular vectors are needed, we can accumulate the action of V p
ij on the identity matrix.

For our batched implementation, we use the batch QR routine developed in Section 3 and gemm

routines from MAGMA to multiply the orthogonal factor by the left singular vectors, while the SVD
is computed by our shared memory batched kernel. The same convergence test used in the Gram
matrix method can be used on the triangular factor, since the triangular factor should be close to
a diagonal matrix if a pair of block columns are orthogonal. This gives us the direct path of the
batched block Jacobi Algorithm 3 to compute the SVD of a batch of matrices in global memory.

6.3. Performance

Figures 9a and 9a show the profiling of the different computational kernels involved in the batched
block algorithms with a block width of 32, specifically percentages of total execution time for de-
termining convergence and memory operations, matrix multiplications, QR decompositions and the
SVD of the Gram matrix. For the Gram matrix approach, the SVD is the most costly phase, even
for the larger operations, while the QR and SVD decompositions take almost the same time for
the larger matrices in the direct approach. Figure 10a shows the performance of the batched block
Jacobi SVD of 200 matrices using both methods and Figure 10b compares the performance of our
batched SVD routine with a batched routine that uses the cuSOLVER SVD routine using 20 con-
current streams on a P100 GPU. Increasing the number of streams for cuSOLVER showed little
to no performance benefits, highlighting the performance limitations of routines that are bound by
kernel launch overhead. The matrices are generated randomly using the latms LAPACK routine
with a condition number of 107. The Gram matrix approach fails to converge in single precision for
these types of matrices, whereas the direct approach always converges; however the Gram matrix
approach performs better when it is applicable for the larger matrices due to the strong performance
of the matrix-matrix multiplcations. The performance of the block algorithm can be improved by
preprocessing the matrix using QR and LQ decompositions to decrease the number of sweeps re-
quired for convergence [24] as well as by adaptively selecting pairs of block columns based on the
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computed offdiagonal norms of their Gram matrices. These changes are beyond the scope of this
paper and will be the focus of future work.
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Figure 9. Profile of the different phases of the block Jacobi SVD for 200 matrices
of varying size on a P100 GPU in double precision. Single precision exhibits similar
behavior.

7. Randomized SVD

As mentioned in Section 1, we are often interested in a rank-k approximation of a matrix A ≈
Ũ S̃Ṽ . We can compute this approximation by first determining the singular value decomposition
of the full m × n matrix A and then truncating the n − k smallest singular values with their
corresponding singular vectors; however, when the matrix has low numerical rank k, we can obtain
the approximation using very fast randomization methods [1]. This section will discuss some details
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Figure 10. Batched block Jacobi performance for 200 matrices of varying size on
a P100 GPU in single and double precision arithmetics.
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Algorithm 4 Batched Randomized SVD

1: procedure RSVD(A, k, p)
2: [m,n] = size(A)
3: Ω = Rand(n, k + p)
4: Y = batchGemm(A,Ω)
5: [Q,Ry] = batchQR(Y )
6: B = batchGemm(QT , A)
7: [QB , RB ] = batchQR(BT )
8: [UR, S, VR] = batchSvd(RT

B)
9: U = batchGemm(Q,UR)

10: V = batchGemm(QB , VR)

of the algorithm and compare its performance with the full SVD using our one-sided block Jacobi
kernel.

7.1. Implementation

When the singular values of a matrix decay rapidly, we can compute an approximate SVD using
a simple two phase randomization method:

(1) The first phase determines an approximate orthogonal basis Q for the columns of A ensuring
that A ≈ QQTA. When the numerical rank k of A is low, we can be sure that Q has a
small number of columns as well. In [1] we see that by drawing k+p sample vectors y = Aw
from random input vectors w, we can obtain a reliable approximate basis for A which can
then be orthogonalized. This boils down to computing a matrix Y = AΩ, where Ω is a
n× (k + p) random Gaussian sampling matrix, and then computing the QR decomposition
of Y = QRy, where Q is the desired approximate orthogonal basis.

(2) The second phase uses the fact that A ≈ QQTA to compute a matrix B = QTA so that
we now have A ≈ QB. Forming the SVD of B = UBSV

T , we finalize our approximation
A ≈ QUBSV

T = USV T . For the wide (k + p) × n matrix B, we can first compute a QR
decomposition of its transpose, followed by the SVD of the upper triangular factor.

Algorithm 4 shows that the core computations for the randomized method are matrix-matrix multi-
plications, QR decompositions, and the singular value decompositions of small matrices. Using the
batched routines from the previous sections, it is straightforward to form the required randomized
batched SVD. More robust randomized SVD algorithms would employ randomized subspace itera-
tion methods to obtain a better basis Q for the columns of A and rely on these same core kernels,
but will not be further discussed here.

7.2. Performance

Figure 11 shows the profiling of the different kernels used in the randomized batched routine for
determining the top 64 singular values and vectors of randomly generated low rank matrices using
the latms LAPACK routine. The miscellaneous portion includes random number generation using
the CURAND library’s default random number generator and a Gaussian distribution, batched
transpose operations and memory operations. We can see that the performance of all kernels play
almost equally important roles in the performance of the randomized routine as the matrix size
grows while keeping the computed rank the same. Figure 12a shows the performance of the batched
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randomized SVD of 200 operations and Figure 12b compares the runtimes of the direct block one-
sided Jacobi routine with the randomized SVD on a P100 GPU for the same set of matrices, showing
that significant time savings can be achieved even for relatively small blocks.
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Figure 11. Profile of the different phases of the batched randomized SVD for
200 matrices of varying size on a P100 GPU in double precision. Single precision
exhibits similar behavior.

8. Application to Hierarchical Matrix Compression

As an application of the batched kernels presented, we consider the problem of compressing/recompressing
hierarchical matrices. This is a problem of significant importance for building hierarchical matrix
algorithms and in fact was our primary motivation for the development of the batched kernels.

Hierarchical matrices [25, 26, 27] have received substantial attention in recent years because of
their ability to store and perform algebraic operations in near linear complexity rather than theO(n2)
and O(n3) that regular dense matrices require. The effectiveness of hierarchical matrices comes from
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Figure 13. The basis tree and matrix tree leaves of a simple H2-matrix.

the fact they can approximate a matrix by a (quad)-tree of blocks where many of the blocks in the
off-diagonal regions have a rapidly decaying spectrum and can therefore be well-approximated by
numerically low rank representations. It is these low rank representations, at different levels of the
hierarchical tree, that reduce the memory footprint and operations complexity of the associated
matrix algorithms. Hackbush [28] shows that many of the large dense matrices that appear in
scientific computing, such as from the discretization of integral operators, Schur complements of
discretized PDE operators, and covariance matrices, can be well approximated by these hierarchical
representations.

Reviewing and analyzing hierarchical matrix algorithms is beyond the scope of this paper. Here
we focus on the narrow task of compressing hierarchical matrices. This compression task may
be viewed as a generalization of the well-known compression (i.e., low rank approximation) of large
dense matrices to the case of hierarchical matrices. For large dense matrices, one way to perform the
compression is to generate a single exact or approximate SVD (UΣV T ) and truncate the spectrum
Σ to the desired tolerance, to produce a truncated or “compressed” representation (Ū Σ̄V̄ T ). For
hierarchical matrices, the equivalent operations involve batched SVDs on small blocks, with one
batched kernel call per level of the tree in the hierarchical representation. The size of the batch in
every such call is the number of nodes at the corresponding level in the tree.

Compression algorithms with controllable accuracy are important practically, because it is often
the case that the hierarchical matrices generated by analytical methods can be compressed with no
significant loss of accuracy. Even more importantly, when performing matrix operations such as ad-
ditiona and multiplication, the apparent ranks of the blocks often grow and have to be recompressed
regularly during the operations to prevent superlinear growth in memory requirements.

8.1. H2-matrix representation

For our application, we use the memory efficient H2 variant of hierarchical matrices which exhibit
linear complexity in time and space for many of its core operations. In the H2-matrix format, a
hierarchical matrix is actually represented by three trees:



16 BATCHED QR AND SVD ALGORITHMS

• Row and column basis column trees U and V that organize the row and column indices of
the matrix hierarchically. Each node represents a set of basis vectors for the row and column
spaces of the blocks of A. Nodes at the leaves of the tree store these vectors explicitly, while
inner nodes store only transfer matrices that allow us to implicitly represent basis vectors
in terms of their children. A basis tree with this parent-child relationship of the nodes is
called a nested basis. For example, in a binary row basis tree U with transfer matrices E,
we can explicitly compute the basis vectors for a node i with children i1 and i2 at level l as:

U l−1
i =

[
U l
i1

U l
i2

] [
El

i1
El

i2

]
.

Figure 13a shows an example of a binary basis tree.
• A matrix tree for the hierarchical blocking of A formed by a dual traversal of the nodes of

the two basis trees. A leaf is determined when the block is either small enough and stored
as an m×m dense matrix, or when a low rank approximation of the block meets a specified
accuracy tolerance. For the latter case, the node is stored as a kl × kl coupling matrix S at
each level l of the tree, where kl is the rank at level l. The block Ats of the matrix, where
t is the index set of a node in the row basis tree U and s is the index set of a node in the
column basis V , is then approximated as Ats ≈ UtStsV

T
s . Figure 13b shows the leaves of

the matrix quadtree of a simple hierarchical matrix.

For the case of symmetric matrices, the U and V trees are identical. Our numerical results below
are from a symmetric covariance matrix.

8.2. Compression

The compression of a symmetric H2-matrix AH , represented by the two trees U (with its transfer

matrices E) and S, involves generating a new optimal basis tree Ũ (with its transfer matrices Ẽ) in

a truncation phase, and a new S̃ that expresses the contents of the matrix blocks in this new basis
in a projection phase.

We present a version of the truncation algorithm that generates a memory efficient basis [Ũ , Ẽ]
from a representation of the matrix in a given [U,E] basis. More sophisticated algebraic compression
algorithms that involve the use of S in the truncation phase in order to generate a more efficient
basis will be the subject of future work.

The truncation phase computes the SVD of the nodes of the basis tree U level by level, with

all nodes in a level being processed in parallel to produce the new basis Ũ . We have an explicit
representation of the basis vectors at the leaves, so we can compute the SVD of all leaf nodes in
parallel with our batched kernels and truncate the singular vectors whose singular values are lower
than our relative compression threshold ε. Truncating the node to the relative threshold using the

SVD will give us an approximation of the leaf such that ||U−Ũ ||F||U ||F ≤ ε. With the new leaf nodes, we

can compute projection matrices in a tree T , where each node i, T d
i = Ũd

i

T

Ud
i and d is the leaf level.

Sweeping up the tree, we process the inner nodes while preserving the nested basis property. Using
the parent-child relationship of a node i with children i1 and i2 at level l, we have:

U l−1
i =

[
U l
i1

U l
i2

] [
El

i1
El

i2

]
≈

[
Ũ l
i1

Ũ l
i2

] [
T l
i1
El

i1
T l
i2
El

i2

]
=

[
Ũ l
i1

Ũ l
i2

]
TEi

After forming the TE matrices using batched matrix-matrix multiplication, we compute their SVD
TE = QSWT using the batched SVD kernel and truncate as we did for the leaves to form the
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truncated T̃E matrices as:

T̃Ei = Q̃i

(
S̃iW̃

T
i

)
=

[
Ẽl

i1

Ẽl
i2

]
T l−1
i

where Ẽl, the block rows of Q̃, are the new transfer matrices at level l of our compressed nested
basis and T l−1 are the projection matrices for level (l − 1). The key computations involved in this
truncation phase consist then of one batched SVD involving the leaves of the tree, followed by a
sequence of batched SVDs, one per level of the tree, involving the transfer matrices and data from
the lower levels.

The projection phase consists of transforming the coupling matrices in the matrix tree using the
generated projection matrices of the truncation phase. For each coupling matrix Sts, we compute

a new coupling matrix S̃ts = TtStsT
T
s using batched matrix-matrix multiplications. This phase of

the operation consumes much less time than the truncation phase on GPUs, because of substantial
efficiencies in executing regular arithmetically intensive operations on them.

8.3. Results

As an illustration of the effectiveness of the algebraic compression procedure, we generate covari-
ance matrices of various sizes for a spatial Gaussian process with n observation points placed on
a random perturbation of a regular discretization of the unit square [0, 1] × [0, 1] and an isotropic
exponential kernel with correlation length of 0.1. Hierarchical representations of the formally dense
n × n covariance matrices are formed analytically by first clustering the points in a KD-tree using
a mean split giving us the hierarchical index sets of the basis tree. The basis vectors and transfer
nodes are generated using Chebyshev interpolation [29]. The matrix tree is constructed using a dual
traversal of the basis tree [25, 30], and the coupling matrices are generated by evaluating the kernel
at the interpolation points. The approximation error of the constructed matrix is then controlled
by varying the number of interpolation points and by varying the leaf admissibility condition dur-
ing the dual tree traversal. An approximation error of 10−7 has been used in the following tests

and a relative truncation error ε = ||AH−ÃH ||F
||AH ||F ≤ 10−7 has been used to maintain the accuracy of

the compressed matrices. Figure 14a shows the memory consumption before and after compression
of hierachical covariance matrices with leaf size 64 and initial rank 64 (corresponding to an 8 × 8
Chebyshev grid). The dense part remains untouched, while the low rank part of the representation
sees a substantial decrease in memory consumption after compression with minimal loss of accuracy.
Figure 14b shows the expected asymptotic linear growth in time of the compression algorithm and
shows the effect of using the randomized SVD with 32 samples instead of the full SVD as computed
by the shared memory kernel. Figure 15 shows another example where the admissibility condition
is weakened to generate a coarser matrix tree with an increased rank of 121 (corresponding to an
11 × 11 Chebyshev grid) and the randomized SVD with 64 samples also reduces compression time
when compared to the full SVD using the direct block Jacobi kernels.

9. Conclusions and Future Work

In this paper, we described the implementation of efficient batched kernels for the QR decompo-
sition and randomized singular value decomposition of low rank matrices hosted on the GPU. Our
batched QR kernel provides significant performance improvements for small matrices over existing
state of the art libraries, and our batched SVD routines are the first of their kind on the GPU,
with performance exceeding 800/400 GFLOP/s on a batch of 1000 matrices of size 512 × 512 in
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Figure 15. Compression time for a coarser matrix tree with initial rank 121 com-
paring the randomized SVD with 64 samples and the full SVD.

single/double precision. We illustrated the power of these kernels on a problem involving the al-
gebraic compression of hierarchical matrices stored entirely in GPU memory, and demonstrated a
high-performance compression algorithm yielding significant memory savings on practical problems.
In the future, we plan to investigate alternatives to the one-sided Jacobi algorithm for the SVD of the
small blocks in the randomized algorithm and improve the performance of the blocked algorithms
using preconditioning and adaptive block column pair selection. We also plan to develop a suite of
hierarchical matrix operations suited for execution on modern GPU and manycore architectures.
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