
Understanding Memory Access Patterns
Using the BSC Performance Tools
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Abstract

The growing gap between processor and memory speeds has lead to complex memory
hierarchies as processors evolve to mitigate such divergence by exploiting the locality
of reference. In this direction, the BSC performance analysis tools have been recently
extended to provide insight into the application memory accesses by depicting their
temporal and spatial characteristics, correlating with the source-code and the achieved
performance simultaneously. These extensions rely on the Precise Event-Based Sampling
(PEBS) mechanism available in recent Intel processors to capture information regarding
the application memory accesses. The sampled information is later combined with the
Folding technique to represent a detailed temporal evolution of the memory accesses and
in conjunction with the achieved performance and the source-code counterpart. The
reports generated by the latter tool help not only application developers but also pro-
cessor architects to understand better how the application behaves and how the system
performs. In this paper, we describe a tighter integration of the sampling mechanism
into the monitoring package. We also demonstrate the value of the complete workflow
by exploring already optimized state–of–the–art benchmarks, providing detailed insight
of their memory access behavior. We have taken advantage of this insight to apply small
modifications that improve the applications’ performance.

Keywords: performance analysis, memory references, sampling, instrumentation

1. Introduction

The growing gap between processor and memory speeds leads to more and more com-
plex memory hierarchies as processors evolve generation after generation. The memory
hierarchy is organized in different strata to exploit the applications’ temporal and spatial
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localities of reference. On one end of the hierarchy lie extremely fast, tiny and power-
hungry registers while on the other end there is the slow, huge and less energy-consuming
DRAM. In between these two extremes, there are multiple cache levels that mitigate the
expense of bringing data from the DRAM when the application exposes either spatial or
temporal locality. Still, researchers and manufacturers look for alternatives to improve
the memory hierarchy performance- and energy-wise. For instance, they consider ad-
ditional integration directions so that the memory hierarchy adds layers as scratchpad
memories, stacked 3D DRAM [1] and even non-volatile RAM [2].

A proper analysis of the application memory references and its data structures is vital
to identify which application variables are referenced the most, their access cost, as well as
to detect memory streams. All this information might provide hints to improve the exe-
cution behavior by helping prefetch mechanisms, suggesting on the usage of non-temporal
instructions, calculating reuse distances, tuning cache organization and even facilitating
research on multi-tiered memory systems. Two approaches are typically used to address
these studies. First, instruction-based instrumentation tools monitor load/store instruc-
tions and decode them to capture the referenced addresses and the time to solve the
reference. While this approach can capture all data references and accurately correlates
code statements with data references, it estimates cache access costs by simulating the
cache hierarchy and introduces significant overheads that alter the observed performance
and challenges the analysis with large data collections and time-consuming analysis, and
is thus not practical for production runs. Second, some processors have enhanced their
Performance Monitoring Unit (PMU) to sample memory instructions and capture data
such as: referenced address, time to solve the reference and the memory hierarchy level
that provides the data. The sampling mechanisms help to reduce the amount of data
captured and the overhead imposed and thus allow targeting production application runs.
However, the results obtained using statistical approximations may require sufficiently
long runs to approximate the actual distribution; still, highly dynamic access patterns
or rare performance excursions may be missed.

The Extrae instrumentation package [3] and the Folding tool [4] belong to the BSC
performance tools suite and have been recently extended to explore the performance
behavior and the references of the application data objects simultaneously [5]. However,
the initial research prototype combined the results of two independent monitoring tools
(Extrae and the perf tool [6]) that monitored the same process before depicting the
results through the Folding tool. The changes described in this paper address several of
the limitations of that prototype.

In this document we describe a fully integrated solution of the initial prototype. The
novelties of this integration include:

• Simplified the collection mechanism by using the perf kernel infrastructure directly
from Extrae to use the Intel Precise Event-Based Sampling (PEBS) [7] mechanism.
This avoids to load a kernel module to correlate clocks between the two tools and
reduces the overall overhead suffered by the application.

• Use Extrae capabilities to multiplex load and store instructions in a single applica-
tion execution. This naturally provides load and store references in a single report
while in the prototype it was uneasy due to kernel security features.

• Extend the Extrae API to create synthetic events that delimit a memory region.
2
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Figure 1: Tool integration for the memory reference analysis.

This reduces the space needed for intermediate files on applications that allocate
data in small consecutive chunks.

The organization of this paper is as follows. Section 2 describes the extensions done
to the BSC performance tools in order to collect and represent data related to memory
data-objects and references to them. Section 3 follows with exhaustive performance
and memory access analyses of several benchmarks including code modifications and
comparing the execution behavior before and after the code changes. Then Section 4
contextualizes this tool with respect to the state-of-the-art tools. Finally, Section 5
draws conclusions.

2. Extensions to the BSC performance tools

This section covers the extensions applied to the Extrae and Folding tools. Figure 1
depicts the interaction of these tools when exploring a target application. First, Extrae
monitors the target application. Extrae is an open-source instrumentation and sampling
software which generates Paraver [8] timestamped event traces for offline analysis. The
package monitors several programming models (e.g. MPI, OpenMP, OmpSs and POSIX
threads) to allow the analyst to understand the application behavior. Although Ex-
trae offers an API for manual instrumentation, it also monitors in-production optimized
binaries through the shared-library preloading mechanisms. Extrae can also multiplex
the performance counters capturing more performance counters over the application run
than the underlying hardware can collect simultaneously. The sampling mechanism is
implemented on top of time-based alarms as well as on top of hardware counters.

After the trace-file has been generated, the Folding tool is invoked. The Folding tool
takes advantage of the repetitive nature of many applications (especially in the HPC
environment) and combines sampling and instrumented information to provide detailed
progression within a repetitive computing region. This allows monitoring the application
at a coarse sampling frequency without impacting on the application performance. The
Folding generates two different outputs on the delimited repetitive regions. On the
one hand, it generates summarized performance reports that can be explored using the
gnuplot tool1. On the other hand, it generates synthetic Paraver trace-files that include
all the information from the summarized performance reports and additional details that
cannot be represented in the plots.

1http://gnuplot.info
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2.1. Extensions to Extrae

2.1.1. On the collection of the application data-objects

The modifications on Extrae focus on capturing information of the application data
structures and collecting information about the references to these structures. Therefore,
to help the analyst understand the access patterns, it is necessary to map addresses to
actual application data structures. Consequently, Extrae has been extended to capture
some properties of static and dynamic variables. With respect to the static variables, the
instrumentation package scans the symbols within the application binary image using
the binutils library2 to acquire their name, starting address and size. Regarding the
dynamically allocated variables, the monitoring package has been extended to instrument
the malloc-related routines. Extrae captures their input parameters and output results
to determine the starting address and size, as well as a portion of the call-stack in order
to locate them within the user code. Extrae identifies them by the top of the call-stack
on the allocation site, instead. Extrae also captures the references to the local (stack)
variables, but the tool cannot track their creation and thus these references remain
unnamed.

As applications may allocate and de-allocate many variables during the application
lifetime, Extrae ignores allocations smaller than a given threshold (that defaults to 1
MByte but can be changed by the user) to avoid generating huge trace-files. This ap-
proach limits the analysis when targeting graph- or tree-based or other irregular appli-
cations where allocations may be tiny. To circumvent this limitation, we have extended
the Extrae API to create a synthetic events to delimit a memory region based upon
begin and end addresses. This approach lets a user wrap small and consecutive dynamic
allocations through this API and correlate the memory references to a synthetic object
that represents all the allocations. As this approach requires manual intervention, one
alternative (not currently implemented) would be to limit the instrumentation a given
number of small allocations.

2.1.2. On the sampling of memory references

For monitoring the application’s memory references, Extrae uses the PEBS infras-
tructure. Despite Extrae relies on PAPI [9] to collect the value of hardware performance
counters from the PMU, this performance library does capture the PEBS generated in-
formation3. Consequently, we have modified Extrae to use the perf4 subsystem of the
Linux kernel to monitor the memory references. In brief, to configure the PEBS to sample
memory references perf has to:

• allocate a buffer to hold the PEBS samples,

• setup a pe event for a performance counter that captures memory references (e.g.
memory operations) and specify a sampling period, and

• associate an interrupt handler for the interrupts generated when the PEBS buffer
is full and processes the PEBS buffer.

2http://www.gnu.org/software/binutils
3As of the latest released PAPI version (5.5.1)
4See perf event open(2) on the Linux manual page.
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Figure 2: The extensions to the Extrae instrumentation package allow monitoring at instrumentation
points as well as PEBS-based points.

The reader may wonder on the portability of the monitoring tool to other processors. We
believe that the approach of using the perf subsystem holds true for mechanisms similar
to PEBS (e.g. IBS in AMD Opteron [10] and MRK in IBM Power7 [11]). However, we
cannot provide specific details.

It is worth to mention that the metrics associated to the memory references de-
pend on the monitored performance counter and within processor families. For instance,
Intel R© Xeon R© processors extend PEBS with Load-Latency features that allow monitor-
ing load instructions and provide the address referenced, the access cost and which part
of the memory hierarchy provided the data. However, store instructions just provide
information regarding the address referenced and whether the access hit in cache.

We want to highlight that PEBS records do not contain a time-stamp5. Also, as we
stated before, the PEBS buffer is forwarded to the performance tool when the buffer
is full through an interrupt handler. Since Extrae needs to associate each referenced
address a time-stamp, we have taken the approach on Extrae allocating a 1-entry buffer.
When PEBS interrupts the tool after generating each sample, the interrupt handler will
associate a time-stamp to it.

The illustration shown in Figure 2 depicts where the instrumentation and sampling
combined monitoring capabilities occurs during the application execution. In the Figure,
black markers represent instrumentation-based points that record when a routine has
started or finished executing while red markers represent when the PMU has interrupted
the application for a PEBS sample after X loads. The monitors capture the value of
the performance counters and the top executing routine while PEBS samples capture
performance counters, a portion of the call-stack and the PEBS record associated with
the sample.

2.1.3. Multiplexing sampling events

Finally, the integration between Extrae and perf has also included multiplexing ca-
pabilities on the PEBS sampling. That is, Extrae not only automatically changes the
performance counters being collected at runtime but also can multiplex over PEBS sam-
pling events. Our implementation has covered the case in which Extrae monitors load

5Intel Skylake generation introduces time-stamps in the PEBS records.
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and store instructions in a single run. This has two major benefits. First, the application
only needs to run once rather than multiple times. Second, this approach removes prob-
lems around matching addresses on different address spaces as a result of the introduction
of the address randomization security mechanisms.

2.2. Extensions to Folding

The additional performance information captured by Extrae allows the Folding tool
to enrich its outputs (the reports and the synthetic trace-file). The reports generated by
the Folding correlate the progression within the source-code, the performance and the
address space in a single plot. As the reports are limited by display properties, all the
meaningful data is included into a Paraver trace-file for a quantitative and more detailed
analysis.

In the report, the address space is partitioned based on the existing data objects
and labeled accordingly with the variable names (or call-stack) if available which allows
the analyst to identify the data structures. The report also includes memory references
which shows how the data objects (including the wrapped data objects through the API
extensions on Extrae) are accessed. On multi-threaded/process applications, one report is
generated for each executing thread/process. This approach allows the analyst to explore
each thread/process independently and to learn whether different threads are accessing
to shared or private variables, although this exploration has to be done manually at the
moment. The forthcoming Section 3.2 provides a full-featured analysis example.

Despite the Folding tool can combine the performance metrics from different pro-
cesses (as long as they refer to the same code), this is no longer possible when combining
memory-related information. The inclusion of the Address Space Layout Randomization
(ASLR) security techniques6 leads to unique address spaces on each process even for the
same binary and makes difficult to combine the address space information from multiple
processes. As a result, the Folding tool only uses information from one process when ex-
posing memory-related information. The ASLR mechanism required a manual matching
of the data-objects in the initial prototype when analyzing reports generated for load and
store instructions independently. This task was tedious, especially when applications re-
fer to a large number of data objects. However, the usage of the multiplexing capabilities
for the PEBS sampling mechanism in Extrae allows the Folding technique to depict the
load and store references in the process address space with a single execution.

3. Application evaluation

3.1. Platform and Methodology

We have evaluated several applications on the Jureca system [12] to show the usability
of the extensions described above when exploring the load and store references. Each node
of the system contains two Intel Xeon E5-2680v3 (codename Haswell) 12-core processors
with hyper-threading enabled, for a total of 48 threads per node. The nominal and
maximum “turbo” processor frequencies are 2.50 GHz and 3.30 GHz, respectively. The
processor has three levels of cache with a line size of 64 bytes: level 1 are two independent

6https://lwn.net/Articles/546686
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8-way 32 KByte caches for instructions and data, level 2 consists of an 8-way unified
256 KByte cache, and level 3 is a 20-way shared unified 30,720 KByte cache. The system
runs Linux 3.10.0, has the GNU v4.8.5 and Intel R© C and Fortran compilers v15.0 and
uses Intel R© MPI library v5.1. We have manually delimited with instrumentation points
the main iteration loop body of the respective applications.

With respect to the Extrae configuration, we have only captured dynamically-allocated
objects that are larger or equal than 32 KByte. Applications have been sampled every
137K load and every 8231K store instructions and the package has been configured to
multiplex them every 15 seconds. We use prime numbers to minimize the correlation
between the sampling and the application periods. The store sampling period is higher
than the load sampling period because the Load-Latency feature already subsamples load
instructions through a randomization tagging mechanism. On the selected machine, the
monitors (collecting time-stamp, call-stack and performance counters) take less than 2µs
to execute for a measured overhead below 5% on the presented experiments.

3.2. Stream

For exemplification purposes, we have monitored the serial version of the Stream
benchmark7 [13]. The benchmark has been compiled using the GNU compiler suite with
each array being of size N=2×107 elements. As Stream accesses statically allocated
variables through ordered linear accesses, we have modified the code so that: (i) the b

array is no longer a static variable but allocated by malloc, (ii) the scale kernel loads
data from pseudo-random indices from the c array, and, (iii) we have delimited the main
application loop using the Extrae API calls. Due to modification (ii), scale executes
additional instructions and exposes less locality of reference, thus we have reduced the
loop trip count in this kernel to N/8 to compensate its longest duration. A simplified
version of the code (in which kernel routines have been inlined) looks like:

for i := 1 to NTIMES do ! main loop
Extrae function begin() ! Delimit begin body loop
for j := 1 to N do c[j] := a[j]; od ! Copy
for j := 1 to N/8 do b[j] := s ∗ c[random(j)]; od ! Scale
for j := 1 to N do c[j] := a[j] + b[j]; od ! Add
for j := 1 to N do a[j] := b[j] + s ∗ c[j]; od ! Triad
Extrae function end() ! Delimit end body loop

od

3.2.1. Description of the folding report

Figure 3 shows the result of the extensions to the Folding mechanism. The Figure
consists of three plots: source code references (top), address space load references (mid-
dle), and performance metrics (bottom). In the source code profile each color represents
the active routine (identified by a label of the form X [n], where X refers to the active rou-
tine, and n refers the most observed code line). Additionally, the purple dots represent
a time-based profile of the sampled code lines where the top (bottom) of the plot repre-
sents the begin (end) of the source file. This plot shows that the application progresses

7Downloaded from https://www.cs.virginia.edu/stream/FTP/Code/stream.c with SHA-1
afe4e58ec9ba61eba0b8b65cb24789295f8a539e.
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Figure 3: Analysis of the modified version of the Stream benchmark using the results from the Folding
tool. There are triple correlation time-lines for the main iteration (from top to bottom): source code,
addresses referenced and performance.

Table 1: Classification and average costs of different accesses to the memory hierarchy per routine for
the modified version of the Stream Benchmark.

Routine Metric Memory hierarchy part
L1 LFB L2 L3 DRAM

Copy
% of load references 75.8% 22.5% 1.0% 0% 0.5%

Copy
Average cost (in cycles) 7 28, 40 14 n/a 400

Scale
% of load references 1.2% 80.5% 0% 4.6% 13.8%

Scale
Average cost (in cycles) 7, 9 300, 340 n/a 70 350, 800

Add
% of load references 3.8% 73.1% 0% 18.6% 3.8%

Add
Average cost (in cycles) 7 50, 100 n/a 70 400,440

Triad
% of load references 9.4% 74.2% 3.9% 8.9% 3.4%

Triad
Average cost (in cycles) 7 74, 108 19 84 350

through four routines (each representing a kernel) and that most of the activity observed
of each of these routines occurs in a tiny amount of lines. The second plot depicts the
address space, including variable names of allocated objects and memory references to
the address space. On this plot, the variables (either static or dynamically allocated) and
their size are on the left Y-axis, if any, and the right Y-axis shows the address space. The
dots in this plot show a time-based profile of the addresses referenced through load/store
instructions. Load instructions are colored with a gradient that ranges from green to
blue referring to low and high access costs, respectively. Store instructions are colored
in black. Finally, the third plot shows in black the achieved instruction (MIPS) rate
(referenced on the right Y-axis) within the instrumented region, as well as the L1D, L2
and L3 cache misses per instruction (on the left Y-axis) using red, orange and yellow,
respectively. With this plot, the performance analyst can correlate different metrics of
the performance and see how they progress as the execution traverses code regions and
accesses data objects.
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3.2.2. Analysis of the folding report

We outline several phenomena exposed from Figure 3. First, as expected, the access
pattern in the Scale kernel to the variable c shows a randomized access pattern with
lots of high-latency (blue) references while storing a portion of the memory allocated
in line 181 from file stream.c (the original variable b). The straight lines formed by
the references in the rest of the routines denote that they linearly advance and thus
expose spatial locality, and also the greenish color indicates that these references take
less time to be served. Second, the instructions within routines Add and Triad reference
two addresses per instruction on average, the loaded data comes from two independent
variables (or streams) simultaneously, and their accesses go from low to high addresses
honoring the user code. Finally and surprisingly, the Copy routine accesses the array in
a downwards direction although the loop is written with its index going upwards. This
effect occurs because the compiler has replaced the loop by a call to memcpy (from glibc
2.17) that reverses the loop traversal and uses SSSE3 vector instructions (through the
actual implementation memcpy ssse3 back). We observe that Triad and Copy bench-
marks achieve the highest and lowest MIPS rates, respectively. The low MIPS rate in
Copy may be explained because the execution of vector instructions and these instruc-
tions take more cycles to complete, but as a single instruction operates on multiple data,
it finalizes faster. Additionally, we expected a noticeable difference regarding MIPS in
Scale due to the introduction of the random access to the variable. However, we observe
that the instruction rate is not significantly different between the kernels. This happens
because the random() function is inlined and avoids accessing memory by means of reg-
isters; thus, the additional instructions do not miss in the cache and reduce the cache
miss ratio per instruction. Globally speaking, we notice that the L2 cache miss ratio is
similar to the L1D cache miss ratio. This effect suggests that L2 provides little benefit
for this benchmark because L2 is not sufficiently large to keep the working set. More
specifically, we observe in the Scale kernel that the L1D, L2 and L3 miss ratios are very
similar (about 5%) indicating that each instruction that misses on L1D is likely to miss
on L2 and L3, as a result of the low temporal locality. In addition, we can estimate the
used memory bandwidth used in kernels that linearly access to variables (such as Copy,
Add and Triad) if we consider that the whole variable is traversed (i.e. the loop has
1-stride access). Given these assumptions, the estimates indicate that Copy and Triad

may use 20097 and 15263 MB/s of the memory bandwidth. While these numbers are
far from the nominal maximum memory bandwidth (68 GB/s8) for a single socket, the
benchmark ran with one thread/process only and thus it is unlikely that it saturates the
memory bus.

3.2.3. Detailed analysis of the synthetic trace-file

We have also explored the synthetic trace-files generated by the Folding tool using
Paraver. Table 1 summarizes these results by showing the proportion of memory accesses
to the different parts of the memory hierarchy as well as the average cost when access-
ing each part depending on the active routine. Our first observation is the important
contribution of the Line-Fill Buffer (LFB) in terms of percentage of accesses in terms of

8http://ark.intel.com/products/81908/Intel-Xeon-Processor-E5-2680-v3-30M-Cache-2_

50-GHz
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Table 2: Association for the labels shown in the Figure 4a, including the most observed code line (MOCL)
for each region.

Label User function MOCL Duration

A
a1 CalcVolumeForceForElems 1105 268 ms

A
a2 CalcVolumeForceForElems 1121 268 ms

B CalcHourglassControlForElems 1072 208 ms
C LagrangeNodal 1263 80 ms
D CalcLagrangeElements 1609 258 ms
E CalcQForElems 1998 241 ms
F ApplyMaterialPropertiesForElems 2424 616 ms

Table 3: Classification and average costs of different accesses to the memory hierarchy per routine for
the Lulesh benchmark.

Region Subregion Metric Memory hierarchy part
L1 LFB L2 L3 DRAM

a1
% of load references 99.66% 0.05% 0.28% 0% 0%

A
a1

Average cost (in cycles) 7 25 14 n/a n/a
A

a2
% of load references 99.59% 0.14% 0.20% 0.06% 0%

a2
Average cost (in cycles) 7 20 14 80 n/a

B
% of load references 98.37% 0.54% 1.00% 0.07% 0%

B
Average cost (in cycles) 7 21 14 49 n/a

C
% of load references 98.80% 1.19% 0% 0% 0%

C
Average cost (in cycles) 7 15 n/a n/a n/a

D
% of load references 99.44% 0.12% 0.36% 0% 0.06%

D
Average cost (in cycles) 7 14 14 n/a 350

E
% of load references 98.13% 0.7% 1.16% 0% 0%

E
Average cost (in cycles) 7 14 14 n/a n/a

F
% of load references 96.55% 2.48% 0.45% 0.16% 0.33%

F
Average cost (in cycles) 7 95, 230 14, 19 109 300, 600

the average cost in cycles. The LFB is a buffer that keeps track of already requested
cache-lines. So memory references served by the LFB refer to load instructions that
are initiated by earlier and still incomplete instructions, thus exposing locality. Conse-
quently, the reported cost depends on the distance between load instructions and the
service time. We highlight that LFB and DRAM costs show multi-modal behaviors with
high variability. For instance, in the Scale kernel, data coming from DRAM takes either
350 or 800 cycles. It is also worth mentioning that DRAM and LFB provide about 13.8%
and 80.5% of the data to the Scale routine, respectively indicating a poor efficiency of
the L1, L2 and L3 caches as a result of adding a random indirection.

3.3. Lulesh v2.0

The Livermore Unstructured Lagrange Explicit Shock Hydrodynamics (LULESH)
proxy application [14] is a representative of simplified 3D Lagrangian hydrodynamics on
an unstructured mesh. We have compiled the reference code of the application9 using the

9Downloaded from https://codesign.llnl.gov/lulesh/lulesh2.0.3.tgz with SHA-1
541763c5015d094c667a79b004c22a78164fa4a4.
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(a) Folding results for the main computation region of the Lulesh 2.0 benchmark.
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(b) Folding results for the main computation region of the Lulesh 2.0 benchmark after the code modifica-
tions (at the same time-scale as in Figure 4a).

Figure 4: Analysis of Lulesh 2.0.
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Table 4: Top 5 referenced variables in Lulesh identified by their allocation call-site.

Allocation site Size % of references Comment

lulesh.h 156 7 MB 1.23% coordinates
lulesh.h 163 27 MB 1.20% node list
lulesh.h 143 7 MB 0.91% forces
lulesh.h 154 7 MB 0.89% accelerations
lulesh.h 147 7 MB 0.74% velocities

Intel compiler suite with the -O3 -xAVX -g compilation flags. We have delimited with
instrumentation points the main iteration loop of the application and executed it using
27 MPI processes on two nodes of Jureca with a problem size 963 for 200 iterations.

3.3.1. Analysis of the folding report

Figure 4a shows the evolution of the code regions, accesses to the address space and
the performance within the main iteration of the benchmark. Due to lack of space in the
plot, we have added labels (A-F) manually and the correspondence between the labels
and Table 2 shows the name of the routines. The main loop traverses seven application
regions (A-F), in which A is divided into two phases (a1 and a2). Regions A-E show
good MIPS performance with IPC rates close to 2, while region F exposes a much lower
performance. Such a lower performance is correlated with an increase of the cache misses
per instruction at all cache levels but still below 4%. The high part of the address space
refers to local variables allocated on the stack and the rest of the allocations are performed
through the new C++ language construct. We observe a larger number of modifications
within the stack region compared to the other parts of the address space. We also notice
that region a2 writes on a region of the memory space (addresses prefixed by 0x2ab) that
is later read from region B and that phases E and F modify disjoint parts of the lower
address space. This information would be valuable when searching for parallelization
opportunities using data-dependent task-based programming models.

3.3.2. Detailed analysis of the synthetic trace-file

Table 3 provides detailed access statistics for the identified regions within the main
iteration. We see a general trend: L1 serves most of the memory references, except for
Region F that shows a high value in the number of accesses provided by the LFB and
the access cost exposes a bi-modal behavior between 95 and 230 core cycles.

Further analysis with Paraver shows that there are many referenced memory objects
and we tabulate the most referenced in Table 4. The most referenced objects involve
the nodelist (allocated in lulesh.h line 163), and the coordinates, the forces, the ac-
celerations and the velocities of each element. The four latter objects implement 3D
floating-point arrays using 3 C++ vector containers (one per dimension) in a C++ class,
such as a struct of arrays (SoA). This storing method may not be efficient because the
code pointed by Table 2 shows concurrent accesses to the 3 dimensions per element, which
may result in poor locality because memory references point to different containers.

We have changed the implementation of these 3D floating-point arrays to an array
of structs (AoS) aiming to increase the locality. After applying the change, the Figure
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Of Merit (FOM) increased from 11891.71z/s to 12414.23z/s, a 4.40% increase.10 Addi-
tionally, if we focus on the longest region (F) and explore the pointed code, we observe
that it refers to an inline function invocation to the routine EvalEOSForElems. The main
loop of this routine consists of 3 inner loops that iterate over the number of elements and
additional conditionals that may also execute an additional loop over all the elements.
By joining these loops to increase the locality and reduce the number of branch instruc-
tions, the FOM increased to 12480.03z/s (a 4.80% increase from baseline). Figure 4b
shows the results for the Folding process when applied to the modified binary. While
the application behavior does not change abruptly, the overall MIPS rate is higher by
2% responding to a L1 data-cache miss reduction by 9.6%. The optimized version also
executes 2% less number of instructions due to the reduction of the branch instructions
executed (15.8%).

3.4. HPCG v3.0

The High Performance Conjugate Gradient (HPCG) code benchmarks computer sys-
tems based on a simple additive Schwarz, symmetric Gauss-Seidel preconditioned conju-
gate gradient solver [15]. We have compiled the reference code of the application11 using
the Intel compiler suite with the -O3 -xAVX -g compilation flags. We have executed the
benchmark using 24 MPI processes on a single node of the Jureca system using a problem
size nx=ny=nz=104. The application undergoes first a setup phase to test the system
resilience and ability to remain operational and then the application runs the execution
phase. Here, we have ignored the setup phase and have delimited with instrumentation
points the main execution phase only.

On a preliminary analysis of the application, we observed that most of the PEBS
references were not associated to a memory object. This occurred because the application
allocates its data using many consecutive tiny allocations (10s to 100s of bytes) which
are below the specified threshold (32 KByte) and thus not traced. The data objects
are allocated using two different mechanisms in lines 108-110 and 143 within the file
GenerateProblem ref.cpp, respectively. The first set of objects are allocated through
the new C++ language construct while the second set are allocated through the []-
operator of the C++ STL-based map structures. We avoided creating huge event trace-
files by grouping these allocations in two groups by using the new API call from Extrae.
Each grouped allocation covers the first and last addresses of all the included allocations.
Even though memory allocators may use different arenas (each on a different part of
the address space) to reduce memory fragmentation, this approach served our purposes
because the allocated regions were located in consecutive addresses.

3.4.1. Analysis of the folding report

Figure 5a shows the result of the folding tool when applied to the modified version
of the HPCG benchmark and Table 5 associates the code regions (A-E) shown in the
Figure with the actual code. We notice that each iteration consists of two rounds of calls

10As a side note, the benchmark includes a header file (lulesh tuple.h) to apply this change to
additional structures than those we indicated but its usage reduced the FOM to 11081.57 z/s.

11Downloaded from http://www.hpcg-benchmark.org/downloads/hpcg-3.0.tar.gz with SHA-1
39e1b7e45e67845f8551ff3c6ace5d3bc021524a.
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Table 5: Code association for the labels shown in Figure 5a including the most observed code line
(MOCL) for each region.

Label User function MOCL Duration

A
a1 ComputeSYMGS ref 76 147 ms

A
a2 ComputeSYMGS ref 95 143 ms

B ComputeSPMV ref 68 116 ms
C ComputeMG ref 47 96 ms

D
d1 ComputeSYMGS ref 76 147 ms

D
d2 ComputeSYMGS ref 95 143 ms

E ComputeSPMV ref 68 136 ms

Table 6: Classification and average costs of different accesses to the memory hierarchy per routine for
the HPCG Benchmark.

Region Subregion Metric Memory hierarchy part
L1 LFB L2 L3 DRAM

a1
% of load references 58.8% 30.7% 1.8% 1.6% 1.2%

A
a1

Average cost (in cycles) 7 15, 70 14 50 350, 450
A

a2
% of load references 61.8% 21.8% 2.2% 1.6% 2.0%

a2
Average cost (in cycles) 7 15 14 65 350, 700

B
% of load references 58.9% 30.9% 1.5% 1.6% 1.2%

B
Average cost (in cycles) 7 60 14 65 540

C
% of load references 62.2% 24.8% 2.0% 1.4% 2.0%

C
Average cost (in cycles) 7 70 14 110 300, 450

d1
% of load references 59.9% 30.5% 2.2% 1.0% 1.4%

D
d1

Average cost (in cycles) 7 15, 70 14 50 350
D

d2
% of load references 62.7% 22.5% 1.7% 1.0% 2.3%

d2
Average cost (in cycles) 7 15 15 50 350

E
% of load references 57.1% 33.8% 1.7% 1.5% 0.5%

E
Average cost (in cycles) 7 15, 50 16 70 270, 330

to ComputeSYMGS ref (labels A and D) and ComputeSPMV ref (labels B and E) and in
between there is a call to ComputeMG ref (label C). We identify linear accesses in the
higher and lower part of the address space. More precisely, regions A and D present
a phase (labeled as a1 and d1 in blue) that accesses the address space from lower to
upper addresses followed by a phase (labeled as a2 and d2 also in blue) that accesses the
address space from upper to lower addresses. The lower to upper accesses represent one
forward sweep, while the upper to lower accesses represent a backward sweep. It is worth
to note that there are no stores (i.e. black points) in the lower part of the address space
in the execution phase, suggesting that data has been written in an earlier application
phase.

From the performance perspective, the code does not exceed 1500 MIPS (IPC of 0.6
at the nominal frequency). The transitions between phases expose higher instruction and
branch instruction rates and a cache miss reduction. Within routines, the instruction
rate increases marginally when the application moves from forward sweep to backward
sweep (regions a1 to a2 and d1 to d2).

The report indicates that a1 and a2 traverse the whole data structure, the approx-
imations for the memory bandwidth while traversing the structure are 4197 MB/s and
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Table 7: Top 5 referenced variables in HPCG identified by their allocation call-site.

Allocation site Size % of refs Comment

GenerateProblem ref.cpp 12412 617 MB 46.21% sparse matrix

GenerateProblem ref.cpp 20513 89 MB 4.96%
global/local maps

GenerateProblem ref.cpp 20513 89 MB 4.96%
local/global maps

GenerateProblem ref.cpp 12412 78 MB 4.74% sparse matrix
GenerateProblem ref.cpp 12412 10 MB 0.70% sparse matrix
GenerateProblem ref.cpp 12412 1517 kB 0.44% sparse matrix

4315 MB/s, respectively. In comparison, the observed bandwidth while traversing the
same structure in region B achieves 6427 MB/s. These values are smaller than the band-
width observed in the Stream example but we have to consider that (i) there were 24 MPI
ranks running in the same node and competing for the bandwidth and (ii) the report
provides the performance for a single process/thread.

3.4.2. Detailed analysis of the synthetic trace-file

Table 6 shows that the backward sweeps hit approximately 3% more in L1D compared
to forward sweeps, about 8-9% less in LFB and an additional 1% of the references miss in
all the caches and have to go to DRAM. The data provided by LFB presents multi-modal
cost access that is difficult to characterize.

The results shown in Table 7 prove the high number of references to the memory
objects that we wrapped. It is known that the C library does not provide consecutive
addresses to consecutive allocation calls because of (i) internal book-keeping to track free
blocks, (ii) minimum allocation size, and (iii) alignment padding if needed. Consequently,
the object allocated in a single allocation will be more compact than the object allocated
through small allocation calls and thus it is likely to expose better spatial locality. With
this in mind, we changed the allocation of the data objects to minimize the number of
allocations and the results. Using this modified version of the code, the FOM reported
by the benchmark increased from 9.95 to 15.64 GFLOP/s (57% higher than the original)
and the performance results of the new version are shown in Figure 5b. The Figure
shows that the main computation phase on the new version lasts approximately 618 ms
(37% less) and that cache misses have decreased (for instance, L1D misses [in red] are
always below 5%). Regarding the address space, we observe the following. First, the
(wrapped) memory object allocated in GenerateProblem ref.cpp line 124 split into
two memory objects. Second, the (wrapped) object allocated in the original version
occupied 617 MB while the two objects on the newer version occupy 346 MB (56%
of original size) demonstrating that the object is more packed and might expose better
spatial locality. Third, linear accesses that we recognized in the (wrapped) object are still
visible in the two objects but there are concurrent linear accesses to both. With respect to
performance, we notice a higher MIPS rate (70% increase compared to the original) due
to improved cache usage that largely compensates the additional instructions executed
(7%). Regions a1, a2 and B show less bandwidth usage (3844, 4325 and 5580 MB/s
respectively) than the previous version which means that there is room for growth.

12This line corresponds to lines 108-110 in the original code.
13This line corresponds to lines 132-134 in the original code.
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(a) Folding results for the main computation region of the HPCG 3.0 benchmark.

0.00

0000

0000
bottom

top

C
od

e 
li

ne

ghost

A B C D E

2b880afe8900

2b8815b91e00

2b882073b300

2b882b2e4800

2b8835e8dd00

A
ddresses referenced

135_GenerateProblem_ref.cpp|115 MB

136_GenerateProblem_ref.cpp|231 MB

136_GenerateProblem_ref.cpp|28 MB

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.00 123.59 247.17 370.76 494.34 617.93 980.60
0
500
1000
1500
2000
2500
3000

M
IP

S

C
ou

nt
er

 / 
in

st
ru

ct
io

n

Time (ms)
Branches L1D miss L2 miss L3 miss MIPS

(b) Folding results for the main computation region of the HPCG 3.0 benchmark after the code modifica-
tions (at the same time-scale as in Figure 5a).

Figure 5: Analysis of HPCG 3.0.
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4. Related work

This section describes earlier approaches related to performance analysis tools that
have focused to some extent on the analysis of data structures and the efficiency achieved
while accessing to them. We divide this research into two groups depending on the
mechanism used to capture the addresses referenced by the load/store instructions.

The first group includes tools that instrument the application instructions to obtain
the referenced addresses. MemSpy [16] is a prototype tool to profile applications on a sys-
tem simulator that introduces the notion of data-oriented, in addition to code oriented,
performance tuning. This tool instruments every memory reference from an application
run and leverages the references to a memory simulator that calculates statistics such as
cache hits, cache misses, etc. according to a given cache organization. SLO [17] suggests
locality optimizations by analyzing the application reuse paths to find the root causes
of poor data locality. This tool extends the GCC compiler to capture the application’s
memory accesses, function calls, and loops in order to track data reuses, and then it
analyzes the reused paths to suggest code loop transformations. MACPO [18] captures
memory traces and computes metrics for the memory access behavior of source-level data
structures. The tool uses PerfExpert [19] to identify code regions with memory-related
inefficiencies, then employs the LLVM compiler to instrument the memory references,
and, finally, it calculates several reuse factors and the number of data streams in a loop
nest. Intel R© Advisor is a component from the Intel R© Parallel Studio XE [20] that pro-
vides users insights on applications’ vectorization. It relies on PIN [21] to instrument
binaries and precisely correlates memory access on user selected routines with source-
code. Tareador [22] is a tool that estimates how much parallelism can be achieved in
a task-based data-flow programming model. The tool employs dynamic instrumenta-
tion to monitor the memory accesses of delimited regions of code in order to determine
whether they can simultaneously run without data race conditions, and then it simulates
the application execution based on this outcome. EVOP is an emulator-based data-
oriented profiling tool to analyze actual program executions in a system equipped only
with a DRAM-based memory [23]. EVOP uses dynamic instrumentation to monitor the
memory references in order to detect which memory structures are the most referenced
and then estimate the CPU stall cycles incurred by the different memory objects to de-
cide their optimal object placement in a heterogeneous memory system by means of the
dmem advisor tool [24]. ADAMANT [25] uses the PEBIL instrumentation package [26]
and includes tools to characterize application data objects, to provide reports helping on
algorithm design and tuning by devising optimal data placement, and to manage data
movement improving locality.

The second group of tools take benefit of hardware mechanisms to sample addresses
referenced when processor counter overflows occur and estimate the accesses weight from
the sample count. The Oracle Developer Studio [27] (formerly known as Sun ONE Studio)
incorporates a tool to explore memory system behavior in the context of the application’s
data space [28]. This extension brings the analyst independent and uncorrelated views
that rank program counters and data objects according to hardware counter metrics
and it shows metrics for each element in data object structures. HPCToolkit has been
recently extended to support data-centric profiling of parallel programs [29], providing
a graphical user interface that presents data- and code-centric metrics in a single panel,
easing the correlation between the two. Roy and Liu developed StructSlim [30] on top of
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HPCToolkit to determine memory access patterns to guide structure splitting. Giménez
et al. use PEBS to monitor load instructions that access addresses within memory
regions delimited by user-specified data objects and focusing on those that surpass a
given latency [31]. Then, they associate the memory behavior with semantic attributes,
including the application context which is shown through the MemAxes visualization
tool.

The BSC tools for the memory exploration adopt a hybrid approach combining PEBS-
based sampling and minimal instrumentation usage and its main difference from existing
tools relies on the ability to report time-based memory access patterns, in addition to
source code profiles and performance bottlenecks. Regarding the monitoring mecha-
nism, the tool brings two benefits. First, limiting the instrumentation usage reduces the
overhead suffered by the application and thus increases the representability of the per-
formance results. Second, the folding mechanism allows the analyst to blindly choose a
sampling frequency because the mechanism gathers samples from repetitive code regions
into a synthetic one, and consequently minimizes the number of application executions.
Regarding the results provided, the inclusion of the temporal analysis permits time-
based studies such as detection of simultaneous memory streams, ordering accesses to
the memory hierarchy, and even, insights for extracting parallelism through task-based
data-flow programming models. The results also allow manually estimating the memory
bus bandwidth usage per variable on a give region of code on linear accesses.

5. Conclusions

Memory hierarchies are getting complex and it is necessary to better understand
the application behavior in terms of memory accesses to improve the application perfor-
mance and prepare for future memory technologies. The PEBS hardware infrastructure
assists with sampling memory-related instructions and gathers valuable details about the
application behavior. We have described the latest extensions in the Extrae instrumen-
tation package order to enable performance analysts to understand the application and
system behavior in terms of memory accesses even for in-production optimized binaries.
The additional extension to the folding mechanism depicts the temporal evolution of
the memory accesses in a compute region by using a coarse-grain non-intrusive sampling
frequency and minimal instrumentation. The usage of these tools results in thorough
memory access patterns exploration on two state-of-the-art benchmarks without having
to use high-frequency sampling and thus not incurring on large overheads. The explo-
ration included scan of the memory access patterns from a time perspective and the
identification of the most dominant data streams and their temporal evolution along
computing regions. As a result of this exploration, we have proposed small changes to
both of them that improved their performance.

In addition to the optimization efforts, application developers can use the presented
tools to explore how the address space is being accessed and confirm if the results match
their expectations. For instance, the results for the modified Stream show that a user
can identify the modification applied to the benchmark as well as the compiler decision
to replace the source code by a memcpy call that accesses the address space in reverse
order compared to what the developer would expect. Concerning Lulesh, the results show
potential independent load and store accesses to the same parts of the address space by
different routines which may be a valuable insight for using data-dependent task-based
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programming models. Finally, the HPCG results show that the main routine traverses
the address space two times (in a forward direction followed by a backward direction) and
that a part of the address space is not modified. HPCG also shows different performance
values for forward and backward sweeps not only in cache miss ratios but also in the cost
of providing data from memory.

Hardware architects may also find valuable insight in the results obtained. One possi-
ble suggestion according to the Stream results would be to not cache in L2 given parts of
the address space for a period of time with the consequent energy savings. Additionally,
the results for HPCG indicate that a portion of the address space is only read during the
execution phase and thus this region may benefit from memory technologies where loads
are faster than stores.
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