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P. Kůsa, A. Mareka, S. S. Köcherb, H.-H. Kowalskic, C. Carbognoc, Ch. Scheurerb, K. Reuterb, M. Schefflerc, H.
Lederera

aMax Planck Computing and Data Facility, D-85747 Garching, Germany
bTheoretical Chemistry and Catalysis Research Center, Technische UniversitÃďt MÃĳnchen, D-85747 Garching, Germany

cFritz-Haber-Institut der Max-Planck-Gesellschaft, D-14195 Berlin, Germany

Abstract

The solution of (generalized) eigenvalue problems for symmetric or Hermitian matrices is a common subtask of many
numerical calculations in electronic structure theory or materials science. Depending on the scientific problem, solving
the eigenvalue problem can easily amount to a sizeable fraction of the whole numerical calculation, and quite often is
even the dominant part by far. For researchers in the field of computational materials science, an efficient and scalable
solution of the eigenvalue problem is thus of major importance. The ELPA-library (E igenvalue SoLvers for Petaflop-
Applications) is a well-established dense direct eigenvalue solver library, which has proven to be very efficient and scalable
up to very large core counts. It is in a wide-spread production use on a large variety of HPC systems worldwide, and is
applied by many codes in the field of materials science. In this paper, we describe the latest optimizations of the ELPA-
library for new HPC architectures of the Intel Skylake processor family with an AVX-512 SIMD instruction set, or for
HPC systems accelerated with recent GPUs. Apart from those direct hardware-related optimizations, we also describe
a complete redesign of the API in a modern modular way, which, apart from a much simpler and more flexible usability,
leads to a new path to access system-specific performance optimizations. In order to ensure optimal performance for a
particular scientific setting or a specific HPC system, the new API allows the user to influence in straightforward way
the internal details of the algorithms and of performance-critical parameters used in the ELPA-library. On top of that,
we introduced an autotuning functionality, which allows for finding the best settings in a self-contained automated way,
without the need of much user effort. In situations where many eigenvalue problems with similar settings have to be
solved consecutively, the autotuning process of the ELPA-library can be done “on-the-fly”, without the need of preceding
the simulation with an “artificial” autotuning step. Practical applications from materials science which rely on reaching
a numerical convergence limit by so-called self-consistency iterations can profit from the on-the-fly autotuning. On some
examples of scientific interest, simulated with the FHI-aims [17] application, the advantages of the latest optimizations
of the ELPA-library are demonstrated.

1. Introduction

When developing and maintaining a library for HPC
applications the developers generally have to make a dif-
ficult decision: on the one hand they can decide to de-
velop a specialized library which shows best performance
on a certain HPC hardware, on the other, they can choose
to develop a general library which supports a huge vari-
ety of HPC systems, albeit, as a consequence, the per-
formance tuning becomes much more complex. The rea-
son for this choice is mandated by the extreme variety
of available HPC systems: it is an almost impossible en-
deavour to optimize a library for each available processor
from different manufacturers (or even different processors
from the same manufacturer) each with its own character-
istics of CPU frequency, cache hierarchy and cache sizes,
SIMD instructions set, only to mention a few. This task
is further complicated by the availability of different in-
terconnects, memory configurations and, additionally, the
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possible presence of GPU (or other) accelerators. In the
HPC community this led to the fact that there are on
the one hand general, standard libraries, like the famous
BLAS, LAPACK, and ScaLAPACK [9, 8, 7], which are
open-source and can be compiled and used on every sys-
tem. And on the other hand, there exist, normally as
closed source, vendor-provided optimized implementations
of these standard libraries, which run with very good per-
formance on the vendor-supplied systems. Some typical
examples for vendor-specific implementations of BLAS,
LAPACK, and ScaLAPACK are Intel’s MKL [11], IBM’s
(p)essl [12, 13] and Nvidia’s cublas [10] libraries.

In this paper we present our approach to provide op-
timal performance on different HPC systems. Originally
started in 2008, the ELPA library is nowadays one of the
most used HPC libraries for solving symmetric (or hermi-
tian) eigenvalue problems. It is installed at many HPC
centers in the world and used by many important applica-
tions in the field of material structure theory and molecu-
lar dynamics, like Gromacs [14], FHI-aims [17], Quantum-
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Esspresso [15], and Wien2k [16], just to mention a few.
Over the years, during the development of the ELPA

library, a lot of attention has been paid to search for op-
timal algorithms, node-level optimization (efficient usage
of BLAS level 3 routines, optimal blocking for cache, the
development of optimized kernels using compiler intrinsics
or even assembly) and very efficient MPI communication
patterns. Some of the results were already published in
previous publications [1] and [2].

Apart from these specialized, traditional-style optimiza-
tions, which is most likely very similar to the approaches of
a hardware vendor implementing optimized versions of a
library, in ELPA we additionally add another class of opti-
mizations, which aims to help the performance portability
on different processors and architectures, ranging from a
local PC to possibly all HPC systems. It is reasonable
to assume that it will not be possible to find one imple-
mentation which is the best-performing in all conceivable
scenarios. Thus, in order to deliver excellent performance
for each scenario, our approach is based on having several
variants of an algorithm, or on allowing to fine-tune the
behavior (e.g. tuning different block sizes in different parts
of one algorithm) of a particular algorithm and to allow a
run-time choice of the best-performing settings. The idea
is to provide reasonable default settings, which work ex-
cellent, or at least reasonably well in most cases, but our
approach also offers two additional possibilities to tweak
the execution of the library: one the one hand, users with
a deep domain knowledge are allowed to change some (or
even all) run-time choices in a very clear and easy way.
On the other hand we have implemented an autotuning
functionality, which allows less experienced users to find
the best settings for their specific combination of problem
size and used hardware.

As a consequence, a complete redesign of the ELPA
API has been done, which allows the user (if needed) to
fully control all possible settings in order to influence the
time-to-solution of the ELPA library. Furthermore, the
new API allows in a natural way to implement a (semi)
automated search for the best settings. Last but not least,
the new API allows to introduce new tunable parameters
in the future without changing the API and breaking com-
patibility to previous version of the ELPA library.

This paper is organized as follows: After recapitulating
the mathematical background of the solution to a (gener-
alized) eigenvalue problem in Section 2, we describe in Sec-
tion 3 the latest optimization for the Intel Xeon Skylake
and NVIDIA GPU architectures and show some perfor-
mance results. In Section 4 we introduce the new API and
the autotuning capability of the ELPA library and explain
the advantages and the usage of the new approach. Fi-
nally, using two real-world examples in Section 5, we show
the benefits the applications can get by using the latest
version of the ELPA library. The paper is then concluded
in Section 6.

2. The eigenvalue problem solved by ELPA

We look for the solution of a (possibly generalized)
eigenvalue problem (EVP)

AV = BV Λ. (1)

The steps of finding a solution to this problem are well
known and conceptually simple, see, e.g, [6]. The basic
ELPA algorithm has already been described in [1], [2] or
[3], we will, however, recall the basic steps for the sake of
completeness. First, if we are to compute a generalized
EVP, we start by computing the Cholesky decomposition

B = LLH (2)

of a possibly complex matrix B (LH denoting the conju-
gate transpose of L) and by transforming the problem to
a standard one, Ã = Ṽ Λ with

Ã = L−1A(L−1)H . (3)

More information regarding the new API for the general-
ized EVP can be found in Section 4.2. In the case that a
standard EVP is to be solved, the previous step is skipped.
In any case, the next step is the reduction of the matrix
to a tridiagonal form

T = QÃQH , (4)

where Q = Qn · · ·Q2Q1 and QT = QH
1 Q

H
2 · · ·QH

n are the
successive Householder matrices reducing one column of Ã
at a time. The Householder matrices Qi = I − βiviv

H
i are

never constructed explicitly, but are always represented
only by the Householder vector vi. In each step, a new
Householder vector is computed and stored in place of
an eliminated column of A, reducing the memory require-
ments. The diagonal and sub-diagonal of the resulting ma-
trix are stored separately. Applying transformations on A
from both sides complicates blocking and usage of efficient
BLAS level 3 kernels. This restriction is alleviated in the
two-stage algorithm, which will be briefly described later.
The next step is the solution of the tridiagonal eigenvalue
problem

T V̂ = V̂ Λ (5)

and the final step is the back transformation of the k re-
quired eigenvectors, the last step (7) being performed only
for the generalized EVP:

Ṽ = QH V̂ (6)
V = (L−1)H Ṽ . (7)

The two stage algorithm, featured in ELPA 2, differs
from the previous description in performing the conversion
to the tridiagonal matrix in two steps. In the first step,
the matrix is reduced to a banded form. This allows usage
of highly optimized BLAS level 3 functions. In the second
step, the matrix is further reduced to the tridiagonal form.
The two stage tridiagonalization is almost always faster,
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Figure 1: Scaling of the ELPA library on the ”Hydra” system at
MPCDF, an Intel Xeon Ivy Bridge system. For comparison results
for Intel’s MKL 2017 are shown, using the MKL implementation
of the routine ”pdsyevd” (all eigenvectors are computed), and the
routine ”pdsyevr” (part of the eigenvectors are computed). All the
computations use a double-precision, real matrix of size n = 20000.

however, the price to pay is the need to also transform each
eigenvector (found by the tridiagonal solver) twice, in or-
der to find the eigenvector of the original system. This
makes ELPA 2 an obvious choice when only a small part
of the eigenvectors are sought. When most or all of the
eigenvectors are needed, the best choice might depend on
other parameters (such as the matrix size, particular hard-
ware, etc) as well.

3. Optimizations for modern architectures

3.1. Intel Xeon Skylake optimizations
We present some scaling results of the ELPA library

obtained using the two last generations of the large HPC
systems at MPCDF. As of the time of writing, the previous
generation supercomputer “Hydra” (3500 two-socket Ivy
Bridge nodes with CPU frequency 2.8 GHz and 20 cores
each connected via an InfiniBand interconnect) is being
replaced by the new Skylake-based system “Cobra” (cur-
rently 3188 two-socket Skylake nodes with CPU frequency
2.4 GHz and 40 cores each connected via an OmniPath
network).

Even though both the ELPA and the MKL library
can handle complex matrices, or single-precision numbers,
for sake of simplicity, all the comparisons presented in
this section were done with double-precision real num-
bers. Nonetheless, similar results are expected in single-
precision and/or complex calculations. In Fig. 1 we show
results from the Ivy Bridge machine Hydra to serve as
a baseline. While for a smaller number of cores (<640)
the MKL routines are competitive with the 1-stage ELPA
solver, the ELPA 2-stage solver always shows considerably
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Figure 2: Scaling of the ELPA library on the “Cobra” HPC system
at MPCDF, an Intel Xeon Skylake system. A comparison with Intel’s
MKL 2018 version is shown. The setting are identical to the one in
Figure 1. All test programs have been compiled with the Intel 2018
compiler and use Intel’s 2018 MPI library and MKL.

better performance. Furthermore, the MKL implemen-
tation shows a worse scaling behaviour beyond 1000 cores
and the performance deteriorates significantly, whereas this
is not the case for both the ELPA 1 and ELPA 2 solvers.
Thus an application using ELPA at large core counts will
suffer much less from the slight loss of scalability. We want
to point out that at the core count where also for ELPA 1
and ELPA 2 the performance worsens, the local matrix has
a size of 100x100 only – very small indeed, which might
lead to a too large communication overhead and thus the
breakdown of the scaling.

In Fig. 2 we show the latest results from the Sky-
lake machine Cobra. One can see that both libraries per-
form considerably better than on the previous machine
(see Fig. 1), but the general results of the scalability and
the comparison between ELPA and the MKL library are
the same. The scaling behaviour of ELPA for matrices
of different size (up to over half million) on the Cobra
machine is shown in Fig. 3. Very good scaling is demon-
strated throughout the investigated region. The same fig-
ure also shows a direct comparison between the perfor-
mance of ELPA 2 on Ivy Bridge and Skylake for matrix
size 20000. Most of the performance benefits of the newer
Intel hardware are automatically delivered by the use of a
recent compiler supporting the latest Xeon processors and
an optimized implementation of BLAS in Intel’s MKL li-
brary. In the ELPA 2 solver, however, there is a specific
part of the back transformation algorithm, which is very
computationally intensive, but cannot be efficiently imple-
mented by calls to the BLAS library. In order to achieve
optimal performance, these small but important computa-
tional kernels have been implemented with compiler SIMD
intrinsics, or even with assembly language. Such imple-
mentations are not portable and thus it is necessary to

3
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Figure 3: Scaling of the ELPA library for real, double precision
matrices and 100% eigenvectors sought. We show a direct compari-
son of the performance between an Ivy Bridge and a Skylake based
HPC system for matrix size n = 20000 (both curves have already
been seen in Figures 1 and 2). Additionally, scaling curves for larger
matrices on the Skylake system are also shown together with dotted
lines indicating an ideal scaling.

write a new variant for each new instruction set, as it has
already been described in [2].

Due to its 512 bit wide vector registers, the latest SIMD
instruction set of Intel Xeon processors, known as AVX-
512, can process four double or eight single precision real
values (2 and 4, respectively, in case of complex numbers)
in one vector instruction. Theoretically, this gives twice
the performance than the older 256 bit AVX-2 vector in-
structions. However, due to heat management, modern
Xeon processors utilize CPU frequency throttling, which
occurs when the computations are too intensive and the
processor starts to heat up. For the user it is far from triv-
ial to understand, when this thermal frequency throttling
becomes active and at which “AVX frequency” the vector
instructions are executed. The theoretical factor of two
performance gain of the hand-tuned AVX-512 kernels can
thus be reduced.

The overall effect can be judged from Figure 3, which
shows results using the AVX-2 (on Ivy Bridge) and AVX-
512 (on Skylake) hand written kernels, respectively. Note,
however, that on both machines the “effective” frequency
at which the vector instructions were executed are not
necessarily the same and a speedup of two is usually not
achieved. Results show a speedup in the range of roughly
1.5x (80 cores) and 2x (10240 cores), which is a very good
achievement, given that a large part of the performance
improvement of the new HPC systems is delivered by an
increasing number of cores, which is not accounted for in
this comparison. Indeed, if we compared the performance
based on the number of nodes instead of the number of
cores, the improvement for Skylake nodes (40 cores/node)
over Ivy bridge (20 cores/node), would be even higher.
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Figure 4: Total solution times in seconds for CPU only and CPU +
GPU versions of ELPA 1. Results from two different architectures
are shown for comparison. The problem with the largest matrix is
not always computed due to memory limitations of the GPU cards.

3.2. GPU-related optimizations
Modern GPU cards offer a very large peak performance,

which exceeds the peak performance of the whole CPU
node significantly. It is thus important to be able to offload
arithmetically most intensive parts of the computation to
the GPU card. Since the CPU version of the ELPA library
uses BLAS calls for local matrix and vector calculations,
the incorporation of the GPU utilisation is quite straight-
forward, as it has already been described in detail in [3].
When appropriate, blocks of locally owned matrices and
vectors are explicitly transferred between the host mem-
ory and the device memory and the calculations are then
performed on the GPU devices using calls to a highly opti-
mized cuBLAS library[10]. The GPU implementation thus
still relies on the very efficient MPI-based implementation
of ELPA with a block-cyclic distribution of the matrices,
but, on top of that, each MPI task communicates with the
GPU in order to speed-up arithmetically intensive local
computations.

Despite our effort to keep a similar code path for both
the CPU and the GPU version, occasionally more substan-
tial changes in the algorithm had to be done in order to
obtain the best performance. The CPU version of ELPA
has been highly optimized by keeping the cache reuse in
mind. For this reason, many of the algorithms use explicit
blocking and try to reuse pieces of the matrices, which are
in cache, for multiple operations. This is often not favor-
able for a GPU, since it cannot benefit from caching, but,
rather, it benefits from large amounts of data being pro-
cessed in one run. Some of the blocking strategies thus
had to be changed and the algorithm had to be altered to
better suite the GPU. In a typical compute node, the num-
ber of CPU cores (several dozen) is much bigger then the
number of GPU devices and thus in order to ensure good
performance, the Nvidia Multi-process Service [22] has to
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Figure 5: Detailed comparison of individual parts of the ELPA 1
algorithm on the Power8 node (see in text) using CPU only and
CPU and all 4 GPUs.

be used to dispatch the requests from individual MPI tasks
to the GPU devices and to use its streams efficiently.

We have tested the GPU implementation on two dif-
ferent systems representing two different architectures: the
first one is a rather old, but standard Intel-based system
with two Intel Xeon Ivy Bridge processors with 20 cores
in total, equipped with two Nvidia Tesla K40m GPUs,
connected with PCIExpress Gen2 to the host. The second
machine has two IBM Power8 processors and four powerful
Nvidia Pascal P100 GPUs and NVLINK interconnect. On
the Intel system we used the Intel 16 compilers, MKL 2017
(containing the BLAS functions) and CUDA 8 (contain-
ing the cuBLAS implementation). On the Power8 machine
we used the GNU compilers version 5.3, the ESSL library
version 5.5 (containing the BLAS functions) and CUDA 9.

Figure 4 shows the comparison of the total run-time for
problems with different matrix sizes on both mentioned
machines and for both the CPU and the GPU versions
of ELPA 1. On the Power8 machine, the CPU version is
generally faster, mostly due to higher frequency (4 GHz
compared to 2.8 GHz of the Intel machine). For both
machines and small matrices, the CPU implementation is
significantly faster, since there is not enough workload to
saturate the GPUs. From a certain threshold on (ma-
trix size of around 5000), however, this behavior changes
and the GPU version becomes much faster. The maximal
speed-up for the largest computed matrices is 3.6x on the
Intel + K40m system and 11.9x on the Power8 + P100
system, respectively. For multiple-node runs, the perfor-
mance benefit of the GPU version is comparable if the local
matrix size per node is of a similar size as in the described
setup.

Going into more details, we show in Figure 5 the break-
down of the runtime into individual steps on the Power8
node (CPU only, and CPU with 4 GPUs). In both cases,
the compute-time is dominated by the tridiagonalization

step. This step contains BLAS level 2 operations (matrix-
vector multiplications), which can not be very efficiently
implemented in either BLAS (CPU) or cuBLAS (GPU)
libraries. Still, since most of the work done in both the
tridiagonal solver and the back substitution is hidden in
BLAS level 3 operations, which are particularly efficient
on GPU, we can see that the GPU version is even more
limited by the BLAS level 2 dominated tridiagonalization.

The solution times for large matrices are listed in detail
in Table 1. The first two cases are intended for a compar-
ison between the two tested architectures, since the same
matrix size is used, and only 2 GPUs are utilized for the
Power8 system. The last case shows the largest possible
(due to memory limitations) computed matrix with the
full Power8 node (using all 4 GPUs). It is worth notic-
ing, that for the back substitution step we get almost 30x
speed-up. This is caused by the efficient implementation
using BLAS level 3 operations only. Indeed, even the total
speed-up of almost 12x is very good.

4. Redesign of the ELPA library

The ELPA library has been developed for some time
already. It’s original interface had been inspired by the in-
terfaces of the famous HPC libraries BLAS, LAPACK, and
SCALAPACK. This means there was one specific function
call for each purpose, and the user had to specify all the
input and output data, but also all parameters control-
ling the behaviour in the function signature. While this
is reasonable for the above mentioned standard libraries,
where the signatures of each function are essentially fixed
since a long time, this turned out not to be optimal for
the ELPA library: firstly, adding new functionality to the
ELPA library always implied changing the function signa-
tures and thus breaking the API and ABI compatibility
between different releases, which is not acceptable from
the users point of view. Secondly, over time the signatures
of the functions become just too long and thus error prone.

It was thus decided to redefine the API of the ELPA
library in a new way such that, firstly, the function sig-
natures are as simple as possible. Secondly, the new API
design introduces flexibility, such that adding a new pa-
rameter to the library does not change the signatures (see
Subsection 4.1). By this simplification of the API, it has
been possible to expose many internal parameters of the
library, which allow for the run-time performance tuning
by the calling programs. Furthermore, as discussed further
below, this allows for an autotuning of these parameters
in an easy way (to be discussed in Subsection 4.3), which
would have been impossible with the old rigid interface.

4.1. Examples of the new API
We have chosen the object-oriented approach (using

the modern Fortran language) to achieve all the previ-
ously mentioned goals. In the simplest variant, the user
can simply create the ELPA object, set the required prob-
lem properties, call the solution method and then free the
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Table 1: Performance of individual stages of the ELPA 1 algorithm.
machine 2xIntel+2xK40m 2xPower8+2xP100 2xPower8+4xP100
mat. size 32768 32768 65536

CPU GPU CPU GPU CPU GPU
t(s) t(s) s-up t(s) t(s) s-up t(s) t(s) s-up

Total 1424 396 3.6x 798 136 5.9x 6139 514 11.9x
Tridiag. 1108 333 3.3x 555 113 4.9x 4263 422 10.1x

Solve 117 24.1 4.9x 88.9 12.9 6.9x 678 49.2 13.8x
Back s. 198 36.9 5.4x 154 10.3 15x 1198 42.1 28.5x

1 use e l pa
2 class ( e l p a t ) , pointer : : e
3 integer : : s u c c e s s
4 e => e l p a a l l o c a t e ( )
5 ! set parameters describing the matrix and
6 ! i t s MPI distribution , they are required
7 c a l l e%s e t ( ”na” , na , s u c c e s s )
8 c a l l e%s e t ( ” nev ” , nev , s u c c e s s )
9 c a l l e%s e t ( ” l o c a l n r o w s ” , na rows , s u c c e s s )

10 c a l l e%s e t ( ” l o c a l n c o l s ” , n a c o l s , s u c c e s s )
11 c a l l e%s e t ( ” nblk ” , nblk , s u c c e s s )
12 c a l l e%s e t ( ” mpi comm parent ” , mpi comm world , ...

s u c c e s s )
13 c a l l e%s e t ( ” p r o c e s s r o w ” , my prow , s u c c e s s )
14 c a l l e%s e t ( ” p r o c e s s c o l ” , my pcol , s u c c e s s )
15 s u c c e s s = e%setup ( )
16 ! i f desired , set other run−time options
17 c a l l e%s e t ( ” s o l v e r ” , e l p a s o l v e r 2 s t a g e , s u c c e s s )
18 ! c a l l one of the solution methods
19 ! the data types of a , ev , and z determine whether
20 ! i t i s s ingle /double precision and real /complex
21 c a l l e%e i g e n v e c t o r s ( a , ev , z , s u c c e s s )
22 ! cleanup
23 c a l l e l p a d e a l l o c a t e ( e )
24 c a l l e l p a u n i n i t ( )

Code 1: Example use of the ELPA object

object again. A sketch of such code is shown in Code 1 for
a Fortran and in Code 2 for an C implementation. When
re-designing the ELPA API, great care has been taken that
for the user the transition from the old to the new API is
easily done without a lot of effort. We want to stress that
no changes to the data structures of the input and output
data to ELPA library have been done and the users do not
have to change their applications dramatically. As already
mentioned, in the new API adding new parameters is quite
flexible. Since all parameters are identified by strings and
handled by the set and get methods, adding a new param-
eter does not require any change of API. By defining for
each parameter an implicit value, backward compatibility
between different versions of the library is ensured. The
library comes with methods, which provide functionality
to print, save and load the status of an ELPA object (and
all it’s parameters).

The new API also allows for having multiple instances
of ELPA at the same time, each of them possibly in a dif-
ferent state or tuned for different type of problems. Of
course, all instances can be created and destroyed at will
independently of each other. For example, it is thus possi-
ble to have two instances, where the first one is configured

1 #include <e l pa / e lp a . h>
2 e l p a t handle ;
3 handle = e l p a a l l o c a t e (& e r r o r ) ;
4 // set everything l i k e in the Fortran example ,
5 // using the handle
6 e l p a s e t ( handle , ”na” , na , &e r r o r ) ;
7 // values can also be retrieved
8 e l p a g e t ( handle , ” s o l v e r ” , &value , &e r r o r ) ;
9 p r i n t f ( ” S o l v e r i s s e t to %d \n” , va lue ) ;

10 // solve the EV problem
11 // the data types of a , ev , and z determine whether
12 // i t i s a single /double , real /complex problem
13 e l p a e i g e n v e c t o r s ( handle , a , ev , z , &e r r o r ) ;
14 // cleanup
15 e l p a d e a l l o c a t e ( handle ) ;
16 e l p a u n i n i t ( ) ;

Code 2: Example use of the C interface

1 ! for the generalized EVP a boolean parameter
2 ! is already decomposed for the f i r s t time with
3 ! the same matrix b, c a l l with . f a l s e .
4 c a l l e%g e n e r a l i z e d e i g e n v e c t o r s ( a , b , ev , z , ...

. f a l s e . , s u c c e s s )
5 ! now b actually contains inverse of the Cholesky
6 ! decomposition for the next time with the same b,
7 ! c a l l with . true .
8 c a l l e%g e n e r a l i z e d e i g e n v e c t o r s ( a , b , ev , z , ...

. true . , s u c c e s s )

Code 3: Generalized EVP API

to do all the computations on the CPUs and the second one
is configured to use GPUs. This might be beneficial when
a user application has two classes of eigenvalue problems
to solve: one for small and one for large matrices. Another
example might be having one ELPA instance optimized for
single precision and an other one for double precision cal-
culations if the application wants to mix the two. Such
example, and the performance gained with this approach
is described in Section 5.2.

4.2. Generalized EVP problem
The new API now features a dedicated function for

solving a generalized eigenvector problem. Since in ap-
plications it is often the case that there is a sequence of
generalized EVP calculations with different matrices A but
the same matrix B, we designed the API to take advan-
tage of this. The function generalized eigenvectors has the
parameter is already decomposed. If false, first a Cholesky
decomposition (2) of matrix B is computed and the re-
sult is then inverted. Both operations are efficiently im-
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1 use e l pa
2 class ( e l p a t ) , pointer : : e
3 class ( e l p a a u t o t u n e t ) , pointer : : t u n e s t a t e
4 e => e l p a a l l o c a t e ( )
5 ! set a l l the required f i e l d s , omitting others
6 c a l l e%s e t ( ”na” , na , e r r o r )
7 ! alternatively exclude some parameters from ...

autotuning by setting them
8 c a l l e%s e t ( ”gpu” , 0)
9 ! set up the ELPA object and create the autotuning ...

object
10 s u c c e s s = e%setup ( )
11 t u n e s t a t e => e%autotune setup ( l e v e l , domain , e r r o r )
12 i t e r =0
13 ! instead of this , c a l l e . g . inside the SCF cycle
14 do while ( e%a u t o t u n e s t e p ( t u n e s t a t e ) )
15 i t e r=i t e r +1
16 c a l l e%e i g e n v e c t o r s ( a , ev , z , e r r o r )
17 ! do whatever needed with the result
18 i f ( i t e r > MAX ITER) then ! optionally . . .
19 ! the status of the autotuning can be saved
20 c a l l e%a u t o t u n e s a v e s t a t e ( t u n e s t a t e , ...

” autotune checkpo int . txt ” )
21 ! the autotuning then can be stopped and resumed
22 exit
23 endif
24 end do
25 ! set and print the autotuned−settings
26 c a l l e%a u t o t u n e s e t b e s t ( t u n e s t a t e )
27 ! the current values of the parameters can be saved
28 c a l l e%s a v e a l l p a r a m e t e r s ( ” autotuned params . txt ” )
29 ! de−al locate autotune object
30 c a l l e l p a a u t o t u n e d e a l l o c a t e ( t u n e s t a t e )

Code 4: Example use of autotuning. In a real-world application, the
artificial while cycle can be replaced by the existing logic.

plemented inside the ELPA library and are performed in-
place, so the matrix B is overwritten on the output of gen-
eralized eigenvectors as a side-effect of the function call.
For the subsequent calls to the generalized EVP solver
with the same matrix B, this modified value is provided
together with setting the parameter is already decomposed
to true, as it is shown in Code 3.

In both cases, an efficient implementation of triangular
matrix multiplication based on modification of the Cannon
algorithm, described in [5], is used for the transformations
(3) and (7). The authors of [5] show that their algorithm
has very good scaling properties. Furthermore, even in the
case, when only one generalized EVP with a given matrix
B is computed and thus the overhead of explicitly invert-
ing its Cholesky decomposition is the largest, the total
cost of the computation is almost always smaller than in
an alternative approach without its explicit construction.
For the algorithm details, performance comparisons and
further references see [5].

4.3. Autotuning
As we have described above, one of the advantages of

the new API is the possibility to add parameters which
can influence the performance for different setups on dif-
ferent hardware. However, a new problem arises from the
fact that choosing the best (w.r.t. performance) values
for these parameters either requires expert knowledge of
the user or the tedious approach to test different possi-
bilities. Although in the ELPA library there are reason-
able default values for all parameters (chosen such that

the performance should be optimal in most cases), it still
very much depends on the particular hardware and the set-
ting of the problem to solve (size of the matrix, Scalapack
block-size, number of eigenvectors sought, process distri-
bution, etc.), whether the default is delivering the best
performance.

For all users that do not want to find the best setting
by themselves, we developed an autotuning capability of
the ELPA library, which should allow the user to find the
best settings of parameters in a (semi) automated way.
Autotuning works by solving repeatedly the same (or a
very similar) problem over and over again, and testing at
each step one of the possible combinations of all param-
eters. At the end the setting with the best run-time is
reported to the user and can than be used for the subse-
quent calculations. This situation arises quite naturally in
practical applications of electronic structure theory, where
quite often the so-called self-consistent field (SCF) prob-
lem is solved iteratively (see Section 5).

In order to make the autotuning functionality as flexi-
ble as possible for the user, the ELPA library defines cer-
tain sets of tunable-parameters. With the set FAST the
autotuning finishes much faster than with the set MEDIUM,
but of course some possible combinations are not consid-
ered in the former set. The user is offered even more flex-
ibility by excluding some settings from the search tree by
manually setting parameters to a fixed value. An exam-
ple of setting up the autotuning is given in the Code 4,
where the tuning of the GPU usage is manually excluded.
If there are not enough iterations within the SCF loop
to finish the autotuning process, a snapshot of its current
state can be saved and the process can be resumed later.
When the autotuning process is finished and the values of
the parameters of the ELPA object are satisfactory, they
can be also saved to a file for a future use (to have the
optimal parameters without the need of running the auto-
tuning again). Both mentioned possibilities are outlined
in Code 4.

We illustrate the possibilities of autotuning on a partic-
ular example. In Section 3.2 we have described the GPU
implementation of ELPA and showed that the CPU ver-
sion of ELPA is faster for small matrices and the GPU
version is faster for large ones, but the turning point is
different for individual parts of the algorithm. Since the
user can have a full control over which routine runs on
CPU and which on GPU, either directly or using auto-
tuning, further improvements can be achieved, as it can
be seen from Table 2. For example, for the matrix size
4096, the tuned version runs only 1.1 seconds, which is
1.4x faster than the CPU-only and 2.2x faster than the
GPU-only version.

5. Applications in quantum mechanics

The solution of the electronic structure problem is at
the basis of any computation in theoretical chemistry, molec-
ular physics, and computational materials science. The
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Table 2: Performance of individual stages of the ELPA 1 algorithm. For each phase (and the total time), the faster variant is shown in bold.
TRIDI SOLVE BACK TOTAL

size CPU GPU CPU GPU CPU GPU CPU GPU TUNED
1024 0.04 0.44 0.01 0.06 0.02 0.02 0.07 0.56 0.07
2048 0.15 0.85 0.06 0.1 0.07 0.05 0.28 1.0 0.26
4096 0.79 2.0 0.3 0.22 0.42 0.13 1.5 2.4 1.1
8192 9.5 4.5 1.9 0.74 2.9 0.53 14.3 5.8 5.8

mass of the electron as well as its fermionic nature require
the electronic structure problem to be treated quantum
mechanically.

5.1. Introduction to electronic structure computations
The most common approach introduces a mean-field

potential effectively experienced by each electron moving
in the field of the remaining N − 1 electrons and the nu-
clei. This ansatz yields a set of coupled integro-differential
equations which need to be solved iteratively in a pro-
cess known as the SCF method until a stationary point
is reached, where the mean-field potential reproduces it-
self. This procedure is common to the Hartree-Fock (HF)
molecular orbital method, which forms the basis of all
wavefunction-based electronic structure methods, as well
as the Kohn-Sham (KS) orbital method in density func-
tional theory (DFT).

In practice, the integro-differential equations are alge-
braized by introducing an appropriate basis in the Hilbert
space of admissible single electron wavefunctions, also called
orbitals, from which the many-electron wavefunctions (con-
figurations) are constructed. Approximate numerical solu-
tions to the electronic structure problem are then obtained
by truncating the basis at finite size M ≥ N yielding a gen-
eralized matrix eigenvalue problem AV = BV Λ. The size
of the problem depends on the size of the basis. In con-
trast to the so-called ”overlap-matrix” B (usually termed
S in the electronic structure literature), the ”Hamiltonian
matrix” A (usually termed H) depends itself on the lower
part (eigenvalue/-vector pairs) of the eigensystem. A sin-
gle step consisting of computing the matrices A and B and
solving the eigenproblem is referred to as an ”SCF step”,
while the fixed point iteration involving a series of such
steps is known as an ”SCF cycle”. The final result of an
SCF cycle is the lower part of the eigensystem, from which
the total energy E(~R) at the given nuclear configuration
~R can be computed.

E(~R) is known as the potential energy surface (PES)
for the dynamics of the nuclei and determines the chem-
istry and physics of molecules and materials at atomistic
resolution. Methods exploring the PES (Minimization,
Saddle Point Search, ab initio Molecular Dynamics) thus
require an SCF cycle at each geometry ~R. For an atom-
centered basis, the matrix B will only change for a modifi-
cation in ~R , while it remains constant for the whole SCF
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Figure 6: Scaling of computational time for solving the Kohn-Sham
eigenvalue problem for a IrO2 nano cluster (87009 basis functions).
The FHI-aims internal ELPA 2013 version (black), which was the
standard before the beginning of the ELPA-AEO project, is com-
pared to ELPA-AEO 2017 (red). The difference reflects the per-
formance improvements of the ELPA library without the AVX-512
improvements discussed in Section 3. SP is applied either in all steps
(dark green), only in step (iv) (blue, SP Esolv), or in steps (i)-(iii)
(light blue, wo ESolv). The conversion of the matrices from DP to
SP and vice versa is conducted with method (a) (element by element,
o symbols). Conversion of the matrix type by method (b) (as block)
is depicted by stars.

cycle, during which only the matrix A is updated in each
SCF step.

5.2. Mixing single and double precision
A typical computational study requires thousands if

not millions of SCF cycles (about 10-100 SCF steps per
cycle) at varying geometries ~R to be performed in a single
simulation. This makes it worthwhile to assess strategies
to reduce the computational effort. Only the final results
of the converged SCF cycle are of physical relevance at
all. Hence, the SCF procedure can be accelerated by us-
ing single precision (SP) routines instead of double preci-
sion (DP) ones in the appropriate eigensolver steps, as long
as the final converged result is not altered up to the pre-
cision mandated by the problem at hand. The eigensolver
steps discussed in this section, are the Cholesky decompo-
sition (i), c.f. Eq.(2), the inversion of the overlap matrix
(ii), and the matrix multiplication (iii) in Eq. (3), as well
as the solution of the eigenproblem via tridiagonalization
(iv), c.f. Eqs. (4) and (5).
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Figure 7: Impact of the precision on the convergence of the total
energy for a TiO2 cluster (4784 basis functions). DP (red) and SP
(black) in all steps are depicted by a full line. SP in step (i) (dark
green, Cholesky decomposition) or in step (ii) (light green, inversion
of overlap matrix) are shown by stars. SP in step (iii) (matrix mul-
tiplication) or step (iv) (solution of tridiagonal eigenproblem) are
shown in light blue and blue, respectively.

To showcase the importance of the readily available SP
routines in ELPA-AEO, we have performed DFT calcula-
tions with the all-electron, numeric atomic orbitals based
code FHI-aims[17], which supports both ELPA and ELPA-
AEO through the ELSI package. [18]. Benchmark calcula-
tions for an iridium oxide nano-cluster (IrO2, 1857 atoms)
quantify the speed-up achieved by different precisions by
evaluating two SCF cycles and the atomic forces with
87009 basis functions. The calculations were conducted
on Intel Xeon processors E5-2697 (28 cores @ 2.6 GHz in
2 CPUs per node). Replacing the FHI-aims internal ELPA
2013 (standard before the ELPA-AEO project) by ELPA-
AEO 2017 achieves a speed-up of 1.2 for the solution of
the Kohn-Sham eigenvalue problem. Please note, that this
speed-up is achieved without the AVX-512 optimizations
as discussed in Section 3. With AVX-512 optimizations
enabled in ELPA-AEO 2017 (on the proper hardware) an-
other factor of 1.5 to 2 could be achieved. Figure 6 shows
that SP in all four steps achieves an additional speed-up
of 1.5 in Kohn-Sham computational time in comparison to
DP calculations with ELPA-AEO 2017. The speed-up due
to SP in the tridiagonal eigensolver (iv) or due to SP in all
steps BUT 4 (SP in steps (i)-(iii)) amounts to 1.3 and 1.1,
respectively. Hence, the tridiagonal eigensolver provides
the largest contribution to the speed-up of SP versus DP.
Copying the matrices from DP to SP and vice versa can be
accomplished by two different methods: Either the matrix
elements are copied individually (a) or the entire matrix
is copied as block (b). Method (a) usually requires not as
much computational time as method (b) but the gain is
marginal.

In Figure 7, the convergence of the total energy in de-
pendency on the precision of each step is studied for a TiO2
cluster (4785 basis functions). Since FHI-aims expands the
electron wavefunctions in an atom-centred basis, the over-
lap matrix B is only constructed once per SCF cycle and
the Cholesky decomposition (i) is only conducted in the
first SCF iteration step of each SCF cycle. The precision
of the Cholesky decomposition (i) in the first SCF itera-

tion does not influence the convergence. SP in step (iii) or
(iv) reduces the convergence of energy and electron den-
sity after iteration step 20. Reduction of precision for the
overlap matrix inversion (ii) destroys the convergence en-
tirely. Nevertheless, the gain in computational efficiency
by SP in step (iii) and (iv) can be exploited during the 20
SCF steps, after which the precision is switched to DP in
order to achieve final convergence.

5.3. Performance benefits by autotuning
As discussed in Sec. 4.3, using the optimal ELPA set-

tings (kernel, utilization of GPUs, etc.) can lead to ad-
ditional computational savings in practical calculations.
In particular, this applies to electronic structure calcula-
tions, which involve solving many similar eigenvalue prob-
lems (SCF steps) in one SCF cycle (see Sec. 5.1). However,
identifying these optimal settings, which depend upon both
the inspected physical problem and the used architecture,
is a tedious job if performed manually. To take this bur-
den from the user, ELPA’s new autotuning feature allows
to determine these settings in an automated fashion. To
showcase the impact of this feature in practical applica-
tions, we have performed DFT benchmark calculations us-
ing the FHI-aims [17, 18] code for two extended periodic
systems, i.e., an A-DNA double helix [19] (7150 atoms in
the unit cell, 77220 basis functions) and a Graphene sheet
(5000 atoms in the unit cell, 70000 basis functions) using
the PBE exchange-correlation functional [20]. Two differ-
ent autotuning presets were used: Autotuning FAST, in
which only the choice of kernel is optimized, and autotun-
ing MEDIUM, in which the numerical blocking parameters
of the back-transformation are additionally optimized. In
both cases, the ELPA 1 solver was explicitly excluded from
the autotuning procedure, since ELPA 2 is superior for
these particular problems and architecture. Also, GPU
accelerators and a (hybrid) OpenMP parallelization were
not utilised in these calculations that were performed on
32 Intel Skylake nodes with 2 CPUs per node each (20
cores/CPU @ 2.4 GHz).

To qualitatively discuss the impact of autotuning, we
compare the accumulated run-times for A-DNA in three
different scenarios in Fig. 8: Using the default fallback
settings (Generic Kernel) chosen by FHI-aims if no kernel
is specified by the user, using autotuning level MEDIUM,
and using the optimal settings identified by autotuning
level MEDIUM, as if they were known from the begin-
ning. In the first steps, we see that autotuning can be
even slower than the generic kernel, given that the set-
tings, which are also non-optimal in these first steps are
explored. For the exact same reason, the calculation with
autotuning level MEDIUM is also slower than the one us-
ing optimal settings. After 150 SCF steps, the optimal
settings are identified in the autotuning level MEDIUM
run and the accumulated run-times now show the exact
same slope as the run using optimal settings; the offset
between the two curves quantifies the cost of the autotun-
ing procedure. Compared to the calculation with default
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Figure 8: Accumulated runtime (in minutes) for A-DNA (see text)
in three different scenarios: Using FHI-aims’ default settings, using
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were known from the start. There is a clear benefit of autotuned
version over the FHI-aims default one. Moreover, if more SCF iter-
ations were done, the relative difference between the autotuned and
optimal version would be further reduced.

Table 3: Average runtime per SCF step for the A-DNA (77220
basis functions) and Graphene (70000 basis functions) systems for
different kernels and autotuning methods. Autotuning level FAST
requires 15 SCF steps (20 steps performed in total) to identify the
optimal kernel (AVX-512), while autotuning level MEDIUM requires
150 SCF steps (160 steps performed in total). As a reference, tim-
ings for using FHI-aims’ default settings (Generic kernel) and for
using the optimal settings from the start, i.e., the ones identified by
autotuning MEDIUM, are given.

System Generic Optimal FAST MEDIUM
A-DNA 221.3 s 200.5 s 209.2 s 209.6 s

Graphene 160.8 s 137.0 s 143.5 s 144.4 s

settings, the computational savings in total runtime are in
the order of 5%. The behaviour described above is also
observed for the graphene system. In that case, the com-
putational savings using autotuning level MEDIUM are in
the order of 10% after 160 SCF steps, as summarized in
Tab. 3. A qualitative similar behaviour is also observed
when only the choice of the kernel is optimized (autotun-
ing level FAST). In this case, only 15 iterations are needed
to find the optimal kernel (AVX512).

Note that the number of SCF steps required to iden-
tify the optimal settings is rather high (150 for autotune
level MEDIUM and 15 for FAST) and thus larger than the
typical number of SCF steps (10-30 in non-problematic
systems) needed to achieve convergence in a single SCF
cycle. In this light, the computational gain achieved by
the autotuning feature for a single SCF cycle might seem
negligible. However, almost all electronic structure calcu-
lations do not only require one SCF cycle, but many. In
practice, hundreds (structure optimisations) or even sev-
eral millions (ab initio Molecular Dynamics simulations)
of SCF cycles are performed in such applications, whereby
the inspected geometry and thus the structure of the eigen-
value problem is only slightly altered between the different
SCF cycles. Due to this fact, the optimal settings iden-
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Figure 9: Average and maximum runtime per SCF steps observed
for ten different geometries of A-DNA (see text), as they would be
observed in structure relaxations or ab initio Molecular Dynamics
simulations. Here, we compare timings for the default and the opti-
mal settings.

tified by the autotuning are transferable across SCF cy-
cles, as demonstrated below. Accordingly, the autotuning
functionality leads to considerable performance benefits in
these applications, since the optimal settings –once they
are identified after the first SCF steps– can be applied to
all further SCF steps and cycles.

To showcase these savings, we have inspected ten ad-
ditional, slightly different geometries of A-DNA, which
were generated by randomly displacing atoms by fractions
of Å [21]. Such geometries are representative for the typ-
ical variances in geometry that are observed in structure
relaxations and ab initio Molecular Dynamics simulations.
We then performed DFT calculations (one SCF cycle with
approximately 20 SCF steps) for these geometries using
(a) FHI-aims’ default settings (Generic Kernel) and (b) the
optimal settings identified by autotuning level MEDIUM
for the equilibrium geometry discussed in Fig. 8. Note that
this equilibrium geometry is not part of the ten geometries
inspected here. Fig. 9 demonstrates that the optimal set-
tings found by autotuning are indeed transferable across
SCF cycles and that the associated computational savings
are retained along multiple SCF cycles. This has been
additionally verified by running calculations with enabled
autotuning for all ten geometries. Compared to the de-
fault settings, we indeed observe average savings of approx-
imately 10% for the average and maximum run-times per
SCF step. This shows that in extended calculations featur-
ing hundreds of SCF cycles and thousands of SCF steps the
relative small overhead required by autotuning (see Fig. 8)
for identifying the optimal settings in the first few SCF
steps is indeed negligible. Once the optimal settings are
identified, they can be applied to all following SCF steps,
thus leading to significant performance gains in these ap-
plications. Similarly, this shows that also the autotuning
procedure itself can be performed over multiple SCF cy-
cles. This allows an even more extensive search for the op-
timal settings, e.g., by additionally including GPU and/or
OpenMP parallelization, in practical calculations. In these
applications, this can be straightforwardly realized by ex-
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ploiting ELPA’s capability to save and load (intermediate
and final) snapshots of the autotuning status, as discussed
for the code example 4 in Sec. 4.3.

6. Conclusions

We have presented the improvements of the ELPA li-
brary made during the ELPA-AEO project and showed
ways, how the applications using ELPA can significantly
reduce their time-to-solution. On the one hand we demon-
strated significant performance improvements by adapt-
ing the ELPA library to modern architectures. These
hardware-related optimizations for Intel Xeon Skylake pro-
cessors lead to a speedup of roughly 1.5 to 2 compared to
the Intel Ivy Bridge machine. Furthermore, on an IBM
Power 8 system, equipped with 4 NVIDIA Tesla P100
GPUs a speedup (depending on the problem size) up to
a factor of roughly 12 compared to a CPU only version
could be demonstrated.

While also in the future the ELPA library will be con-
tinuously optimized for the newest hardware, it is becom-
ing increasingly complex to optimize the ELPA library for
different kind of HPC systems: the parameter space of al-
gorithmic choices and performance relevant settings (like
block-sizes) is growing quite rapidly. Although during the
development of ELPA we try to define reasonable default
values for all performance relevant settings, we realized
that these might not always be the best choice, but in the
same time the users of the ELPA library might not want
to dive into the tedious work to find the best settings for
their combinations of problems and available hardware.
Thus, in this paper we presented a new autotuning func-
tionality of the ELPA-library which allows finding of the
best settings in an easy and automated way. By show-
ing examples from scientifically interesting applications,
we demonstrated that the autotuning does indeed find the
best settings. The overhead introduced by the autotuning
process in the first hundred diagonalizations is negligible in
practical calculations, which typically feature thousands of
matrix diagonalizations that can all benefit from the best
settings identified by the autotuning. There is a possibility
to split the autotuning process into several phases by sav-
ing the status of the autotuning and also a possibility to
save the optimal found parameter combination for a future
use.

We also discussed an example where the autotuning
algorithm is able to determine which parts of the calcula-
tions should be offloaded to GPUs. We discussed that this
feature is especially useful for matrix sizes of roughly 4000,
where it strongly depends on the used hardware, whether
an acceleration with GPUs is possible or not. The autotun-
ing mechanism could only be implemented by introducing
a new, general API for the ELPA library. In addition to
the autotuning we showed that this API has several other
important advantages: for the users it is easily possible to
define at the same time multiple instances of ELPA (and
even autotune them independently) if different problems

are to be solved within one application. As an example
we showed a real-world example where a mixed-precision
approach was taken and parts of the steps to solve a gen-
eralized eigenvalue problem were done in single instead of
double precision.
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