
A Microbenchmark Characterization of the Emu Chick

Jeffrey S. Youngb,∗, Eric Heinc, Srinivas Eswara, Patrick Lavina, Jiajia Lid, Jason Riedya, Richard Vuduca, Tom Conteb

aSchool of Computational Science and Engineering, Georgia Institute of Technology, North Avenue, Atlanta, GA 30332
bSchool of Computer Science, Georgia Institute of Technology, North Avenue, Atlanta, GA 30332

cEmu Technology, 270 West 39th Street, 13th Floor, New York, NY 10018
dPacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354

Abstract

The Emu Chick is a prototype system designed around the concept of migratory memory-side processing. Rather than transferring
large amounts of data across power-hungry, high-latency interconnects, the Emu Chick moves lightweight thread contexts to
near-memory cores before the beginning of each memory read. The current prototype hardware uses FPGAs to implement cache-less
“Gossamer” cores for computational work and rely on a typical stationary core (PowerPC) to run basic operating system functions and
migrate threads between nodes. In this multi-node characterization of the Emu Chick, we extend an earlier single-node investigation
[1] of the the memory bandwidth characteristics of the system through benchmarks like STREAM, pointer chasing, and sparse
matrix-vector multiplication. We compare the Emu Chick hardware to architectural simulation and an Intel Xeon-based platform. Our
results demonstrate that for many basic operations the Emu Chick can use available memory bandwidth more efficiently than a more
traditional, cache-based architecture although bandwidth usage suffers for computationally intensive workloads like SpMV. Moreover,
the Emu Chick provides stable, predictable performance with up to 65% of the peak bandwidth utilization on a random-access
pointer chasing benchmark with weak locality.

1. Introduction

Analysis of data represented as graphs, sparse tensors, and
other non-regular structures poses many challenges for tradi-
tional computer architectures because the data locality of these
applications typically occurs in small bursts. While individual
data elements may have multiple associated attributes nearby
(e.g. neighbors, weights, semantic attributes, and timestamps
for streaming graph edges), analysis algorithms tend to access
these small chunks in a more random fashion. Limited spatial
locality in traditional analysis kernels leads to underutilizing
cache lines, confounding prefetch engines, and thus reducing
overall effective memory bandwidth. Furthermore, common
analysis kernels may exhibit dynamic parallelism and create
many data-dependent memory references. These references can
stall architectures that cannot maintain enough contexts and
requests in flight. Consequently, today’s “big data” platforms
frequently are outperformed by a single thread accessing a large
SSD [2].

This state of affairs motivates novel architectures like the
Emu migratory thread system [3], the subject of this study. The
Emu is a cache-less system built around “nodelets” that each
execute lightweight threads. These threads migrate to data rather
than moving data through a traditional cache hierarchy.

This paper expands on the first independent characteriza-
tion of the Emu Chick prototype[1] by exploring multiple dis-
tributed nodes that consist of those nodelets (see Section 2).
Our study uses microbenchmarks and small kernels—namely,

∗Corresponding author, jyoung9@gatech.edu

STREAM, pointer chasing, and sparse matrix-vector multiplica-
tion (SpMV)—as proxies that reflect some of the key character-
istics of our motivating computations, which come from sparse
and irregular applications [4, 5]. Indeed, one larger goal of our
work beyond this paper is to develop a performance-portable,
Emu-compatible API for Georgia Tech’s STINGER open-source
streaming graph framework [4] and ParTI [6] tensor decomposi-
tion algorithms (e.g. CP and Tucker decomposition). Mapping
such applications to the Emu architecture is difficult because the
thread migration makes programming around data’s location
critical to reducing migrations.

This study’s specific demonstrations include

• a detailed characterization of the Emu Chick hardware us-
ing custom Cilk kernels derived from optimized OpenMP
kernels;

• an analysis of memory bandwidth on the Chick system and
comparison to a more traditional cache-based architecture
with Emu results tested on 64 nodelets across eight nodes

• a discussion of memory allocation, data layout, and “smart”
thread migration on the Emu architecture with respect to
SpMV kernels;

• an investigation and validation of the Emu architectural
simulator for projecting larger configurations’ performance.

The main high-level finding is that an Emu-style architecture
can more efficiently utilize available memory bandwidth while
reducing the variability of that bandwidth to the memory access
pattern. However, achieving such results still requires careful

1

ar
X

iv
:1

80
9.

07
69

6v
3 

 [
cs

.D
C

] 
 3

1 
M

ay
 2

01
9



1  nodelet

Gossamer 
Core 1

Memory-Side Processor

Gossamer 
Core 4

...
Migration Engine

RapidIODisk I/O

8  nodelets
per node

64  nodelets
per Chick

RapidIO

Stationary
Core

Figure 1: Emu architecture: The system consists of stationary processors for
running the operating system and up to four Gossamer processors per nodelet
tightly coupled to memory. The cache-less Gossamer processing cores are multi-
threaded to both source sufficient memory references and also provide sufficient
work with many outstanding references. The coupled memory’s narrow interface
ensures high utilization for accesses smaller than typical cache lines.

consideration of the interplay between data layout and its affect
on thread migration. Additionally, our current Chick prototype
is still compute-bound for some algorithms like SpMV which
hurts its usage of available memory bandwidth when compared
to a traditional CPU-based system.

2. The Emu Architecture

The Emu architecture focuses on improved random-access
bandwidth scalability by migrating lightweight, Gossamer threads
or “threadlets” to data and emphasizing fine-grained memory ac-
cess. A general Emu system consists of the following processing
elements, as illustrated in Figure 1:

• A common stationary processor runs the operating system
(e.g. Linux) and manages storage and network devices.

• Nodelets combine narrowly banked memory (NCDIMMs)
with several highly multi-threaded, cache-less Gossamer
cores to provide a memory-centric environment for mi-
grating threads.

These elements are combined into nodes that are connected by a
RapidIO fabric. The current generation of Emu systems include
one stationary processor for each of the eight nodelets contained
within a node. System-level storage is provided by SSDs. We
talk more specifically about some of the prototype limitations of
our Emu Chick in Section 3. A more detailed description of the
Emu architecture is available elsewhere [3].

For programmers, the Gossamer cores are transparent accel-
erators. The compiler infrastructure compiles the parallelized
code for the Gossamer ISA, and the runtime infrastructure
launches threads on the nodelets. Currently, one programs the
Emu platform using Cilk [7], providing a path to running on the
Emu for simple OpenMP programs whose translations to Cilk
are straightforward. The current compiler supports the expres-
sion of task or fork-join parallelism through Cilk’s cilk spawn

and cilk sync constructs, with a future Cilk Plus software re-
lease in progress that would include cilk for (the nearly direct
analogue of OpenMP’s parallel for). Many existing C and
C++ OpenMP codes can translate almost directly to Cilk Plus.

A launched Gossamer thread only performs local reads. Any
remote read triggers a migration, which will transfer the context
of the reading thread to a processor local to the memory channel
containing the data. Experience on high-latency thread migra-
tion systems like Charm++ identifies migration overhead as a
critical factor even in highly regular scientific codes [8]. The
Emu system keeps thread migration overhead to a minimum by
limiting the size of a thread context, implementing the transfer
efficiently in hardware, and integrating migration throughout
the architecture. In particular, a Gossamer thread consists of 16
general-purpose registers, a program counter, a stack counter,
and status information, for a total size of less than 200 bytes.
The compiled executable is replicated across the cores to ensure
that instruction access always is local. Limiting thread context
size also reduces the cost of spawning new threads for dynamic
data analysis workloads. Any operating system requests are for-
warded to the stationary control processors through the service
queue.

The highly multi-threaded Gossamer cores, which are read-
ing only local memory, do not need caches nor, therefore, cache
coherency traffic. Additionally, “memory-side processors” pro-
vide atomic read or write operations that can be used to access
small amounts of data without triggering unnecessary thread
migrations. A node’s memory size is relatively large (64 GiB)
but with multiple, narrow memory channels (8 channels with
8 bit interfaces), in order to extract weak spatial locality from
data analysis kernels while maintaining low-latency read and
write operations. The high degree of multi-threading also helps
to cover the migration latency of the many threadlets. The Emu
architecture is designed from the ground up to support high
bandwidth utilization and efficiency for demanding data analysis
workloads.

3. Experimental Setup

3.1. Emu Chick Prototype
The Emu Chick prototype is still in active development. The

current hardware iteration uses an Arria 10 FPGA on each node
card to implement the Gossamer cores, the migration engine,
and the stationary cores. Several aspects of the system are scaled
down in the current prototype with respect to the next-generation
system which will use larger and faster FPGAs to implement
computation and thread migration. The current Emu Chick
prototype has the following features and limitations:

• Our system has one Gossamer Core (GC) per nodelet with
a concurrent max of 64 threadlets. The next-generation
system will have four GC’s per nodelet, supporting 256
threadlets per nodelet.

• A full Chick system has 64 nodelets across eight nodes,
implementing a distributed Partitioned Global Address
System (PGAS) architecture that is connected by the Ra-
pidIO network.

• Our GC’s are clocked at 175MHz currently (up from
150MHz in [1]) rather than the planned 300MHz for later-
generation Emu development systems.

2



• The Emu’s DDR4 DRAM modules are clocked at 1600MHz
rather than the full 2133MHz.

• The current Emu software version provides support for
C++ but does not yet include functionality to translate
Cilk Plus features like cilk for or Cilk reducers [9].
All benchmarks currently use cilk spawn directly, which
also allows more control over spawning strategies.

All experiments are run using Emu’s 18.09 compiler and
simulator toolchain, and the Emu Chick system is running
NCDIMM firmware version 2.5.1, system controller software
version 3.1.0, and each stationary core is running the 2.2.3 ver-
sion of software.

3.2. Emu Simulator

Emu provides a timing simulator implemented using Sys-
temC, and this simulator can be used to test and evaluate soft-
ware before running on the hardware. Previous characterization
experiments in [1] employed a configuration of the simulator
to match the characteristics of a single node (8 nodelets) of the
Chick hardware for validation and to do basic projections to a
stable, 64-node Chick system. We have not repeated these exper-
iments as the projections in earlier work have been superseded
by real-time results on the 64-node Chick system and many
of the most interesting characterizations cannot be run on the
timing simulator.

3.3. Common CPU-Focused Comparison Platform

In order to make an initial comparison of the Emu’s memory
bandwidth characteristics with commodity hardware, each bench-
mark is also run on an four-socket Intel Xeon E7-4850 v3
(Haswell) machine with 2 TiB of DDR4 (referred to as Haswell
Xeon in associated results). The CPUs on the Haswell server
are each clocked at 2.20GHz and each have a 35 MiB L3 cache,
while the memory is clocked at 1333 MHz (although it is rated
for 2133 MHz, the risers used to increase density decrease the
frequency). Each socket has a peak theoretical bandwidth of
42.7 GB/s because of the underclocked memory.

For each benchmark, Emu-specific intrinsics (e.g. local-
ized mallocs) are swapped out for their x86 equivalents, and
the benchmarks are compiled with GCC 5.5.0. The Cilk key-
words are left unchanged, allowing GCC’s Cilk runtime to im-
plement the parallel functionality. Intel’s MKL library (version
20180001) is used for some of the SpMV comparisons made
in Section 4.3. STREAM is run with default OpenMP settings in-
cluding OMP PROC BIND=false and OMP SCHEDULE=static.

3.4. Metrics for Comparing the Emu Prototype with Cache-
Based Hardware

The architectural design choices that enable the Emu compu-
tational model (migrate threads instead of data, narrow memory
channels, limited thread context) and the base platforms for the
prototype (FPGAs with lower clock frequencies) make it diffi-
cult to accurately compare the Emu and CPU- or GPU-focused
systems in terms of execution or runtime.

Additionally, the Emu platform uses Narrow-Channel DRAM
(NCDRAM) which reduces the width of the DRAM bus to 8 bits.
Otherwise, the memory uses standard DDR4 chips. An 8-byte
word can be transferred in a single burst. The smaller bus means
that each channel of NCDRAM has only 2GB/s of bandwidth,
but the system makes up for this by having many more indepen-
dent channels. Because of this, it can sustain more simultaneous
fine-grained accesses than a traditional system with fewer chan-
nels and the same peak memory bandwidth specification.

Due to difficulties in comparing differently clocked architec-
tures with different memory controller configurations, we focus
our initial characterization not on runtime but on memory band-
width (MB/s) and effective memory bandwidth utilization (% of
measured peak memory bandwidth). In a CPU-focused system,
this might be analogous to effective cache line utilization while
in the Emu it correlates more closely to how much bandwidth
can be achieved with respective to other system overheads, such
as thread migration and queuing delays.

3.5. Benchmarks

As discussed in Section 3.1, the Emu Chick toolchain cur-
rently lacks support for cilk for and Cilk reducers. However,
we present several benchmarks that use Cilk semantics to char-
acterize the performance of the system, specifically focusing
on kernels that expose the memory bandwidth characteristics
of the system and test important kernels like SpMV that are
key for applications like sparse tensor decomposition. For each
benchmark result, we present the average memory bandwidth
(usually expressed as megabytes per second) over ten trials.

STREAM. The STREAM benchmark [10] has been ported and
tuned for the Emu hardware to measure raw memory bandwidth.
The ADD kernel computes the vector sum of two large arrays
of 8-byte integers, storing the result in a third array. On the
Emu Chick these arrays are striped across all the nodelets in the
system.

This benchmark demonstrates that thread spawning is im-
portant for performance. Different thread spawning mechanisms
achieve different memory bandwidths. Our tests control thread
spawning and do not rely on cilk for. The spawning methods
follow trees that are briefly described as follows:

• serial spawn: threads spawn locally on a single nodelet
using a for loop,

• recursive spawn: threads are spawned locally using re-
cursive calls,

• serial remote spawn: threads are spawned on each nodelet,
which in turn uses a for loop to spawn threads locally, and

• recursive remote spawn: threads are spawned recursively
across all nodelets, and then each nodelet recursively
spawns new threads locally.

3



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 2: (top) An ordered linked list, in which consecutive elements have sequential memory addresses, (middle) A linked list with a intra-block shuffle permutation
applied to randomize the ordering of elements within a block. Note that all elements within a block are accessed before jumping to the next block. (bottom) A linked
list with a full block shuffle permutation applied. Not only are the elements within a block shuffled, but the traversal order of the blocks themselves has also been
randomized. Not shown is the full shuffle which is equivalent to a block shuffle followed by an intra-block shuffle.

Pointer Chasing. In this benchmark, each thread adds up all
the elements in a linked list. Each element consists of an 8-byte
payload and an 8-byte pointer to the next element. After the
elements of this linked list are grouped into blocks, their ordering
is randomized. This permutation may be applied to the ordering
of the elements within each block (intra block shuffle),
or the ordering of the blocks themselves (block shuffle), or
both (full block shuffle). The block size is also varied to
emulate different levels of spatial locality that may arise in a
workload. Figure 2 explains the list initialization further.

The pointer chasing benchmark has three key properties by
design.

• Data-dependent loads: Memory-level parallelism is severely
limited since each thread must wait for one pointer deref-
erence to complete before accessing the next pointer

• Fine-grained accesses: Spatial locality is restricted since
all accesses are at a 16B granularity. This is smaller than
a 64B cache line on x86 platforms, and much smaller than
a typical DRAM page size.

• Random access pattern: Since each block of memory is
read exactly once in random order, caching and prefetch-
ing are mostly ineffective.

The pointer chasing benchmark simulates a worst-case mem-
ory fragmentation scenario that can arise in memory intensive
workloads such as streaming graph analytics. When small list el-
ements are dynamically allocated and deallocated from a shared
memory pool, the resulting data structure will exhibit all of these
characteristics when it is traversed. The pointer chase bench-
mark otherwise is quite similar to the GUPS/RandomAccess
benchmark[11], however GUPS lacks data-dependent loads, and
pointer chase does not modify the list.

Sparse Matrix-Vector Multiplication (SpMV). In addition to be-
ing a fundamental kernel for graph analytics and sparse tensor
decomposition applications, SpMV provides an opportunity to
investigate data layout strategies on the Emu’s global physical ad-
dress space. Emu provides a “local” malloc (mw localmalloc)
similar to a traditional contiguous malloc as well as a “striped”
malloc (mw malloc1dlong, called 1D) that places data in a

Local 1D 2D

1  nodelet 8+  nodelets 8+  nodelets

X

row

v

col

= x
Y

X

Y =

x

Y

Xx

=

Figure 3: Emu-specific layout for CSR-SpMV

round-robin fashion across nodelets and a two-dimensional mal-
loc (mw malloc2d, called 2D), that distributes entire data struc-
tures across nodelets.

Figure 3 demonstrates the three layouts that are tested with
inputs in the popular Compressed Sparse Row (CSR) format.
For an I × J matrix A with M non-zeros, a size-(I + 1), a size-M,
and another size-M arrays are stored for row pointers, column
indices, and nonzero values respectively. We use y = Ax to
illustrate an SpMV operation and use one node case as an exam-
ple which can be extended to the multi-node case. In the local
case, contiguous mallocs are used to place all data on a single
nodelet, which include the output vector Y, the input vector X,
and the input CSR matrix: row, col, and V. Only one nodelet’s
computing power is employed. 1D layout stripes the row,

col, and V arrays of the input matrix across the nodelets us-
ing mw malloc1dlong while X is replicated across all nodelets
and Y is on nodelet 0. Due to the diverse sizes of row, col,
and V and the round-robin pattern of mw malloc1dlong, the
nonzeros and column indices in the same row are distributed to
different nodelets, which introduces frequent thread migration.
For the 2D allocation, we use a two-stage allocation rather than
Emu’s 2D malloc function to partition V and col across multi-
ple nodelets. First, the length of each row that is assigned to a
nodelet is computed and then V and col are allocated in units of
rows on each nodelet. We still employ the mw malloc1dlong

function but use it to allocate a variable length array. X is also
replicated across nodelets as is the output, Y. Using this modi-
fied 2D layout, we can wipe out most thread migrations with the
exception for some initial spawn migrations and reduction at the
end of the computation. This is an ideal case to test the highest
performance Emu can achieve in the SpMV benchmark.

4



4. Results

The updated characterization of the Emu Chick repeats the
STREAM, pointer chasing, and SpMV experiments that were
initially investigated in [1], but these experiments focus on fur-
ther characterizing the entire Chick “multi-node” system that
uses all 64 nodelets (across 8 nodes) within the Chick. Single
node results are presented for specific experiments including
SpMV layout and simulation, primarily due to limitations in the
current firmware (i.e., certain configurations encounter hardware
faults) and slowness of the Emu architectural simulator.

4.1. STREAM
Figure 4 shows the results from running the STREAM bench-

mark on a single Emu nodelet. Performance scales up with
thread count through 32 threads and then plateaus. Two methods
of thread creation are tested here. In the serial spawn strat-
egy, a single thread uses a for loop to create each worker thread,
while recursive spawn uses a recursive spawn tree. There is
not much difference between the two approaches, indicating that
thread creation is not terribly expensive on the Emu platform.

In Figure 5a, we extend the STREAM benchmark to run
on eight nodelets (one node card) of the Emu Chick. Two new
thread creation strategies are introduced here, serial remote

spawn and recursive remote spawn. A remote spawn on
Emu means that the thread is created on a remote nodelet, rather
than being created locally and allowed to migrate to the remote
data. The “remote” thread creation strategies first create a thread
on each nodelet (either one at a time or with a recursive spawn
tree), and then perform a second level of spawning on the local
nodelet, as in the single nodelet case. Figure 5b extends the
analysis to 64 nodelets and up to 4096 threads showing that
recursive remote spawn continues to scale for large numbers
of threads up to 12 GB/s across 8 nodes. Both sets of results
show that remote spawns are essential to achieving maximum
bandwidth on Emu.

In comparison to the Emu, the Xeon system (Haswell)
achieves 100 GB/s on the STREAM benchmark (with an in-
terleaved NUMA layout across four sockets) while the Emu
Chick has a maximum STREAM bandwidth of 12 GB/s. The
Emu bandwidth is currently limited by CPU speed and thread
count rather than DDR bus transfer rates. However even with
this prototype system we can observe improvements in other
benchmarks where the memory access pattern is not as linear
and predictable as it is with STREAM.

4.2. Pointer Chasing
Figures 6 and 7 compare the performance of the Emu Chick

against our Haswell Xeon server system for the pointer chasing
benchmark. These results reveal important characteristics of
both systems and highlight the unique advantages of the Emu
Chick.

Pointer chasing on the Xeon architecture performs poorly
for several reasons. For small block sizes, the memory system
bandwidth is used inefficiently. An entire 64-byte cache line
must be transferred from memory, but only 16 bytes will be used.
The best performance is achieved with a block size between 256

and 4096 elements. This corresponds to a memory chunk of
about 8KiB, the size of one DRAM page. Regardless of the size
of the access, an entire DRAM row must be activated for each
element traversed. Adding more threads at this point increases
the number of simultaneous row activations. As the block size
grows beyond the size of a DRAM page, performance declines
again.

Performance on Emu remains mostly flat regardless of block
size. Emu’s memory access granularity is 8 bytes, so it never
transfers unused data in this benchmark. As long as a block
fits within a single nodelet’s local memory channel, there is no
penalty for random access within the block. However, block size
of 1 provides an interesting case; here Emu threads are likely to
migrate on every access, and so performance is greatly reduced.
But performance recovers when even as few as four elements
are accessed between each migration.

Figure 8 shows the normalized bandwidth usage (i.e., effec-
tive bandwidth usage) for the Haswell and Emu systems. The
performance of each system has been normalized to the peak
measured bandwidth of the system (i.e., the best result on the
STREAM benchmark). In the pointer chasing benchmark, the
Emu system is much better at using the available system band-
width, using 65% of available system bandwidth in most cases
and 25% in the worst case. The Haswell Xeon uses less than
50% of peak bandwidth in most cases and less than 10% in
the worst case, relying on multi-kilobyte levels of locality to
efficiently transfer the data. These results bode well both for
the targeted streaming graph and tensor decomposition applica-
tions which have pointer chasing behavior and rely on random
accesses to compute SpMV and SpMM (sparse matrix-matrix
product) operations, respectively.

4.3. Sparse Matrix-Vector Multiplication

We use a synthetic Laplacian matrix as an input correspond-
ing to a d-dimensional k-point stencil on a grid of length n in
each dimension. d = 2 and k = 5 specify a sparse matrix gen-
erated from a 5-point, 2-D, n × n stencil. With the Laplacian
size n, the matrix is n2 × n2 with 5 diagonals. CPU tests are
run on the Haswell Xeon-based system described in Section 3.3,
using SpMV from Intel’s Math Kernel Library (MKL) with
MKL MAX THREADS set at 56 (the number of physical cores in the
system as opposed to total threads). We include two Cilk SpMV
kernels for comparison, labeled cilk for and cilk spawn,
which are written with the respective Cilk primitives, com-
piled using GCC 5.5.0, and run with CILK NWORKERS set to
56. Data is distributed across NUMA regions using numactl

--interleave=0-3.
Figure 9 shows the memory bandwidth achieved by SpMV

on a single node (8 nodelets) of the Chick using each of the
three data layout strategies: local, 1D, and 2D layouts. The
local layout on the Emu suffers from a limited amount of thread
parallelism while the 1D layout suffers from a large number of
thread migrations, resulting in max bandwidths of close to 96.13
MB/s and 148.66 MB/s, respectively. Overall, the 2D memory
layout provides the only scalable solution for SpMV, scaling up
to 846.39 MB/s for n=2300.

5



1 2 4 8 16 32 64
Number of threads

0

25

50

75

100

125

150

175

200

M
em

or
y 

ba
nd

wi
dt

h 
(M

B\
s)

region_name
serial_spawn
recursive_spawn

Figure 4: Memory bandwidth achieved on a single nodelet of the Emu Chick. Threads are created using a serial loop or a recursive spawn tree.

8 16 32 64 128 256 512
Number of threads

0

200

400

600

800

1000

1200

1400

1600

M
em

or
y 

ba
nd

wi
dt

h 
(M

B\
s)

serial_spawn
recursive_spawn

serial_remote_spawn
recursive_remote_spawn

(a) Single Node (8 nodelets)

64 128 256 512 1024 2048 4096
Number of threads

0

2

4

6

8

10

12
M

em
or

y 
ba

nd
wi

dt
h 

(G
B\

s)

serial_spawn
recursive_spawn

serial_remote_spawn
recursive_remote_spawn

(b) Multi-node (64 nodelets)

Figure 5: Emu STREAM performance with different spawn strategies

1 4 16 64 25
6 1K 4K 16
K

64
K

25
6K 1M 4M

Block size (number of 16B elements)

0

2

4

6

8

10

12

M
em

or
y 

ba
nd

wi
dt

h 
(G

B\
s) peak STREAM bandwidth

2048 threads

1 4 16 64 25
6 1K 4K 16
K

64
K

25
6K 1M 4M

Block size (number of 16B elements)

peak STREAM bandwidth
4096 threads

block_shuffle intra_block_shuffle full_block_shuffle

Figure 6: Pointer chasing performance on the Emu Chick (8 nodes, 64 nodelets).

6



1 4 16 64 25
6 1K 4K 16
K

64
K

25
6K 1M 4M

Block size (number of 16B elements)

0

20

40

60

80

100
M

em
or

y 
ba

nd
wi

dt
h 

(G
B\

s)
14 threads

1 4 16 64 25
6 1K 4K 16
K

64
K

25
6K 1M 4M

Block size (number of 16B elements)

28 threads

1 4 16 64 25
6 1K 4K 16
K

64
K

25
6K 1M 4M

Block size (number of 16B elements)

peak STREAM bandwidth
56 threads

block_shuffle intra_block_shuffle full_block_shuffle

Figure 7: Pointer chasing performance on Haswell Xeon.

1 4 16 64 25
6 1K 4K 16
K

64
K

25
6K 1M 4M

Block size (number of 16B elements)

  0%

 20%

 40%

 60%

 80%

100%

Ba
nd

wi
dt

h 
ut

iliz
at

io
n Xeon Emu

Figure 8: Bandwidth utilization of pointer chasing, compared between Sandy Bridge Xeon and Emu (64 nodelets)

102 502 1002 1502 2002 2502 3002 5002 10002 13002 15002 17002 20002 23002

Number of Rows

0

200

400

600

800

1000

B
an

dw
id

th
 (M

B
/s

)

Data Layout
Local layout
1D layout
2D layout

Figure 9: Bandwidth utilization of Emu Single Node (8 nodelets) with different SpMV Data Layouts

202 502 1002 2002 5002 10002 20002 40002 80002

Number of Rows

0

50000

100000

150000

200000

B
an

dw
id

th
 (M

B
/s

)

MKL
MKL (interleaved)
cilk_for
cilk_for (interleaved)
cilk_spawn
cilk_spawn (interleaved)
emu
emu (interleaved)

(a) Effective bandwidth for the Haswell Xeon

102 502 1002 2002 5002 10002 20002 50002

Number of Rows

0

20

40

60

80

100

B
an

dw
id

th
 U

til
iz

at
io

n 
(%

)

platform
Emu
Xeon

(b) SpMV Percentage of STREAM

Figure 10: SpMV Emu Comparisons with Haswell Xeon

7



Figure 10a shows results for experiments run on the Haswell
Xeon machine with four different code configurations and two
NUMA layouts, the default “current” policy (place all data in
current node) and “interleaved” which interleaves data across
four sockets at a page granularity. 1) MKL refers to an imple-
mentation of SpMV using Intel’s MKL library, 2) cilk for is
a native Cilk implementation using cilk for, 3) cilk spawn is
a native Cilk implementation using cilk spawn, and 4) emu is
an implementation of SpMV that is backported from the Emu-
optimized version of the code. This last version of the code
includes the 2D layout optimization described in Section 3.5 and
evaluated in Figure 9.

The Haswell Xeon results in Figure 10a show that the MKL
implementation of SpMV with the “current” NUMA layout
achieves the highest bandwidth, getting close to 175 GB/s across
four nodes. Meanwhile, cilk for and cilk spawn show similar
scaling up to n=200 with the interleaved versions of both im-
plementations closely mirroring each other’s performance from
n=500 to n=8000. Finally, the Emu “backported” code only
shows scalable performance with the NUMA interleaved setting,
peaking in performance at n=8000 and around 50 GB/s. While
it is unclear at the moment why the MKL version scales so well
with a non-interleaved data layout (we suspect it may have to
do with first-touch layouts being amenable to relevant MKL
data structures and computation), the performance of the Emu
backported code seems to mesh well with our understanding of
the Emu system as a distributed PGAS machine. That is, the
optimal 2D layout of SpMV for the Emu keeps data accesses
“local” on the Emu, but a normal x86 NUMA allocator does not
stripe data like Emu’s allocator does, meaning that most data
accesses on the x86 emu “current” setup are remote NUMA ac-
cesses. Furthermore, x86 NUMA interleaved layouts have much
larger granularity for striping (pages versus elements in an array
on the Emu), which likely also penalizes the “emu (interleaved)”
implementation.

Following the Haswell Xeon results, we compare the total
percentage of STREAM bandwidth that is achieved for SpMV
on the Emu versus on the Haswell machine in Figure 10b. The
Emu results use the peak multi-node STREAM bandwidth of 12
GB/s and are compared to the Haswell STREAM peak without
NUMA interleaving, which peaks at 175 GB/s. In the case of
the Haswell results, the best case SpMV (MKL non-interleaved
from Figure10a) is used as the comparison point. As opposed
to the pointer chasing results in Figure 8, we see that both sys-
tems scale in terms of bandwidth utilization as the amount of
synthetic data is increased with the Emu peaking at about 50%
of peak STREAM bandwidth versus the Haswell system’s 80%
of peak STREAM bandwidth. SpMV can achieve between 50%
to 60% of the peak STREAM bandwidth, but with its address
calculations and the multiply-and-accumulate, the 175MHz Gos-
samer Cores cannot generate loads quickly enough to saturate
the available memory bandwidth. As we discuss in the following
section, a primary limitation of the current Chick prototype is
that even simple benchmarks are compute-bound.

5. Discussion

This characterization raises important topics for program-
ming memory-centric architectures like the Emu Chick and also
for building realistic comparisons between prototype novel ar-
chitectures and existing architectures.

5.1. Achievable Bandwidth for the Current Emu Chick Prototype

Using STREAM, pointer chasing, and SpMV, we provide
an initial look at the performance of the Emu Chick for these
fundamental operations. However, these results also point to a
fundamental issue with the initial Emu Chick prototype. The
design of the Chick with 1 Gossamer Core per nodelet and
8 nodelets per node leads to a situation where most codes are
currently compute bound due to limited GCs and low frequencies
of the GCs on the FPGA prototype.

To demonstrate, we look at the inner loop of a STREAM
ADD operation in Listing 1 and analyze the relevant assembly
code generated by Emu’s gossamer64-objdump tool. As Listing
2 shows, each inner loop of the STREAM ADD kernel performs
two loads, one add operation, and one store operation for a total
of 3 memory operations out of a total of 21 instructions.

Listing 1: STREAM ADD worker function

noinline void
recursive_remote_spawn_level2_worker(long begin ,
long end , long * a, long * b, long * c)
{

for (long i = begin; i < end; ++i) {
c[i] = a[i] + b[i];

}
}

Listing 2: STREAM ADD Assembly

%for.body: // block
etd 2 // D = E2
sllc 3 // D <<= 3
dpeta 6 // A = D + E6
lde 7 // LOAD: E7 = *A
etd 2 // D = E2
sllc 3 // D <<= 3
dpeta 5 // A = D + E5
lde 8 // LOAD: E8 = *A
etd 2 // D = E2
sllc 3 // D <<= 3
dpeta 4 // A = D + E4
etd 8 // D = E8
adde 7 // ADD: D += E7
wrd // STORE: *A = D
eta 2 // A = E2
aaimb 1 // A += 1
ate 2 // E2 = A
etd 3 // D = E3
xore 2 // D ^= E2
bdz %for.end
jmp %for.body

%for.end: // block

Using this information from the assembly code, we can
determine the peak achievable bandwidth by one GC running at
the current frequency of 175 MHz. As Equation 1 shows, one
GC can achieve up to 200 MB/s for the STREAM ADD kernel,
which we have used as our ”peak” achievable bandwidth for
comparison with other microbenchmarks.

8



Table 1: STREAM and Memory Bandwidths (BW in MB/s)

Operation Nodelets Scale Threads BW

ADD (Measured) 8 30 512 1,600
ADD (Measured) 64 31 4096 12,790
Ideal - all ld ops 1 1400
NCDIMM 8 12,800
NCDIMM 64 102,400

175MHz⇒
175M cycles

second
×

1 instruction
cycle

×

3 mem ops
21 instructions

×
8 Bytes

1 mem op
= 200MB/s

(1)

Investigating further in Table 1, we see that the measured
results for STREAM ADD for single-node and multi-node exe-
cution are very close to the 200 MB/s peak value for STREAM
ADD. However, if we look at the ideal case where all instructions
are memory operations, the peak value for a single GC would
be closer to 1,400 MB/s. Moreover, looking at the Chick’s
memory system design, we see that the measured results for
STREAM ADD are 8x slower than the NCDIMM’s theoretical
peak achievable bandwidth.

This analysis points to one conclusion - the current Emu
Chick prototype is compute-bound for all microbenchmarks due
to a low number of GCs and by low frequencies of the GCs,
both of which are restricted by limited FPGA area and speed
grades in the Arria 10 host device. We estimate that 8 GCs at
the same speed of 175 MHz per nodelet or NCDIMM channel
would be needed to move from a regime where the Chick is
compute-bound to one where applications are memory-bound.

5.2. Caveats for Programming the Emu Chick

While Cilk provides an easy entry point for programming
microbenchmarks for the Chick, our initial characterization has
demonstrated some pitfalls for obtaining good performance on
the Chick prototype. Primarily, the programmer must con-
sciously design algorithms that optimize data layouts across
nodes and that limit load imbalance by limiting thread migration.
While CPU-based systems typically are optimized using tech-
niques like cache-blocking, the distributed Partitioned Global
Address Space (PGAS) nature of the Chick system requires that
the programmer explicitly think about data placement in a differ-
ent fashion. The Emu Chick has an existing profiler to inspect
postmortem where threads end have migrated to, but detailed
profiling and inspection of a program’s execution requires the
use of a simulation-based profiling tool.

The results from SpMV demonstrate that data layout can
have an impact on performance on the Emu, application per-
formance also depends on where threads are spawned and how
many migrations occur between nodes and nodelets. In the initial
development of our benchmarks, we debated explicitly minimiz-
ing thread movement and keeping computation local to a specific
node to limit load imbalance on the existing compute resources

for each nodelet. However, this strategy both goes against the
“lightweight, migrating threadlets” model of computation with
the Emu, and it is hard to implement in practice.

For this reason, we have settled on a strategy of “smart
thread migration” for future benchmarking and application de-
velopment with the Emu system. In short, this means 1) using
“smart” thread spawn techniques like the two-level recursive re-
mote spawn as in Section 4.1, 2) using replicated allocations for
commonly used inputs like the vector X in the SpMV benchmark,
and 3) picking the appropriate layout strategy for the application.
In this last case, it is likely that good application performance
will be most easily achieved through proper data layouts like
with CSR SpMV’s striped allocation across nodelets and per-
nodelet secondary allocation for different-length rows. In this
sense, we have created our own custom 2D allocator for SpMV,
but we expect that higher-level memory allocation constructs
will eventually be supported to help use the Emu’s novel global
address space layout.

5.3. Performance Models and Comparisons to Existing Archi-
tectures

One of the challenges in evaluating a drastically different
architecture like the Emu is performing a realistic comparison
between a prototype architecture and existing platforms using
CPUs or other mainstream accelerators. Many aspects of the pro-
totype Emu Chick present challenges. The Chick is a cacheless
architecture and uses thread migration and atomic operations
to avoid buffering large chunks of data. Even when compared
with accelerators like GPUs, the low-latency access of the Chick,
different memory clock speeds and data widths, and the lack
of shared memory or caches provide a challenge for modeling
how much more “efficient” the Chick is in terms of memory
bandwidth. As shown in Section 4, different STREAM numbers
for x86 systems based on NUMA interleaving settings also com-
plicates this comparison. Additionally, the Chick is a full-scale
prototype built using FPGA devices, which are useful for their
flexibility and customization capabilities but naturally are slower
than a traditional, hardwired ASIC. Firmware upgrades to the
Chick prototype can also affect application performance dramat-
ically by changing the gossamer cores’ maximum frequency and
by adding new functionality.

These comparison challenges are common not only to the
Emu Chick but also to other new, experimental hardware like
neuromorphic and quantum computing platforms. We may need
to define additional metrics to supplement traditional characteri-
zation metrics like performance (FLOPS), memory bandwidth
balance (FLOPS/B), and power efficiency (FLOPS/W). While
we do not yet have enough application experience with the Emu
Chick to fully define new metrics, we propose that there may
be promise in focusing on comparison metrics that highlight the
differences listed above. For example, a cache-less system like
the Emu Chick may not actually move data physically across the
system, but a comparable metric to a traditional CPU-based sys-
tem might be some combination of network traffic (i.e., threads
migrated measured using context size and time, or B/s) and
cache misses avoided (B/s). We plan to investigate how to better
model and define these types of differences in future work to

9



effectively quantify not just the high-level application benefits
of novel architectures like the Chick but also the fundamental
qualities that help define which applications are the best fit for
these new architectures.

6. Related Work

Advances in memory and integration technologies provide
opportunities for profitably moving computation closer to data[12].
Some proposed architectures return to the older processor-in-
memory (PIM) and “intelligent RAM”[13] ideas. Simulations
of architectures focusing on near-data processing[14] including
in-memory[15] and near-memory[16] show great promise for
increasing performance while also drastically reducing energy
usage. Other than our previous study[1], and related work on
characterizing the Emu by other research groups[17, 18] few of
these architectures have been implemented in hardware, even
FPGAs, limiting the data scales on which applications can be
evaluated.

Other hardware architectures have tackled massive-scale
data analysis to differing degrees of success. The Tera MTA
/ Cray XMT[19, 20] could provide high bandwidth utilization
by tolerating long memory latencies in applications that could
produce enough threads. In the XMT all memory interactions
were remote incurred the full network latency. The Chick instead
moves threads to memory on reads, assuming there will be a
cluster of reads for nearby data. The Chick processor needs to
tolerate less latency and need not keep as many threads in flight.
Also, unlike the XMT, the Chick runs the operating system
on the stationary processors, currently PowerPC, so the Chick
processors need not deal with I/O interrupts and highly sequen-
tial OS code. Similarly to the XMT, programming the Chick
requires language and library extensions. Future work with per-
formance portability frameworks like Kokkos[21] will explore
how much must be exposed to programmers. Another approach
is to push memory-centric aspects to an accelerator like Sparc
M7’s data analytics accelerator[22] for database operations or
Graphicionado[23] for graph analysis.

Moving computation to data via software has had a suc-
cessful history in supercomputers and clusters via Charm++[8],
which manages dynamic load balancing on distributed memory
systems by migrating the computational objects. Previously
data analysis systems like Hadoop had moved computation to
data when the network was a data bottleneck, but that no longer
appears to be useful[24].

Finally, algorithms research related to SpMV could prove
beneficial to future implementations for Emu-like architectures.
New state-of-the-art SpMV formats and algorithms such as Spar-
seX, which uses the Compressed Sparse eXtended (CSX) format
for storing matrices[25] provide an alternative data structure
and data layout that can be used to improve the performance
of SpMV-based operations on the Emu. Related to our charac-
terization, other researchers have investigated techniques [26]
to implement SpMV with a focus on creating a load-balanced
implementation using BFS and the METIS graph partitioner
to place pieces of a graph on different nodelets. Note that this

load balancing reduces thread migrations and hotspots but may
require a large amount of initial preprocessing.

Other recent work has also looked to extend from low-level
characterizations like those presented here by providing initial
Emu-focused implementations of Breadth-First Search[17], Jac-
card index computation [27], bitonic sort, [28] and compiler
optimizations like loop fusion, edge flipping, and remote up-
dates to reduce migrations [29].

7. Conclusion

Our microbenchmark evaluation of the Emu Chick demon-
strates some of the limitations of the existing prototype system
as well as some potential benefits for massive data analytics
applications like streaming graph analytics and sparse tensor de-
composition. We demonstrate multi-nodelet (64 nodelets across
8 nodes) performance for a variety of benchmarks including
STREAM, pointer chasing, and SpMV. Initial results demon-
strate relatively low overall bandwidth for the Emu system with
a peak of 12 GB/s STREAM bandwidth for the current Chick
prototype (compared to 80+ GB/s on a Haswell CPU server
socket). However, we also show that algorithms implemented
on the Emu can achieve a high percentage of effective memory
bandwidth even in a worst-case access scenario like pointer chas-
ing. The pointer chasing benchmark in Section 4.2 achieves a
stable 60-65% bandwidth utilization across a wide range of lo-
cality parameters. These pointer chasing results and data layout
studies show how random accesses with SpMV can be improved
and while performance of SpMV does not quite match a well-
optimized x86 implementation, these optimizations can provide
a template for future benchmarking and application development
and show how application memory layouts and “smart” thread
migration can be used to maximize performance on the Emu
system.

8. Acknowledgments

This work was supported in parts by NSF Grant ACI-1339745
(XScala), NSF Grant OAC-1710371 (SuperSTARLU), an IARPA
contract, and the Defense Advanced Research Projects Agency
(DARPA) under agreement #HR0011-13-2-0001. Any opin-
ions, findings, conclusions, or recommendations in this paper
are solely those of the authors and do not necessarily reflect the
position or the policy of the sponsors.

The authors also gratefully acknowledge support by the Lab-
oratory Directed Research and Development program at Sandia
National Laboratories, a multi-mission laboratory managed and
operated by National Technology and Engineering Solutions
of Sandia, LLC, a wholly owned subsidiary of Honeywell In-
ternational, Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract de-na0003525.

Finally, thanks to the Emu Technology team for their con-
tinued support and debugging assistance with the Emu Chick
prototype and to the many reviewers with their helpful sugges-
tions.

10

http://arxiv.org/abs/de-na/0003525


References

[1] E. Hein, T. Conte, J. S. Young, S. Eswar, J. Li, P. Lavin, R. Vuduc, J. Riedy,
An initial characterization of the Emu Chick, in: The Eighth International
Workshop on Accelerators and Hybrid Exascale Systems (AsHES), 2018,
pp. 579–588. doi:10.1109/IPDPSW.2018.00097.

[2] F. McSherry, M. Isard, D. G. Murray, Scalability! but at what COST?,
in: 15th Workshop on Hot Topics in Operating Systems (HotOS XV),
USENIX Association, Kartause Ittingen, Switzerland, 2015.

[3] T. Dysart, P. Kogge, M. Deneroff, E. Bovell, P. Briggs, J. Brockman,
K. Jacobsen, Y. Juan, S. Kuntz, R. Lethin, Highly scalable near memory
processing with migrating threads on the Emu system architecture, in:
Irregular Applications: Architecture and Algorithms (IA3), Workshop on,
IEEE, 2016, pp. 2–9.

[4] D. Ediger, R. McColl, J. Riedy, D. A. Bader, STINGER: High performance
data structure for streaming graphs, in: The IEEE High Performance
Extreme Computing Conference (HPEC), Waltham, MA, 2012. doi:10.
1109/HPEC.2012.6408680.

[5] J. Li, Y. Ma, C. Yan, R. Vuduc, Optimizing sparse tensor times matrix
on multi-core and many-core architectures, in: 2016 6th Workshop on
Irregular Applications: Architecture and Algorithms (IA3), 2016, pp. 26–
33. doi:10.1109/IA3.2016.010.

[6] ParTI, ParTI Github, online, 2018. URL: https://github.com/

hpcgarage/ParTI.
[7] C. E. Leiserson, Programming irregular parallel applications in Cilk, in:

International Symposium on Solving Irregularly Structured Problems in
Parallel, Springer, 1997, pp. 61–71.

[8] B. Acun, A. Gupta, N. Jain, A. Langer, H. Menon, E. Mikida, X. Ni,
M. Robson, Y. Sun, E. Totoni, L. Wesolowski, L. Kale, Parallel pro-
gramming with migratable objects: Charm++ in practice, in: SC14:
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2014, pp. 647–658. doi:10.1109/SC.2014.58.

[9] M. Frigo, P. Halpern, C. E. Leiserson, S. Lewin-Berlin, Reducers and
other Cilk++ hyperobjects, in: Proceedings of the Twenty-first Annual
Symposium on Parallelism in Algorithms and Architectures, SPAA ’09,
ACM, New York, NY, USA, 2009, pp. 79–90. doi:10.1145/1583991.
1584017.

[10] J. D. McCalpin, Memory bandwidth and machine balance in current high
performance computers, IEEE Computer Society Technical Committee on
Computer Architecture (TCCA) Newsletter (1995) 19–25.

[11] P. R. Luszczek, D. H. Bailey, J. J. Dongarra, J. Kepner, R. F. Lucas,
R. Rabenseifner, D. Takahashi, The HPC Challenge (HPCC) benchmark
suite, Proceedings of the 2006 ACM/IEEE conference on Supercomputing
- SC 06 (2006). doi:10.1145/1188455.1188677.

[12] P. Siegl, R. Buchty, M. Berekovic, Data-centric computing frontiers: A
survey on processing-in-memory, in: Proceedings of the Second Interna-
tional Symposium on Memory Systems, MEMSYS ’16, ACM, New York,
NY, USA, 2016, pp. 295–308. doi:10.1145/2989081.2989087.

[13] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, K. Yelick, A case for intelligent RAM, IEEE
Micro 17 (1997) 34–44. doi:10.1109/40.592312.

[14] M. Gao, G. Ayers, C. Kozyrakis, Practical near-data processing for in-
memory analytics frameworks, in: 2015 International Conference on
Parallel Architecture and Compilation (PACT), 2015, pp. 113–124. doi:10.
1109/PACT.2015.22.

[15] T. Finkbeiner, G. Hush, T. Larsen, P. Lea, J. Leidel, T. Manning, In-
memory intelligence, IEEE Micro 37 (2017) 30–38. doi:10.1109/MM.
2017.3211117.

[16] A. Farmahini-Farahani, J. H. Ahn, K. Morrow, N. S. Kim, Nda: Near-
DRAM acceleration architecture leveraging commodity DRAM devices
and standard memory modules, in: 2015 IEEE 21st International Sym-
posium on High Performance Computer Architecture (HPCA), 2015, pp.
283–295. doi:10.1109/HPCA.2015.7056040.

[17] M. Belviranli, S. Lee, J. S. Vetter, Designing algorithms for the EMU
migrating-threads-based architecture, High Performance Extreme Com-
puting Conference 2018 (2018).

[18] M. Minutoli, S. Kuntz, A. Tumeo, P. Kogge, Implementing radix sort on
Emu 1, in: 3rd Workshop on Near-Data Processing (WoNDP), 2015.

[19] D. Mizell, K. Maschhoff, Early experiences with large-scale Cray XMT
systems, in: 2009 IEEE International Symposium on Parallel Distributed
Processing, 2009, pp. 1–9. doi:10.1109/IPDPS.2009.5161108.

[20] D. Ediger, J. Riedy, D. A. Bader, H. Meyerhenke, Computational graph an-
alytics for massive streaming data, in: H. Sarbazi-azad, A. Zomaya (Eds.),
Large Scale Network-Centric Computing Systems, Parallel and Distributed
Computing, Wiley, 2013. doi:10.1002/9781118640708.ch25.

[21] H. C. Edwards, C. R. Trott, D. Sunderland, Kokkos: Enabling manycore
performance portability through polymorphic memory access patterns,
Journal of Parallel and Distributed Computing 74 (2014) 3202 – 3216.
doi:10.1016/j.jpdc.2014.07.003, domain-Specific Languages and
High-Level Frameworks for High-Performance Computing.

[22] K. Aingaran, S. Jairath, G. Konstadinidis, S. Leung, P. Loewenstein,
C. McAllister, S. Phillips, Z. Radovic, R. Sivaramakrishnan, D. Smentek,
T. Wicki, M7: Oracle’s next-generation SPARC processor, IEEE Micro
35 (2015) 36–45. doi:10.1109/MM.2015.35.

[23] T. J. Ham, L. Wu, N. Sundaram, N. Satish, M. Martonosi, Graphicionado:
A high-performance and energy-efficient accelerator for graph analytics,
in: 2016 49th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), 2016, pp. 1–13. doi:10.1109/MICRO.2016.7783759.

[24] G. Ananthanarayanan, A. Ghodsi, S. Shenker, I. Stoica, Disk-locality in
datacenter computing considered irrelevant, in: Proceedings of the 13th
USENIX Conference on Hot Topics in Operating Systems, HotOS’13,
USENIX Association, Berkeley, CA, USA, 2011, pp. 12–12.

[25] A. Elafrou, V. Karakasis, T. Gkountouvas, K. Kourtis, G. Goumas,
N. Koziris, SparseX: A library for high-performance sparse matrix-vector
multiplication on multicore platforms, ACM Trans. Math. Softw. 44 (2018)
26:1–26:32. doi:10.1145/3134442.

[26] T. Rolinger, C. D. Krieger, Impact of traditional sparse optimizations on
a migratory thread architecture, in: Proceedings of the 8th Workshop on
Irregular Applications: Architectures and Algorithms, IA3’18, 2018.

[27] G. P. Krawezik, P. M. Kogge, T. J. Dysart, S. K. Kuntz, J. O. McMahon,
Implementing the Jaccard index on the migratory memory-side processing
Emu architecture, High Performance Extreme Computing Conference
2018 (2018).

[28] K. Velusamy, T. B. Rolinger, J. McMahon, T. A. Simon, Exploring parallel
bitonic sort on a migratory thread architecture, High Performance Extreme
Computing Conference 2018 (2018).

[29] P. Chatarasi, V. Sarkar, A preliminary study of compiler transformations for
graph applications on the Emu system, in: Proceedings of the Workshop
on Memory Centric High Performance Computing, MCHPC’18, ACM,
New York, NY, USA, 2018, pp. 37–44. URL: http://doi.acm.org/10.
1145/3286475.3286481. doi:10.1145/3286475.3286481.

11

http://dx.doi.org/10.1109/IPDPSW.2018.00097
http://dx.doi.org/10.1109/HPEC.2012.6408680
http://dx.doi.org/10.1109/HPEC.2012.6408680
http://dx.doi.org/10.1109/IA3.2016.010
https://github.com/hpcgarage/ParTI
https://github.com/hpcgarage/ParTI
http://dx.doi.org/10.1109/SC.2014.58
http://dx.doi.org/10.1145/1583991.1584017
http://dx.doi.org/10.1145/1583991.1584017
http://dx.doi.org/10.1145/1188455.1188677
http://dx.doi.org/10.1145/2989081.2989087
http://dx.doi.org/10.1109/40.592312
http://dx.doi.org/10.1109/PACT.2015.22
http://dx.doi.org/10.1109/PACT.2015.22
http://dx.doi.org/10.1109/MM.2017.3211117
http://dx.doi.org/10.1109/MM.2017.3211117
http://dx.doi.org/10.1109/HPCA.2015.7056040
http://dx.doi.org/10.1109/IPDPS.2009.5161108
http://dx.doi.org/10.1002/9781118640708.ch25
http://dx.doi.org/10.1016/j.jpdc.2014.07.003
http://dx.doi.org/10.1109/MM.2015.35
http://dx.doi.org/10.1109/MICRO.2016.7783759
http://dx.doi.org/10.1145/3134442
http://doi.acm.org/10.1145/3286475.3286481
http://doi.acm.org/10.1145/3286475.3286481
http://dx.doi.org/10.1145/3286475.3286481

	1 Introduction
	2 The Emu Architecture
	3 Experimental Setup
	3.1 Emu Chick Prototype
	3.2 Emu Simulator
	3.3 Common CPU-Focused Comparison Platform
	3.4 Metrics for Comparing the Emu Prototype with Cache-Based Hardware
	3.5 Benchmarks

	4 Results
	4.1 STREAM
	4.2 Pointer Chasing
	4.3 Sparse Matrix-Vector Multiplication

	5 Discussion
	5.1 Achievable Bandwidth for the Current Emu Chick Prototype
	5.2 Caveats for Programming the Emu Chick
	5.3 Performance Models and Comparisons to Existing Architectures

	6 Related Work
	7 Conclusion
	8 Acknowledgments

