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Abstract

The slope-intercept Hough transform (SIHT) is one of the two types of line-detection methods. However, the disadvantage
of the SIHT is its low memory utilization, say 50%. Based on the affine transformation, this paper presents a new method
to improve the memory utilization of the SIHT from 50% to 100%. According to the proposed affine transformation, we
first present a basic SIHT-based algorithm for detecting lines. Instead of concerning floating-point operations in the basic
SIHT-based algorithm, an improved SIHT-based algorithm, which mainly concerns integer operations, is presented. Besides
the memory utilization advantage, experimental results reveal that the improved SIHT-based algorithm has more than 60%
execution time improvement ratio when compared to the basic SIHT-based algorithm and has more than 33% execution
time improvement ratio when compared to another type of line-detection methods, such as the (r, #)-based HT algorithm and
its variant. The detailed complexity analyses for all the related algorithms are also investigated and we show that the time
complexity required in the improved SIHT-based algorithm is the least.
© 2003 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction SI approach with finite parameter space and the proposed

method is called the ST Hough transform (SIHT). For deter-

Detecting lines in a digital image is a classical problem ministic HTs, besides the SIHT type, another well-known
in image processing field. Throughout this paper, we only type is the (r, 0)-based HT proposed by Duda and Hart [5—
focus on this line-detection issue since detecting the other 8], where # and 0 are the normal distance and normal angle
shapes, such as circles and ellipses, is another research is- of a line, respectively. For convenience, the (r, 0)-based HT
sue. Since Hough [1] presented the method for mapping the is denoted by NHT. Note that the discussion of random-
image domain to the slope-intercept (SI) parameter space ized HT algorithms for detecting lines is beyond the scope
to detect lines, the idea of the transformation from the im- of this research and we only focus on the deterministic HT
age domain to the parameter space has become a popular algorithms.
technique [2]. Later, Wahl and Biland [3,4] proposed a twin In Ref. [9], Risse indicated that the memory utilization

of SIHT is 50%. This low memory utilization leads to the
first motivation of this research. As the first motivation, this
E-mail addresses: klchung@cs.ntust.edu.tw (K.-L. Chung), research wants to present a new approach to improve the
der@ccl.cyjcba.edutw (T.-C. Chen), ganboon@ecsie.ntu.edu.tw memory utilization of the SIHT from 50% to 100%. Besides
(W.-M. Yan). the first improvement, this paper further wants to present a
! Supported by NSC89-2213-E011-061. new and faster SIHT-based algorithm which is also faster
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than the NHT and its variant proposed by Ben-Tzvi and
Sandler [10], called the CHT.

Based on the affine transformation, this paper presents a
method to improve the memory utilization of the SIHT from
50% to 100%. According to the proposed affine transfor-
mation, we first present the first STHT-based algorithm, de-
noted by FSIHT. Then, using the incremental approach, we
improve the FSIHT such that only few multiplications are
involved in the second algorithm called the SSIHT. Finally,
by applying a sign testing technique, the third SIHT-based
algorithm, denoted by TSIHT, is presented. In the TSIHT, it
mainly concerns integer operations. In practice, the TSIHT
can reduce the memory requirement of the SIHT [1] down
to 67%. Some experiments have been carried out to compare
the performance among the SIHT, FSIHT, SSIHT, TSIHT,
NHT, and CHT. The experimental results reveal that the
TSIHT is the fastest among the three proposed SIHT-based
algorithms. Especially, the TSIHT has more than 60% exe-
cution time improvement ratio when compared to the FSIHT
and has more than 33% execution time improvement ratio
when compared to the NHT and CHT. The detailed com-
plexity analyses for all the related algorithms are also in-
vestigated and we show that the time complexity required
in the TSIHT is the least.

The remainder of this paper is organized as follows. Sec-
tion 2 presents a set and geometrical approach to introduce
the SI parameter space and analyzes the related memory
utilization. Section 3 presents how to apply the affine trans-
formation to map the SI parameter space into a fully uti-
lized parameter space. On the newly transformed parameter
space, Section 4 presents our novel algorithms. Section 5 il-
lustrates the experimental results. Finally, some concluding
remarks are addressed in Section 6.

2. The SI parameter space and memory utilization

In this section, the SI parameter space for detecting lines
is defined explained first. Because we are dealing with dig-
ital images, the corresponding curves of the collinear points
in digital image are hard to exactly meet at one point in the
parameter space. Instead, these curves will pass through a
region, i.e. cell, in the parameter space. Therefore, for im-
plementation, we uniformly quantize the parameter space
into many small cells and use voting along curves on these
cells. When we complete the voting process, we report
those lines corresponding to those cells whose counts ex-
ceed a predetermined threshold. Because we only concern
with lines existing in the digitized image, many cells in the
quantized parameter space may never be used. That is, no
vote will be occurred in those useless cells. For example,
the cell with slope 0 and intercept —1 is useless. Let the
number of cells in the parameter space be R and the number
of useless cells be U, then the memory utilization is defined
as (R—U)/R. Low memory utilization will lead to waste the
memory. By using the set and geometrical viewpoint, in the

(N,N)

Fig. 1. The image domain /.

remainder of this section, we provide a new proof to show
that the memory utilization of the SIHT is 50% as shown in
Ref. [9].

The basic concept of the SIHT is that a line passing
through a point (x, y) in the image domain with slope |a| < 1
(J@’| > 1) and intercept b can be represented by equation
y=ax+b (x=y/|d’| +b). Using this equation, we can map
the point (x, y) in xy (yx) space, i.e. the image domain, to a
dual curve in the SI parameter space. Further, an intersection
between two curves for the two points corresponds to a line
which passes through these two points. That is, the mapping
has the property that collinear points in xy space will meet
in the intersection of the corresponding dual curves in the
SI parameter space.

Suppose we are given an image domain / as shown in
Fig. 1for0 <x<Nand0 <y <N.

For each point (x,y) in I, let @ and b be the slope
parameter and the intercept parameter of a straight line,
respectively. Then every line passing through it can be rep-
resented by the SI form y=ax+b inxy space orx=ay+b
in yx space (exchange x and y) with —1 < a < 1. The
restriction —1 < a < 1 on the slope a is reasonable since
we can change the line equation y = ax + b with |a| > 1
to the form x = ay + b with |a| < 1 and view the line with
absolute value of slope less than 1 in yx space. Without
losing generality, we only discuss the case y = ax + b with
slope |a| < 1 throughout this paper. If we rewrite the equa-
tion y =ax + b to b = —ax + y and fix a point (x, y), we
can map that point (x, y) to a dual line in the SI parameter
space. Furthermore, all collinear points along a straight
line in xy space will have dual lines in the SI parame-
ter space such that these dual lines intersect at the same
point.

In order to investigate the possible range of the SI param-
eter space, we define a dual representation to map that point
in xy space to a line segment in the SI parameter space:

Hx,y)={(a,b): —1<a<1l,b=—ax+ y}.
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b

Fig. 2. The region for Uy, <y H(0, »).

Besides, let us define two special points in the SI parameter
space

P =(=Lx+y) and Py’ =(l,—x+y)

then for each point (x, y) in the image domain /, its dual
representation for H(x, y) can be represented by the line
segment PyYPy” which is connected by the two points
(—1,x + y) and (1, —x + y) in the SI parameter space.
Following the definition of H(x, y), we now define a rect-
angular region in the SI parameter space. From H(0, y) =

P}PPYY, where P = (—1,y) and P}’ = (1, ),
U H#©.»)

0<y<N

represents a rectangular region as shown in Fig. 2. Similarly,
from H(N, y) = P}"’ P}, where P}"’ = (=1,N + y) and
Py' = (1,=N +y),

U #W.»

0<y<N

represents a parallelogram as shown in Fig. 3.
Let P, as shown in Fig. 4, denote the set of the union of
the regions in Figs. 2 and 3. It is easy to know that

p:[ U H(O,y)]U{ U H(N,y)}

0<y<N 0<y<N

c U Hxy.
(x,y) in I
Moreover, for each point (x, y) in /, since 0 < x + y < 2N
and —N < —x + y < N, we have the two points P’ =
(=1,x+ y) and Py = (1, —x + y) which are always in P.
In addition, the midpoint (0, y) of PPy is also in P. So,
we have

U H@ynce

(x,y) in 1

(-1,2N)

('LN)

Fig. 3. The region for Uy, <y HN, »).

(-1,2N)

(1"N)

Fig. 4. The region P.

Consequently, we obtain that

U H(x,y)=P.

(x,y) in

Therefore, the region of the SI parameter space before quan-
tization is P whose area, i.c. size, is 3N.

To implement the SIHT, we usually evenly quantize the
SI parameter space into a form of rectangular tessellation
with respect to a 2D memory. Here, the smallest rectangular
region of the SI parameter space which contains P is
[—1,1] x [ — N,2N]. It is easy to observe that two areas
in that rectangular region will never be used.

Let the size of the quantized SI parameter space be the
number of cells required in the rectangular tessellation. We
have the following result.

Lemma 1. The size of the smallest rectangular region
of the quantized SI parameter space, i.e. the memory,
is 6N, and the memory utilization of SIHT is 50%
(i.e. (6N —3N)/6N).
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Fig. 5. The image domain /.

3. The proposed affine transformation

In this section, we present an affine transformation-based
approach to reach 100% memory utilization and reduce the
memory requirement in the quantized SI parameter space
from 6N to 4N (see Lemma 1).

Our affine transformation is given by

!
X =x—=)
Y =x+y-N, (1)

where (x, y) is a point in the image domain /. After applying
our affine transformation, we can map the region of the
image domain / as shown in Fig. 1 into the region of Fig.
5, where the image domain of Fig. 5 is denoted by I’. It is
not hard to see that the transformed image domain I’ in x’y’
space can be represented as the equation |x’| + || < N.

Following the same discussion as in Section 2, we map
each point (x’, y’) in I’ to its dual segment H(x’, y") in the SI
parameter space. Here, H(x’, ") can be represented by the
line segment which is connected by two points (—1,x" + ")
and (1, —x’ + »"). Note that whenever (x', y") in I’, (x', y")
satisfies the constraint | £x" + /| < |x'| + || < N.

Let P = {(a,h): =1 <a<1,—N < b <N} as shown
in Fig. 6, then we have H(x, y") C P’ whenever (x', y’) in
I'. It yields

U #&.HCP.

'y in I/

In addition, for |y’'| < N, (0,") is within the domain I’
and H(0, ") can be represented by the line segment which
is connected by two points (—1,)") and (1, y"). From the
definition of P’, we know that

P'= | H(©..

[V <N

a

(17_N)

Fig. 6. The region P’.

Because of
P'= ] HOYH S |J HE.Y)
|y |<N (x’,y") in I’
we have
U HE.H=P.
x’,y") in I’

Using the above affine transformation, we actually have
a more compact memory in the newly transformed param-
eter space. From Fig. 6, since the region P’ is rectangu-
lar and no area in P’ is useless, we have the following
result.

Lemma 2. The size of the smallest rectangular region in
the newly transformed of the parameter space is 4N, and
the memory utilization is 100%.

Combining the results in Lemmas 1 and 2, we con-
clude that the memory saving ratio of our proposed pa-
rameter space over the previous SI parameter space is
(6N —4N)/(6N)=1/3.

From Eq. (1), there is a one-to-one correspondence be-
tween I and I’. The corresponding relation between them
can be obtained by the substitution technique. We have the
following two results.

Theorem 3. If there is a line y' =ax’ +bin I’ for |a| <1,
then there is a line x = (b + N)/2 in I when a = —1; other-
wise, there is a line y=(a—1)/(a+ 1)x+(b+N)/(a+ 1)
inl.

Proof. From Eq. (1), the line y' =ax’ +b in I’ corresponds
to the line (x + y — N) = a(x — y) + b, which is equal to
(@a+1)y=(a—1)x+ b+ N, in I. Considering a = —1,
we have a line x = (b + N)/2 in I. Otherwise, it is easy
to derive aline y=(a— 1)/(a+ 1)x + (b +N)/(a+ 1)
inl.
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Theorem 4. If thereis a linex' =ay' +binl’ for|a] <1,
then there is a line y = (N — b)/2 in I when a = 1; other-
wise, there is a linex=(14+a)/(1 —a)y+(b—aN)/(1 —a)
inl.

Proof. From Eq. (1), the line x’ =ay’ + b in I’ corresponds
to the line (x — y) =a(x + y — N) + b, which is equal to
(I —a)x=(1+4+a)y +b—aN, in I. Considering a = 1,
we have a line y = (N — b)/2 in I. Otherwise, it is easy
to derive a line x = (1 + a)/(1 —a)y + (b — aN)/(1 — a)
in/.

4. The proposed algorithms

In this section, based on the above affine transforma-
tion, we first present a basic SIHT algorithm, called the
FSIHT, which involves a large amount of multiplications
and floating-point (FL) operations. Note that the difference
between the SIHT [3,4] and the proposed FSIHT is that the
latter employs the affine transformation to increase the mem-
ory utilization from 50% to 100%. However, we will give
the detailed time complexity analyses for both the SIHT and
the FSIHT.

Next, we present the second algorithm, which is an im-
proved version of the FSIHT, and the proposed algorithm,
SSIHT, involves few multiplications. Finally, we present the
third algorithm, TSIHT, which mainly concerns integer op-
erations and is the fastest when compared with the FSIHT
and SSIHT. Even compared with SIHT, NHT, and CHT, the
proposed TSIHT is still the fastest.

4.1. The first algorithm: FSIHT

For implementation, we first translate the rectangular re-
gion of Fig. 6 to the first quadrant. So, we let

H', y)Y=HX, Y)Y+ (1,N)={(a,h): 0<a <2,
b=—(a—1)x'+y +N}

and

P=P +(1,N)={(a,b):0<a<2,0<b<2N}.

Using the similar affine transformation technique, it can
be verified that

U HK',y')=P.
(x',y") in I’
For implementation, we evenly quantize the slope interval
[0,2] into 2N + 1 quantized values, i.e. 0,1/N,2/N,...,
and 2. Furthermore, we evenly quantize the intercept in-
terval [0,2N] into 2N + 1 integers, i.e. 0,1,2,..., and
2N. Then the proposed first algorithm is presented as
follows:

ALGORITHM: FSIHT

{initially, the 2D array, namely HS, for parameter space is
set to zero}
HS — [0]
{perform affine transformation for each edge pixel (x, y)
in the image domain 7}
{this is the main difference between the SIHT and the
FSIHT}
for each edge pixel (x, y) in /
X —x—y
Vex+y-—N
for i < 0 to 2N {voting process}
b« int((1 — i/N)x' + 3’ + N) {deduce from the
equation y' = (i/N — 1)x +(b— N)}
HS[i, b] < HS[i,b] + 1 {voting operation: count the
number of collinear edge pixels}
endfor
endfor

Given a threshold value T, suppose the value of HS[i, b] is
greater than T, we thus detect a line, y' = (i/N — 1)x’ +
(b—N), in the domain /’. That is, we detect a line, b= (1 —
i/N)(x — y) +x + y, in the domain /.

Assume the cost of one subtraction (division) is equal
to one addition (multiplication). For each edge pixel (x, y),
the FSIHT needs three integer additions for doing our affine
transformation. Besides, it needs 2N + 1 voting operations,
2N + 1 operations for converting FL values to integer
values (see ‘int’ in the FSIHT algorithm), 3(2N + 1) FL
additions, and 2(2N + 1) FL multiplications. For simplicity,
let INT be one operation for converting one FL value to
the integer value. Here, the voting operation just needs one
integer addition. Combining the time complexity required
for |a] <1 and |a| > 1, the FSIHT needs 3 + 2(2N + 1)
integer additions, 6(2N + 1) FL additions, 42N + 1)
FL multiplications, and 2(2N + 1) INTs for each edge
pixel.

As for the SIHT, it does not need three integer additions
for doing our affine transformation for each edge pixel.
Moreover, the statement b « int((1 — i/N)x’ + 3’ + N)
should be replaced by b «— int((1 — i/N)x + y + N).
So it needs 2(2N + 1) integer additions, 6(2N + 1) FL
additions, 4(2N + 1) FL multiplications, and 2(2N + 1)
INTs. However, in SIHT, it needs (3N + 1) x (2N + 1)
array memory. Therefore, SIHT needs more time to set
the array to zero for initialization and to check whether
each cell in the array is greater than the threshold T or
not. Specifically, the array memory required in the pro-
posed algorithm FSIHT is of size 2N + 1) x 2N + 1)
and it leads to save some amount of memory-checking
time.

From the above discussion, we can see that the time com-
plexities of the SIHT and the FSIHT do not make much
difference. But, the proposed FSIHT reduces the memory
requirement of the SIHT down to 67%.
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4.2. The second algorithm: SSIHT

Since one multiplication costs some additions, we now
give an improved algorithm of the FSIHT, say SSIHT, which
only involves few multiplications during the voting process.
The improved algorithm SSIHT is motivated from the fact
that we can change the expression of the equation b = (1 —
i/N)x'+y +N into b=x"+y +N —i(x'/N). So, for giving
(x,y"), the next voting value b for i + 1 can be obtained
using the incremental approach with the incremental value
—x'/N each time. The formal SSIHT algorithm is listed
below.

ALGORITHM: SSIHT

{initially, the 2D array HS for parameter space is set to zero }
HS — [0]
for each edge pixel (x, y) in /
X —x—y
V e—=x+y-N
5 — 7%’ {s denotes the incremental value}
r+x"+ 3y + N —s {ris the real intercept; here we set
the initial value of r}
for i < 0 to 2N {voting process}
r < r + s {incremental step}
b — int(r) {find b who is the closest integer value
of r}
HS[i, b] < HS[i, b] + 1 {count the number of collinear
edge pixels}
endfor
endfor

Considering the two cases, |a| < 1 and |a| > 1, for each
edge pixel, the SSIHT algorithm needs 3 + 2(2N + 1) inte-
ger additions for doing our affine transformation and voting
operations. Six FL additions and two FL multiplications
are needed for preparing some initial values. In addition,
it needs extra 2(2N + 1) FL additions and 2(2N + 1)
INTs.

4.3. The third algorithm: TSIHT

In the above SSIHT algorithm, it is observed that the
incremental value —x'/N is not integer and has absolute
value less than or equal to 1. That is, the next voting
value b is either incremented by +1 (depends on the
sign of the incremental value) or equals to the previous
voting value. In what follows, we present an improved
algorithm of the SSIHT, say TSIHT, which mainly con-
cerns integer operations. Basically, we use a discrimi-
nator to decide whether the next voting is incremented
by +1 or not. The proposed TSIHT algorithm is listed
below.

ALGORITHM: TSIHT

{initially, the 2D array HS for parameter space is set to zero }
HS « [0]
for each edge pixel (x, y) in /
X —x—y
Vex+y—N
b—x"+y +N
HS[0,b] < HS[0,b] + 1 {voting for the case when slope
a=0}
if x’ > 0 then {b will be nonincreasing }
d «— [N/2] {discriminator}
fori «— 1to 2N
d — d — x'" {next discriminator}
d < 0 then {subtract 1 from b}

b—b—1
d—d+N
end if

HS[i,b] < HS[i,b] + 1 {count the number of
collinear edge pixels}
end for
else if x' < 0 then {b will be nondecreasing}
d «— —[N/2] {discriminator}
fori < 1to 2N
de—d—x
ifd > 0 then {add 1 to b}
b—b+1
d—d—-N
end if
HS[i,b] < HS[i,b] + 1 {count the number of
collinear edge pixels}
end for
else {if x’ = 0, then b will be a constant}
fori < 1to 2N
HS[i,b] < HS[i,b] + 1 {count the number of
collinear edge pixels}
end for
end if
endfor

Considering the two cases, |a| < 1and |a| > 1, for each edge
pixel, the TSIHT algorithm needs 5 +2(2N + 1) integer ad-
ditions for performing our affine transformation, setting the
initial value b, and voting operations. In addition, two ceil-
ing operations are needed. Furthermore, during the voting
process, it only needs 12N integer additions and 2(2 4+ 2N)
sign testing operations in the worst case.

4.4. Complexity analysis for NHT

As mentioned in Section 1, we hope to include the
(r,0)-based HT proposed by Duda and Hart [6], denoted by
NHT, for comparison with the FSIHT, SSIHT, and TSIHT.
Since the time complexity of the NHT depends on the di-
mension of quantization of the parameter, for fairness, we
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Table 1
Memory and time complexity comparison among NHT, SIHT, FSIHT, SSIHT, and TSIHT
NHT SIHT FSIHT SSIHT TSIHT
cos 22N +1) 0 0 0 0
Fy 42N +1)+6 42N + 1) 42N +1) 2 0
Fy 22N +1)+1 6(2N + 1) 6(2N + 1) 6+2(2N + 1) 0
INT (2N +1) 22N + 1) 22N + 1) 22N + 1) 0
I (2N +1) 22N +1) 34+202N +1) 34+202N +1) 7+ 16N
Ceiling 0 0 0 0 2
Sign 0 0 0 0 2(2+2N)
Size (2N +1) (BN +1) (2N +1) (2N +1) (2N + 1)
X(2N + 1) X(2N + 1) X(2N +1) X(2N +1) X(2N +1)

arrange the NHT with the same the dimension of the pa-
rameter space quantization as in the above three proposed
algorithms.

We first outline the NHT. The NHT using the normal an-
gle 0 and normal distance r, where » = x cos 0 + y sin 0, to
represent a line and the parameter space can be restricted to
[0,7] X [ — N, v2N]. For each edge pixel (x, y), during the
ith voting, i = 0,...,2N, it needs to calculate 0 «— i(A0),
7« xcos 0+ysin 0, b — int((r+N)/(Ar)), and one voting
operation. Here, A0 = /(2N ) and Ar = (/2N + N)/(2N)
are the quantization interval for 0 and r, respectively, and
can be calculated in the initialization phase; b is used to
determine the index number of the r-axis in the quantized
(r,0) parameter space. Assume the cost of one cos 0 op-
eration is equal to one sin 0 operation and the cost of one
square root operation is equal to one FL multiplication.
Totally, for each edge pixel, the NHT needs 2(2N + 1)cos
operations, 4(2N + 1)+ 6 FL multiplications, 2(2N +1)+1
FL additions, (2N + 1) INTs, and (2N + 1) integer
additions.

4.5. Memory and time comparison among NHT, SIHT,
FSIHT, SSIHT, and TSIHT

The size of the memory array required in the parameter
space and the time complexity needed in the NHT, SIHT,
FSIHT, SSIHT, and TSIHT, respectively, for each edge
pixel are summarized in Table 1. In Table 1, the mean-
ing of cos, Fx, Fy, INT, I, ceiling, sign, size, and cost
are explained as follows: cos is the number of cos oper-
ations; F'x is the number of FL multiplications; F; is the
number of FL additions; INT is the number of operations
for converting FL values to integers; /; is the number of
integer additions; Ceiling is the number of ceiling oper-
ations; Sign is the number of sign testing operations and
Size is the size of memory array needed in the parameter
space.

From Table 1, it is observed that the time complexity re-
quired in the proposed FSIHT is nearly the same as that in

the SIHT. The main reason is that the memory size used
in the FSIHT is less than that in the SIHT although the
FSIHT takes three integer additions to perform the affine
transformation on each edge pixel. Unlike the other algo-
rithms, such as NHT, SIHT, FSIHT, and SSIHT, the pro-
posed TSIHT does not involve any FL operations and in
practice, the TSIHT will be the fastest. The experiments in
the next section will confirm this.

5. Experimental results

In order to demonstrate the thorough time comparison,
besides the above five algorithms, the comparison also
covers the CHT, the SIHT’, and the SIHT”, where SIHT’
(SIHT"") denotes the SIHT but employing the incremen-
tal approach (sign testing technique) which is used in the
SSIHT (TSIHT). In implementation, three real images as
shown in Fig. 7 are used to test the time performance,
each image with size 256 x 256. All the experiments are
performed on a Pentium IIT 733 MHz computer using C
language.

Figs. 7(a)—(c) are the road-image, the airport-image,
and floor-image, respectively. After applying the edge de-
tection method using Laplacian operator [11], Fig. 8 shows
the three resulting images and the number of edge pixels
are 1090, 1780, and 3207, respectively. The detected lines
using our proposed affine transformation-based algorithms
are shown in Fig. 9. Each line in Fig. 9 is drawn using the
corresponding two parameters of that line detected in the
algorithms.

From the equation » = x cos 0 + y sin 0 used in the NHT,
it is easy to know that the incremental approach and the
sign testing technique mentioned previously cannot be
applied to improve the NHT. Table 2 shows the time com-
parison among SIHT, SIHT’, TSIHT”, FSIHT, SSIHT, and
TSIHT. In Table 2, the second-to-fourth columns denote
the names of line-detection algorithms and the execu-
tion time required in terms of milliseconds. The notations
IR;%E%, ]Rg}ﬂ,,, TRESHT and (JRFSHT ) denote the time
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(c)

Fig. 7. Three testing images. (a) Road-image. (b) Airport-image. (c¢) Floor-image.

improvement ratios (STHT—SIHT’)/SIHT, (SIHT—SIHT")/
SIHT, (FSIHT—SSIHT)/FSIHT, and (FSIHT—TSIHT)/
FSIHT, respectively.

From Table 2, it is observed that the STHT" (TSIHT) al-
gorithm has more than 60% execution time improvement
ratio when compared to the SIHT (FSIHT) algorithm. It is
implied that the incremental approach and the sign testing

technique really can improve the original SIHT algorithm
significantly. Furthermore, let us compare the time between
SIHT” and TSIHT. Table 3 shows that the execution time
improvement ratio of the TSIHT over the SIHT” is more
than 0.02%. Besides the computational advantage, the pro-
posed TSIHT algorithm reduces the memory requirement of
the SIHT” down to 67% (see Lemmas 1 and 2).
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(a)

(b)

Fig. 8. The three sets of edge pixels for Fig. 7. (a) Edge pixels for road-image. (b) Edge pixels for airport-image. (c) Edge pixels for

floor-image.

Let us further compare the time comparison among the
TSIHT, NHT, CHT, and NHTT, where the NHTT is the
NHT in which the sine and cosine are implemented by using
the lookup table. Note that the sine and cosine in the NHT
are implemented by calling the subroutines, sin() and cos().
Table 4 shows that the proposed TSIHT algorithm has more

than 33% execution time improvement ratio when compared
to the NHT, NHTT, and CHT.

From Tables 2-4, we conclude that besides the
memory-saving advantage, the proposed TSIHT is the
fastest among the SIHT, SIHT’, SIHT”, FSIHT, SSIHT,
TSIHT, NHT, NHTT, and CHT.
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(a)

(b)

(©)

Fig. 9. The resulting detected lines. (a) Detected lines in road-image. (b) Detected lines in airport-image. (c¢) Detected lines in floor-image.

6. Conclusions

This paper has presented an affine transformation-based
approach to improve the memory utilization of the SIHT
[3,4] from 50% to 100%. We also provide a detailed
proof. According to the proposed affine transformation,
we present three SIHT-based algorithms to improve the
original SIHT. Among these three proposed algorithms

and the SIHT, the TSIHT is the fastest. In the TSIHT,
it mainly concerns integer operations. The detailed time
complexity for each algorithm is also investigated. In fact,
the incremental approach and the sign testing technique
used in the proposed TSIHT can also be applied to speed
up the SIHT. In addition, the NHT, the NHTT, and the
CHT are covered to test the performance with the proposed
TSIHT.
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Table 2 SSIHT, TSIHT, NHT, NHTT, and CHT. The experimental
Time comparison among SIHT, SIHT’, SIHT”, FSIHT, SSIHT, results reveal that the TSIHT is the fastest among the con-
and TSIHT cerning nine algorithms. Especially, the TSIHT has more
Image SIHT SIHT’ SIHT”  IRGHT, IRSIAT,, than 60% execution time improvement ratio when compared
to the FSIHT and has more than 33% execution time im-
R(,)ad 236 232 96 0.09 0.63 provement ratio when compared to the NHT and CHT.
Airport 410 372 163 0.09 0.60
Floor 778 606 220 0.22 0.72
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