
Pattern Recognition 37 (2004) 1855–1872
www.elsevier.com/locate/patcog

A wavelet-based image fusion tutorial

Gonzalo Pajares∗, Jes*us Manuel de la Cruz
Dpto. Arquitectura de Computadores y Autom�atica, Facultad de Ciencias F��sicas, Universidad Complutense de Madrid,

Ciudad Universitaria, 28040 Madrid, Spain

Received 27 November 2002; received in revised form 22 March 2004; accepted 22 March 2004

Abstract

The objective of image fusion is to combine information from multiple images of the same scene. The result of image
fusion is a new image which is more suitable for human and machine perception or further image-processing tasks such as
segmentation, feature extraction and object recognition. Di4erent fusion methods have been proposed in literature, including
multiresolution analysis. This paper is an image fusion tutorial based on wavelet decomposition, i.e. a multiresolution image
fusion approach. We can fuse images with the same or di4erent resolution level, i.e. range sensing, visual CCD, infrared,
thermal or medical. The tutorial performs a synthesis between the multiscale-decomposition-based image approach (Proc.
IEEE 87 (8) (1999) 1315), the ARSIS concept (Photogramm. Eng. Remote Sensing 66 (1) (2000) 49) and a multisensor
scheme (Graphical Models Image Process. 57 (3) (1995) 235). Some image fusion examples illustrate the proposed fusion
approach. A comparative analysis is carried out against classical existing strategies, including those of multiresolution.
? 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

With the availability of multisensor data in many =elds,
such as remote sensing, medical imaging or machine vision,
sensor fusion has emerged as a new and promising research
area. It is possible to have several images of the same scene
providing di4erent information although the scene is the
same. This is because each image has been captured with
a di4erent sensor. If we are able to merge the di4erent in-
formation to obtain a new and improved image, we have a
fused image and the method is called a fusion scheme. The
following three examples clarify these assertions; a detailed
explanation of such examples is given in Section 4:

(1) Due to the limited depth-of-focus of optical lenses in
CCD devices, it is often not possible to get an image
that contains all relevant objects “in focus”. To achieve
all objects “in focus”, a fusion process is required so
that all focused objects are selected.
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(2) In the remote sensing =eld, the color information is
provided by three sensors covering the red, green and
blue spectral wavelengths. These sensors have a low
number of pixels (low spatial resolution) and the small
objects and details (cars, small lines, etc.) are hidden.
Such small objects and details can be observed with
a di4erent sensor (panchromatic), which have a high
number of pixels (high spatial resolution) but without
color information. With a fusion process a unique image
can be achieved containing both: high spatial resolution
and color information.

(3) In medical imaging, we can have a positron emission
tomography and a magnetic resonance images from the
brain of the same patient. The =rst is a functional im-
age displaying the brain activity, but without anatom-
ical information. On the contrary, the second provides
anatomical information but without functional activity.
Moreover, although the two images come exactly from
the same brain area, the positron emission tomography
has less pixels than the magnetic resonance, i.e. we say
that the =rst has less spatial resolution than the second.
The goal of fusion scheme for the proposed example is
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to achieve a unique image with functional and anatom-
ical information and with the best resolution.

In general, the problem that image fusion tries to solve is to
combine information from several images (sensors) taken
from the same scene in order to achieve a new fused image,
which contains the best information coming from the origi-
nal images. Hence, the fused image has better quality than
any of the original images.

The wavelets-based approach is appropriate for perform-
ing fusion tasks for the following reasons:

(1) It is a multiscale (multiresolution) approach well suited
to manage the di4erent image resolutions. In recent
years, some researchers [4–8] have studied multiscale
representation (pyramid decomposition) of a signal and
have established that multiscale information can be
useful in a number of image processing applications
including the image fusion.

(2) The discrete wavelets transform (DWT) allows the
image decomposition in di4erent kinds of coeIcients
preserving the image information.

(3) Such coeIcients coming from di4erent images can be
appropriately combined to obtain new coeIcients, so
that the information in the original images is collected
appropriately.

(4) Once the coeIcients are merged, the =nal fused image
is achieved through the inverse discrete wavelets trans-
form (IDWT), where the information in the merged
coeIcients is also preserved.

The key step in image fusion based on wavelets is that of
coeIcient combination, namely, the process of merge the
coeIcients in an appropriate way in order to obtain the
best quality in the fused image. This can be achieved by a
set of strategies. The most simple is to take the average of
the coeIcients to be merged, but there are other merging
strategies with better performances, which are exhaustively
studied in Section 3 of this paper.

Three previous wavelets-based works: Zhang and Blum
(ZB) [1], Ranchin and Wald (RW) [2] and Li et al. (LMM)
[3] are the basis for this tutorial. ZB establishes a categoriza-
tion of multiscale decomposition (MSD), RW introduces the
ARSIS (Am*elioration de la R*esolution Spatiale par Injection
de Structures) concept, making use of a multiscale method
for the description and modeling of the missing information
between images to be fused. LMM performs extensive ex-
periments with several sets of images including the fusion
of multifocus images. In ZB, the objective of the fusion is
to achieve a high-quality digital camera image from several
degraded images. In RW, the goal of the fusion is to achieve
high spatial resolution together with a high-quality spectral
content from two kinds of remote sensing images: (1) im-
ages with high quality in the spectral content but low qual-
ity in the spatial resolution and (2) images with high spatial
resolution but with a unique spectral band. This is also the
objective in Garguet-Duport et al. (GGCP) [9].

Fig. 1. Block diagrams of generic fusion schemes where the input
images have identical (a) and di4erent resolutions (b).

Fig. 1 illustrates two diagrams for generic MSD ap-
proaches. In Fig. 1(a) the source images must have identical
spatial resolutions. Hence, if their resolutions are di4erent,
an image resampling (RS) followed by an image registration
(IR) strategies are previously required (details about them
are given below). The DWT is applied to both images and
a decomposition of each original image is achieved. This
is represented in the multiscale illustration where di4erent
bars (horizontal, vertical, diagonal and none) represent also
di4erent coeIcients (as we will see later). There are two de-
composition levels, as it is shown in the left upper subimage
(this will be also detailed later). The di4erent black boxes,
associated to each decomposition level, are coeIcient cor-
responding to the same image spatial representation in each
original image, i.e. the same pixel or pixels positions in
the original images. Only coeIcients of the same level and
representation are to be fused, so that the fused multiscale
coeIcients can be obtained. This is displayed in the di-
agonal details where the curved arrows indicate that both
coeIcients are merged to obtain the new fused multiscale
coeIcient. This is applicable to the remainder coeIcients.
Once the fused multiscale is obtained, through the IDWT,
the =nal fused image is achieved. In Fig. 1(b) there are two
sources images with di4erent resolution levels, the DWT is
only applied to the image with the higher spatial resolution.
We obtain a multiscale image representation for such image.
The image with the smaller resolution is not transformed.
At this stage if subimage 1 and image 2 have di4erent
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spatial resolutions, as before, a previous RS followed by
an IR strategies are required for such images. Now, only a
unique type of coeIcients belonging to the multiscale repre-
sentation of the higher-resolution image and the original pix-
els of the smaller image are to be fused (see curved arrows).
A fused multiscale representation is obtained and as
before, through the IDWT the =nal fused image is
achieved.
Image resampling (RS): As required by the wavelet trans-

form, the coeIcients must be merged or superimposed when
the images are in the same scale. This means that the im-
ages must be re-scaled when their scales do not match. For
example, one of the =rst steps for registration SPECT with
MRI or CT images is to expand the 64 × 64 SPECT image
to the 256×256 or even to 512×512 matrix, the usual size
of the MRI or CT images, respectively. This is carried out
by a well-known interpolation technique (nearest neighbor,
bilinear, bicubic, etc.).
Image registration (IR): In image fusion, it is essen-

tial that the image information from all the constituent
images be adequately aligned and registered prior to com-
bining the images, ensuring that the information from each
sensor is referring to the same physical structures in the
environment [3]. This is a key issue in image fusion, as a
misalignment produces severe edge artifacts in the com-
bined images. This is particularly signi=cant in images
where the edges are abundant. There are several approaches
that have been investigated for alignment of multiple dig-
ital images [10–13]. For the task of IR, a set of control
points can be derived from the extraction of features in the
image [12].

This paper is organized as follows. In Section 2, we give
details about the DWT and IDWT for achieving the di4erent
multiresolution levels required for the fusion process and to
obtain the =nal fused image, respectively. We include some
pedagogical examples. In Section 3, we describe di4erent
methods for merging the coeIcients obtained during the
DWT decomposition process. In Section 4, we illustrate the
fusion scheme with some real examples. In Section 5, a
comparative analysis is carried out of the di4erent wavelets
families and classical fusion methods. Finally, in Section 6,
the conclusions are presented.

2. The wavelet transform: a review

We start this section by introducing the speci=c con-
cepts related to the wavelet transform, so that the reader
can understand the basic concepts associated with this trans-
form. We start the development based on the Haar wavelet
transform as the simplest representation and then we ex-
tend the concepts to more complex representations. We
include some pedagogical examples in order to enhance un-
derstanding of the wavelet transform for image multiresolu-
tion level.

2.1. One-dimensional (1-D) wavelet transform: from
Haar to more complex representations

According to Ref. [14] we can think of images as
piecewise-constant functions on the half-open interval
[0; 1). To do so, the vector space concept from linear al-
gebra is introduced. A one-pixel image is just a function
that is constant over the entire interval [0; 1). Let V 0 be the
vector space of all these functions. A two-pixel image has
two constant pieces over the intervals [0; 1

2 ) and [ 1
2 ; 1).

The space containing all these functions is called V 1. If
we continue in this manner, the space V j will include all
piecewise constant functions de=ned on the interval [0; 1)
with constant pieces over each of the 2j equal subintervals.
Now every 1-D image with 2j is a vector or an element in
V j . As these vectors are all functions de=ned on the unit
interval, every vector in V j is also contained in V j+1. Thus,
the spaces V j are nested, that is

V 0 ⊂ V 1 ⊂ V 2 ⊂ · · · : (1)

Now we need to de=ne a basis for the spaces V j . The basis
functions for the spaces V j are called scaling functions �(x).
A simple basis for V j is given by the set of scaled and
translated functions

� j
k (x) = �(2jx − k); k = 0; : : : ; 2j − 1

where � (x) =

{
1 for 06 x¡ 1;

0 otherwise:
(2)

The next step is to choose an inner product de=ned on the
vector spaces V j such as the standard inner product. We
can now de=ne a new vector space Wj as the orthogonal
complement of V j in V j+1. That is, Wj is the space of all
functions in V j+1 that are orthogonal to all functions in V j

under the chosen inner product. Informally, Wj contains the
details in V j+1 that cannot be represented in V j . A collection
of linearly independent functions  j

k(x) spanning Wj are
called wavelets. These basis functions have two important
properties:

• the basis functions  j
k of Wj , together with the basis func-

tions �j
k of V j , form a basis for V j+1,

• every basis function  j
k of Wj is orthogonal to every basis

function � j
k of V j under the chosen inner product.

The wavelets de=ned in Refs. [15,16,13] are

 j
k (x) = a−j=2 (a−j(x − kba j)): (3)

The Haar wavelet transform is given by a = 2 and b = 1.
The compact support of  j

k is then �2jk; 2j(k + 1)�.
Haar described the following function as one that provides

an orthonormal basis. The wavelet analysis of a continuous
variable is a step function

 (x) =




1 if 06 x¡ 1
2 ;

−1 if 1
2 6 x¡ 1;

0 otherwise:

(4)
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Since  j
k (x) forms an orthonormal set, the wavelet coef-

=cients of the signal f(x) can be calculated by the inner
product [17,18]

a j
k = 〈f(x);  j

k (x)〉 =
∫

f(x) j
k (x) dx: (5)

For the wavelet expansion, signal f(x) can be reconstructed
via

f(x) = 〈a j
k ;  

j
k (x)〉 =

∑
k; j

a j
k  

j
k (x): (6)

The multiresolution formulation needs two closely related
basic functions. In addition to the mother wavelet  (x), we
will need another basic function, called the scaling function
�(x). �(x) can be expressed in terms of a weighted sum of
shifted �(2x) as [16]

�(x) =
√

2
∑
n∈Z

l(n)�(2x − n); (7)

where l(n)’s are the scaling (lowpass) coeIcients, and the√
2 maintains the norm of the scaling function with the scale

of two. The scaling coeIcients l(n) must satisfy∑
n∈Z

l(n) =
√

2 and

∑
n∈Z

l(n)l(n − 2k) =

{
1 if k = 0;

0 otherwise:
(8)

The dilation equation (7) is fundamental to the theory of
scaling functions. The mother wavelet  (x) is related to the
scaling function via

 (x) =
√

2
∑
n∈Z

h(n)�(2x − n); (9)

where h(n)’s are the wavelet (highpass) coeIcients. They
are required by orthogonality to be related to the scaling
coeIcients by h(n) = (−1)nl(1 − n).

The proofs for the above equations can be found in Refs.
[15,16].

The mother wavelet  (x) is good at representing the detail
and high-frequency parts of a signal. The scaling function
�(x) is good at representing the smooth and low-frequency
parts of the signal.

In most practical applications, one never explicitly calcu-
lates the scaling function �(x) and wavelet  (x), but per-
forms the transform using the scaling coeIcients l(n) and
the wavelet coeIcients h(n). In forward wavelet analysis, a
J -level discrete decomposition can be written as

f(x) =
∑
n∈Z

c0
n�(x − n) =

∑
k

cJk �
J
k (x) +

J∑
j=1

∑
k

dj
k 

j
k (x);

(10)

where coeIcients c0
n are given, and coeIcients c j

k and dj
k at

resolution j are related to the coeIcients c j−1
k at level j−1

by the following recursive equations [17,19]:

c j
k =

∑
n∈Z

c j−1
k l(n − 2k) and

dj
k =

∑
n∈Z

c j−1
k h(n − 2k) (11)

for j = 1; 2; : : : ; J .
In the equation expansion (10), the =rst summation gives

a function that is a low resolution or coarse approxima-
tion of f(x), which represents the smooth part of f(x). For
each increasing level j in the second summation a higher or
=ne-resolution function is added, which represents the detail
part of f(x). Eq. (11) shows that the scaling and wavelet
coeIcients at di4erent levels of scale can be obtained by
convolving the expansion coeIcients at scale j − 1 by the
time-reversed recursion coeIcients l(−n) and h(−n), then
down-sampling (taking every other term) to give the expan-
sion coeIcients at the next level of j.

In backward wavelet synthesis, a reconstruction of the
original =ne scale coeIcients of the signal can be made from
a combination of the scaling coeIcients and wavelet coeI-
cients at a coarse resolution. Because all of these functions
are orthonormal, we have

c j
k =

∑
n∈Z

c j+1
n l(k − 2n) +

∑
n∈Z

dj+1
n h(k − 2n): (12)

The synthesis operation of Eq. (12) is equivalent to upsam-
pling the coeIcients c j+1

n and dj+1
n (inserting a zero between

each of the original terms) in the coarser level j+1, and then
convolving with l(n) and h(n), individually, to obtain the
scaling coeIcients in the =ner level j. The synthesis process
can be recursively continued to the original level. The anal-
ysis and synthesis procedures lead to the pyramid-structured
wavelet decomposition [20] which is explained in the next
section.

2.2. The 2-D wavelet transform implementation for
multiresolution decomposition images

The analysis and synthesis procedures lead to the
pyramid-structured wavelet decomposition [20]. Once
again, following Ref. [14], the 1-D multiresolution wavelet
decomposition can be easily extended to two dimensions
by introducing separable 2-D scaling and wavelet functions
as the tensor products of their 1-D complements. Hence,
we obtain

�LL(x; y) = �(x)�(y);  LH (x; y) = �(x) (y);

 HL(x; y) =  (x)�(y);  HH (x; y) =  (x) (y): (13)

The 2-D wavelet analysis operation consists in =ltering and
down-sampling horizontally using the 1-D lowpass =lter L
(with impulse responses l(i)) and highpass =lter H (with
impulse responses h(j)) to each row in the image I(x; y),
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Fig. 2. One stage of 2-D DWT multiresolution image decomposition
(forward wavelet analysis).

producing the coeIcient matrices IL(x; y) and IH (x; y).
Vertically =ltering and down-sampling follows, using the
lowpass and highpass =lters L and H to each column in
IL(x; y) and IH (x; y) and produces four subimages ILL(x; y),
ILH (x; y), IHL(x; y) and IHH (x; y) for one level of decom-
position. ILL(x; y) is a smooth subimage corresponding to
the low-frequency band of the MSD and can be considered
as a smoothed and subsampled version of the original im-
age I(x; y), i.e. it represents the coarse approximation of
I(x; y). ILH (x; y), IHL(x; y) and IHH (x; y) are detail subim-
ages, which represent the horizontal, vertical and diagonal
directions of the image I(x; y).

Fig. 2 depicts one stage in a multiresolution pyramid de-
composition of the input image I(x; y), where the di4erent
symbols are explained in Fig. 5. In order to illustrate the
examples of this section, we have used the Haar wavelet
transform, although any other set of wavelets could be used.
Hence, L ≡ (1=

√
2)[1; 1] and H ≡ (1=

√
2)[1;−1].

The detailed 2-D pyramid decomposition algorithm, can
be expressed as follows: Let I(x; y) be the original image
of size M × N , l(i) the analysis lowpass coeIcients of a
speci=c wavelet basis, i = 0; 1; 2; : : : ; Nh − 1, where Nl is
the support length of the =lter L, h(j) the analysis highpass
coeIcients of a speci=c wavelet basis, j=0; 1; 2; : : : ; Nh−1,
where Nh is the support length of the =lter H . Then,

IL(x; y) =
1
Nl

Nl−1∑
i=0

l(i) · I((2x + i) mod M; y); IH (x; y)

=
1
Nh

Nh−1∑
j=0

h(j) · I((2x + j) mod M; y) (14)

for x = 0; 1; 2; : : : ; M=2 − 1 and y = 0; 1; 2; : : : ; N − 1.

ILL(x; y) =
1
Nl

Nl−1∑
i=0

l(i) · IL(x; (2y + i) mod N ); ILH (x; y)

Fig. 3. A representation of (a) one-level and (b) two-level image
decomposition.

=
1
Nh

Nh−1∑
j=0

h(j) · IL(x; (2y + j) mod N ); (15)

IHL(x; y) =
1
Nl

Nl−1∑
i=0

l(i) · IH (x; (2y + i) mod N ); IHH (x; y)

=
1
Nh

Nh−1∑
j=0

h(j) · IH (x; (2y + j) mod N ) (16)

for x = 0; 1; 2; : : : ; M=2 − 1 and y = 0; 1; 2; : : : ; N=2 − 1.
The 2-D pyramid algorithm can iterate on the smooth

subimage ILL(x; y) to obtain four coeIcient matrices in the
next decomposition level and so on. This is illustrated in
Figs. 3(a) and (b) which correspond to one- and two-level
image decompositions, respectively.

Some wavelet-based applications do not require all coef-
=cients, only the most relevant. So an additional procedure
can be carried out to eliminate non-signi=cant coeIcients
by thresholding, since these have a magnitude close to zero.
After thresholding, only the desired coeIcients remain. The
threshold value can be chosen as in [21], T =�

√
2 log n=

√
n

where � is the standard deviation of the coeIcients and n
is the total size of samples. Another possibility is to =x T
in order to replace a percentage of the coeIcients with the
smallest magnitude to zero. Obviously, the cancellation of
coeIcients implies a loss of information.

The inverse 2-D wavelet transform can be implemented
using a backward 2-D pyramid algorithm. The 2-D wavelet
synthesis operation consists in up-sampling and =ltering ver-
tically using the 1-D synthesis lowpass =lter L̃ (with im-
pulse responses l̃(i)) and highpass =lter H̃ (with impulse
responses h̃(j)) for each column in the subimage. Horizon-
tal up-sampling and =ltering then follows, using the lowpass
L̃ and highpass =lter H̃ , for each row of the reversed image.
Fig. 4 shows one stage in a wavelet reconstruction.

The notation used in Figs. 2 and 4 is given in Fig. 5.
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Fig. 4. One stage of 2-D DWT multiresolution image reconstruction
(backward wavelet synthesis).

  r/c

  X      : Convolve with filter X the rows (r) /columns (c) of the entry

2   1    : Keep 1 column out of  2

1   2    : Keep 1 row out of  2

2   1    : Upsample columns: insert zeros at odd-indexed columns  

1   2    : Upsample rows, insert insert zeros at odd-indexed rows  

+       :  Addition of the 4 image data

Keep    : Take the central part with the convenient length

Fig. 5. Notations used in Figs. 2 and 4.

The detailed 2-D wavelet synthesis procedure for each
of the four decomposed subimages ILL(x; y), ILH (x; y),
IHL(x; y) and IHH (x; y) is individually described as follows.

Let R × C be the size of a subimage to restore, l̃(i) the
synthesis lowpass coeIcients of a speci=c wavelet basis,
i=0; 1; 2; : : : ; Nl̃, whereNĨ is the support length of the =lter L̃,
h̃(j) the synthesis highpass coeIcients of a speci=c wavelet
basis, i = 0; 1; 2; : : : ; Nh̃, where Nh̃ is the support length of
the =lter H̃ .

(1) The synthesis of the smooth subimage ILL(x; y):
Upsample ILL(x; y) by a factor of 2 along the y-axis
and =lter with lowpass =lter L̃: Let ISy (x; 2y) = ILL(x; y)
and ISy (x; 2y + 1) = 0, for x = 0; 1; 2; : : : ; R − 1 and
y = 0; 1; 2; : : : ; C − 1.

I−1
Sy (x; y) =

1
Nl̃

Nl̃−1∑
i=0

l̃(i)ISy (x; (y + i) mod 2C): (17)

Upsample I−1
Sy by a factor of 2 along the x-axis and =lter with

lowpass =lter L̃: Let I−1
Sx (2x; y) = I−1

Sy (x; y) and I−1
Sx (2x +

1; y)=0, for x=0; 1; 2; : : : ; R−1 and y=0; 1; 2; : : : ; 2C−1:

IS(x; y) =
1
Nl̃

Nl̃−1∑
i=0

l̃(i)I−1
Sx ((x + i) mod 2R; y): (18)

(2) The synthesis of the horizontal detail subimage
ILH (x; y): Upsample ILH (x; y) by a factor of 2 along the
y-axis and =lter with highpass =lter H̃ : Let IHy (x; 2y) =
ILH (x; y) and IHy (x; 2y + 1) = 0, for x = 0; 1; 2; : : : ; R − 1
and y = 0; 1; 2; : : : ; C − 1:

I−1
Hy

(x; y) =
1
Nh̃

Nh̃−1∑
j=0

h̃(j)IHy (x; (y + j) mod 2C): (19)

Upsample I−1
Hy

by a factor of 2 along the x-axis and =lter with

lowpass =lter L̃: Let I−1
Hx

(2x; y) = I−1
Hy

(x; y) and I−1
Hx

(2x +
1; y)=0, for x=0; 1; 2; : : : ; R−1 and y=0; 1; 2; : : : ; 2C−1:

IH (x; y) =
1
Nl̃

Nl̃−1∑
i=0

l̃(i)I−1
Hx

((x + i) mod 2R; y): (20)

The vertical and diagonal detail subimages IHL(x; y) and
IHH (x; y) can be reconstructed in a similar way to ILH (x; y)
with corresponding =ltering operations (L̃ in column =rst,
and then H̃ in row for IHL(x; y); H̃ in both column and
row for IHH (x; y)) to obtain the restored images IV (x; y) and
ID(x; y), respectively.

The analysis and synthesis are illustrated with the two
pedagogical examples (Fig. 6).

3. Merging the DWT coe�cients

The content of this section is based on Ref. [1], as it is an
excellent reference in this issue. Figs. 2 and 3(a) show that
after one stage of processing, one image is decomposed into
four frequency bands: low–low (LL), low–high (LH), high
–low (HL) and high–high (HH). Fig. 3(b) shows a second
stage of decomposition. Thus, a DWT with N decomposi-
tion levels will have M = 3N + 1 such frequency bands.
The DWT will have a pyramid hierarchy [1]. The sizes of
frequency bands will decrease as the decomposition goes
on. Fig. 1, in the Fusion block, shows the 2-D structures
of a multiscale transform with two decomposition levels.
A given colored square corresponds to the same decompo-
sition level. The black small squares in di4erent frequency
bands correspond to the same group of pixels, which indi-
cate the spatial localization of the transform. These are the
pixels to be fused in order to obtain the corresponding fused
structure. For a transform with K levels of decomposition,
there is always only one low-frequency band LLK . The rest
of bands are high-frequency bands in a given decomposition
level.

As shown in the Fusion block, Fig. 1, we can have images
at di4erent decomposition levels, but only the fusion at the
same resolution level is allowed. Now, the key issue is how
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Fig. 6. Pedagogical examples: (a) analysis; (b) synthesis.

to form the fused representation at a given resolution level.
In Ref. [1], the processing to achieve this goal is called
the fusion rule. Some alternatives are given in this section.
These include the choice of an activity-level measurement,
coeIcient grouping and coeIcient combining (including
consistency veri=cation) methods.

As mentioned before, each step of the fusion is carried
out with a set of frequency bands at the same resolution
level. Following Ref. [1], to simplify the description of the
di4erent alternatives available in forming a fusion rule, we
consider two source images X and Y , and the fused image
Z . The extension to cases with more than two images is an
easy task. Generally, an image I has its MSD representation
denoted as DI and the activity level as AI . Thus, we shall
encounter DX , DY , DZ , AX and AY . Let p = (m; n; k; l) in-
dicate the index corresponding to a particular MSD coeI-
cient, where m and n indicate the spatial position in a given
frequency band, k the decomposition level, and l the fre-
quency band of the MSD representation. Thus, DI (p) and
AI (p) are the MSD value and activity level of the corre-
sponding coeIcient, respectively.

3.1. Activity-level measurement

The activity level of an MSD coeIcient reRects the local
energy in the space spanned by the term in the expansion
corresponding to this coeIcient. There are three categories
of methods for computing the activity level AI (p) at position
p: coeIcient-based, window-based and region-based mea-
sures [1]. The coeIcient-based activity (CBA) measures
consider each coeIcient separately. The activity level is de-
scribed by the absolute value or square of the corresponding
coeIcient in the MSD representation:

AI (p) = |DI (p)| or AI (p) = (DI (p))2: (21)

The window-based activity (WBA) measures employ a
small (typically 3 × 3 or 5 × 5) window centered at
the current coeIcient position. We also have several

alternatives here. One option is the weighted average method
(WA-WBA)

AI (p) =
∑

s∈S; t∈T

w(s; t)|DI (m + s; n + t; k; l)|; (22)

where w(s; t) is a weight and
∑

s∈S; t∈T w(s; t) = 1, S and
T are sets of horizontal and vertical indexes that describe
the current window, the sums over s and t range over all
samples in the window.

Another option is the rank =lter method (RF-WBA).
De=ne Rank(i)(Q) to pick the ith largest value in the
set Q. Then RF-WBA uses AI (p) = Rank(i)(Q) where
Q = |DI (m + s; n + t; k; l)| and S and T are as above.

A popular choice is to use RF-WBA to pick the maximum
value, i.e. let i = 1. In this way, a high activity value indi-
cates the presence of a prominent feature in the local area.
To reduce the inRuence of impulse noise, we may also let
i = 2 or 3. One might also consider more general nonlin-
ear processing of the coeIcients in the window to compute
activity that combines ranking and averaging.

Another option is the spatial frequency method
(SF-WBA) [22,23], for an M × N image window block,
the spatial frequency is de=ned as

AI (p) =
√

R2 + C2;

R =

√√√√ 1
MN

M∑
m=1

N∑
n=2

[DI (m; n; k; l) − DI (m; n − 1; k; l)]2;

C =

√√√√ 1
MN

N∑
n=1

M∑
m=2

[DI (m; n; k; l) − DI (m − 1; n; k; l)]2;

(23)

where R and C are the row and column frequencies,
respectively.



1862 G. Pajares, J. Manuel de la Cruz / Pattern Recognition 37 (2004) 1855–1872

An additional option is to measure the activity by com-
puting statistical properties in the window (ST-WBA), such
as mean or standard deviation values. Both take into account
image textures corresponding to the associated coeIcients.

The regions used in region-based activity (RBA) mea-
surement are similar to windows with odd shapes. Region
segmentation can be performed on the same band using the
edge information and a labeling algorithm. The output is a
labeled image in which each di4erent value represents a dif-
ferent region. Due to the spatial localization property, any
region Rk in the low-frequency band has a corresponding
group of coeIcients in each high-frequency band, as illus-
trated in Fig. 1. We de=ne the group of coeIcients in all
high-frequency bands corresponding to region Rk as C(Rk).
The activity level of the region Rk in the image I , AI (Rk) is
computed as follows:

AI (R
k) =

1
Nk

∑
p∈C(Rk )

AI (p); (24)

where Nk is the total number of the coeIcients in C(Rk).
AI (p) is obtained by CBA measurement and expression (24)
is considered as an energy, which is useful for texture anal-
ysis [24].

After all the region activity levels are obtained, the ac-
tivity level of each MSD coeIcient is determined as fol-
lows. Notice that the spatial location of each coeIcient in
the MSD representation will be either on an edge or inside
a region. For the coeIcient whose spatial location is on an
edge, its activity level will be measured by the CBA or the
RF-WBA method. For the coeIcient whose spatial location
is in a region, it will take the activity level of this region as
its own activity measure. A slight generalization of Eq. (24)
would compute activity over the region using a ranking or
averaging or some combination of these.

3.2. Coe=cient grouping method

We notice that after the MSD process, each coeIcient will
have a set of corresponding coeIcients in other frequency
bands and other decomposition levels, as illustrated in
Fig. 1 by the black squares.

All coeIcients with the black mark in Fig. 1 relate to the
same group of pixels in the source image. For the major-
ity of image fusion approaches, when determining the com-
posite MSD representation, these coeIcients are not asso-
ciated with each other. This is called no-grouping schemes
in Ref. [1]. If the corresponding coeIcients in the same de-
composition scale are jointly constrained to take the same
decision, this is called a single-scale grouping scheme in
Ref. [1]. This is a more restrictive case. The most restric-
tive case is to consider all the corresponding MSD sam-
ples together and ensure that they are all fused under the
same method. This is called a multiscale grouping scheme
in Ref. [1].

3.3. Coe=cient combining method

When combining the source MSD representations to pro-
duce the composite MSD representation, there are at least
two alternatives: averaging and selection. Averaging leads
to a stabilization of the fusion result, while introducing the
problem of possible pattern cancellation due to opposite ob-
ject contrast in di4erent input images. This can be avoided
by the application of a selective combination scheme. In this
selective scheme, the most salient image edge is chosen for
the composite wavelet frame sequence. It is also possible to
combine both schemes.

3.3.1. Selection
Except for the LL band, which has all positive transform

values, all the other bands contain transform values that
are Ructuating around zero. The larger transform values in
these bands correspond to sharper brightness changes and
thus to the salient features in the image such as edges, lines,
and region boundaries. Therefore, a good integration rule is
the choose-max (CM) scheme, which means just pick the
coeIcient with the larger activity level and discard the other.
If Z is the fused image, this can be described as DZ (p) =
Di(p), where i =X or Y depending on which source image
satis=es

Ai(p) = max(AX (p); AY (p)): (25)

Absolute values |AX (p)| and |AY (p)| could be also consid-
ered in Eq. (25) as in Ref. [25].
Consistency veri>cation attempts to exploit the idea that

it is very likely that a good fusion method will compute
neighboring coeIcients in the composite MSD in a similar
manner. In Ref. [3], the maximum absolute value within a
window is chosen as an activity measure associated with the
central MSD coeIcient. In this way, a high activity value
indicates the presence of a dominant feature in the local area.
A binary decision map of the same size of the wavelet trans-
form is then created to record the selection results based on
a maximum selection rule. This binary map is subject to a
consistency veri=cation. Speci=cally, if the center compos-
ite MSD coeIcient comes from image X while the majority
of the surrounding coeIcients come from image Y, the cen-
ter sample is then changed to come from image Y. In Ref.
[3], 3 × 3 or 5 × 5 windows are used for the neighborhood.
This method can be viewed as a window-based veri=cation
(WBV). In the implementation, a majority =lter (which out-
puts 1 if the count of 1’s outnumbers the count of 0’s, and
outputs 0 otherwise) is applied to the binary decision map;
the map is then negated, and is followed by the applica-
tion of a majority =lter. The resulting map is negated again.
A fused image is =nally obtained based on the new binary
decision map. This selection scheme helps to ensure that the
dominant features are incorporated as completely as possi-
ble into the fused images.
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3.3.2. General weighted average
Another combining scheme is the weighted average

(WA). At each position p, the composite MSD is obtained
by

DZ (p) = wX (p)DX (p) + wY (p)DY (p): (26)

The weights wX and wY may depend on the activity lev-
els of the source MSD coeIcients and the similarity
between the source images at the current position. Suppose
AX (p)¡AY (p). One popular way to determine wX and wY

is suggested in Ref. [7]. At =rst, a match measure MXY (p)
is de=ned as a normalized correlation averaged over a
neighborhood of p,

MXY (p)

=

∑
s∈S; t∈T w(s; t)DX (m+s; n+t; k; l)DY (m+s; n+t; k; l)

A2
X (p)+A2

Y (p)
;

(27)

where w(s; t), AX and AY are as de=ned in Eq. (22). If
MXY is smaller than a threshold -, then wX = 0 and wY = 1,
else if MXY ¿ - then

wX =
1
2

− 1
2

(
1 − MXY

1 − -

)
and wY = 1 − wX : (28)

Note that when the weight is zero, this means the substitution
of an image by another.

Sometimes the degree of belief in a given event can be
used to determine the di4erent weights [26]. Indeed, when
pieces of information issued from several sensors have to be
combined, each of them can be represented as a degree of
belief. The degrees of belief generally take their values in
a real closed interval and are normalized in di4erent ways,
depending on the chosen mathematical framework. They are
probabilities in data fusion methods based on probability
and Bayesian theory, memberships degrees to a fuzzy set
in fuzzy set theory or possibility distributions in possibility
theory.

In Ref. [27], instead of the WA the following scheme is
proposed:

DZ (p) =
√

DX (p)DY (p) + b; (29)

where the constant b is a bias in order to modify the =nal
result.

3.3.3. Adaptive weighted average
Some times the weight determination should be computed

according to the application =eld. We need to determine
the degree to which each pixel in the images to be fused
is of interest. To ful=ll this task, one must have a precise
de=nition of the term interest. For example, in natural ther-
mal images it could be useful to distinguish unnatural from
natural objects. So, things that are of interest and unnatu-
ral will be either cooler or warmer than their background.
Vehicles that have been functioning will be much warmer
than the trees in which they will hide or cooler if they have

been stationary for a long time. This will lead to intensity
levels in the produced image that will be darker or lighter.
Consequently, the simplest way to emphasize these pixels is
to weight them according to an adaptive weighted average
(AWA) scheme, computing the weights as follows:

WX (p) = |DX (p) − UDX (p)|a; (30)

where DX (p) is the MSD representation at p(m; n; k; l) for
an object of interest and UDX (p) is the average value for the
MSDs computed over an area surrounding p, greater than
the object (could be the whole image). Thus, the warmer
and cooler pixels will be assigned larger weights. The a
exponent allows the weight distribution to be modi=ed.

On the contrary, in visual images the interest is centered
on the detection of changes in contrast between regions on
the edges separating these regions. A good method should
produce large coeIcients on the edges. This can be carried
out by computing the variance in a neighborhood (N × M)
centered at p(m; n; k; l)

WX (p) =

[
1

NM

∑
s∈S; t∈T

(DX (m + s; n + t; k; l)

− UDX (m + s; n + t; k; l))2

]a

; (31)

where the parameter a has the same function as above.
Instead of using the variance it is possible to use

WX (p) = [|DX (p) − UDX (p)|]a; (32)

where the mean value UDX (p) is computed over the neigh-
borhood (N × M) centered at p(m; n; k; l).

Some images have temporal intensity variations, instead
of spatial ones. From temporal variations a weight can be
computed as follows:

D̃X (p; t) =
∣∣∣∣DX (p; t) + .D̃X (p; t − 1)

1 + .

∣∣∣∣ ;
WX (p; t) = |DX (p; t) − D̃X (p; t)|a: (33)

Initially, an average is calculated for eachp(m; n; k; l) at time
t. The variable parameters . and a need to be determined in
a heuristic fashion according to the speci=c application.

3.3.4. Other coe=cient combining strategies
Some other coeIcient combining methods are considered

in this section, although they are basically derived from the
above.

(a) Fusion by energy comparison (EC): the MSDs coef-
=cients are computed as follows [23,28]:

DZ (p) =




Di(p) if Ai(R
k)¿Aj(R

k) + T ∀i �= j;

Dj(p) if Ai(R
k)¡Aj(R

k) − T ∀i �= j;

1
P

P∑
i=1

Di(p) if |Aj(R
k) − Al(R

k)|6 T ∀j; l;

(34)
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where T is a threshold value, Ai(Rk) is the activity level
of the region Rk in the images i, j, l computed as in
Eq. (24), P is the number of incoming images to be fused
and the subindices i, j, l correspond to a given image of
the P images.

(b) Region-based fusion by multiresolution feature de-
tection (RFD): the MSDs coeIcients are computed as
follows [28]:

DZ (p) =
1

Q(p)

p∑
i=1

qi(p)Di(p)

where Q(p) =




P∑
i=1

qi(p) if
P∑

i=1

qi(p) �= 0;

1 if
P∑

i=1

qi(p) = 0

(35)

and qi(p) is the mask matrix obtained as the result of binary
morphological open and close operations applied to binary
matrix Uqi(p) de=ned by

Uqi(p) =

{
1 if |Di(p)|¿T;

0 if |Di(p)|6 T;
(36)

where T is a threshold value.
The principle of this method is to detect any irregularities

(usually representing defects) from the images and preserve
them in the fused image. This method was developed in the
inspection =eld as described in Ref. [28].

(c) Background elimination (BE): combining scheme
based on a window approach is the direct BE scheme [25].
At each p(m; n; k; l), the composite MSD can be obtained by

DZ (p) = DX (p) − 2X + DY (p) − 2Y +
2X + 2Y

2
; (37)

where 2X and 2Y are the mean values in a given window.
This fusion mechanism ensures that all the background in-
formation presented in the input images gets transferred into
the fused image.

(d) Variance area based (VA): the variance of each im-
age patch over a window (N × M) is computed as an ac-
tivity measure associated with each p(m; n; k; l) centered in
the window. If the activity measures at the corresponding
p(m; n; k; l) locations are close to each other, the average of
the two is considered as the new value; otherwise the larger
value is chosen [3].

4. Fusion applications

In order to illustrate the fusion process, we propose three
fusion examples according to the scheme in Fig. 1: multi-
focus CCD visual images, multispectral (MS) and panchro-
matic remote sensing images and functional and anatomical
medical images.

4.1. Multifocus image fusion

Due to the limited depth-of-focus of optical lenses (espe-
cially those with long focal lengths) it is often not possible
to get an image that contains all relevant objects “in focus”.
One possibility to overcome this problem is to take several
pictures with di4erent focus points and combine them to-
gether into a single frame that =nally contains the focused
regions of all input images. This example follows the scheme
given in Fig. 1(a).

• From the CCD visual images X and Y in Figs. 7(a) and
(b), respectively, we can see that the left and right toy
cars are out of focus. Apply the DWT to both X and Y to
obtain approximation and details coeIcients. Such coef-
=cients are selected by CM and AWA, respectively, ob-
taining a fused multiscale image representation. Applying
the IWDT to this multiscale image, the fused image in
Fig. 7(c) is obtained.

4.2. Panchromatic and MS image fusion

Remote sensing images can be acquired in two dif-
ferent modes: either the panchromatic (P) mode with
high spatial resolutions (HR) of 10 m pixel (SPOT),
5:8 m pixel (IRS) or even 1 m pixel (IKONOS), either
the MS mode with much lower spatial resolution (LR)
of 30 m pixel (LANDSAT TM), 23:5 m pixel (IRS),
20 m pixel (SPOT) or 4 m pixel (IKONOS). The P im-
ages are characterized by very high spatial information
content well suited for intermediate scale mapping appli-
cations and urban analysis. The MS images provide the
essential spectral information for smaller scale thematic
mapping applications such as land use surveys. In order to
take bene=t of the high spatial information content of the P
images and the essential spectral information of lower reso-
lution MS images, fusion of these two types of images can
be performed in order to produce pseudo-HRMS images.

The example shown is the fusion of the following images:
three spectral bands (MS1 ≡ red, MS2 ≡ green, MS3 ≡
blue), i.e. with color information, coming from a remote
IKONOS sensor with LR (4 m pixel) and a panchromatic
band (P) image, i.e. without color information, with high
spatial resolution (1 m pixel). The goal is to achieve a fused
image containing both color information and high spatial
resolution. This method is based on Refs. [4,29,30].

Figs. 8(a)–(c) show the MS1, MS2 and MS3 bands, re-
spectively. Fig. 8(d) displays the MS color image resulting
from the three MSi (i=1; 2; 3) band combination. Fig. 8(e)
shows the panchromatic band (P).

• Match the histogram of P according to the three MSi
bands to obtain the corresponding PSMi at 1 m pixel of
spatial resolution.

• Apply DWT twice (see Fig. 3 for details in the
decomposition levels) to each PSMi to obtain the
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Fig. 7. Original CCD visual images with the (a) left and (b) right toy cars out of focus, respectively; (c) resulting fused image from (b)
and (c) with the two toy cars in focus.

Fig. 8. (a) MS1, (b) MS2, and (c) MS3 spectral bands at 4 m of resolution; (d) color image obtained by the (a), (b) and (c) band
combination; (e) panchromatic image of high resolution (1 m) without color information.

approximation PSAi2 coeIcients at the second resolu-
tion level and the PSDijk details coeIcients i = 1; 2; 3
(bands), j = h, v, d (horizontal, vertical and diagonal,
respectively) and k = 1; 2 (decomposition level). The
spatial resolution levels are 2 m pixel and 4 m pixel for
k = 1; 2, respectively.

• Select and merge the corresponding PSAi2 with MSi by
WA by taking a zero weight value for PSAi2 and the
unitary value for MSi to obtain the fused scale PSAFi.
The WA carried out is a mere substitution of PSAi2 with
MSi, i.e. in this particular example MSi ≡ PSAFi. This
example follows the scheme given in Fig. 1(b).

• Apply IWDT to each PSAFi (approximation fused coeI-
cients) with the corresponding detail coeIcients PSDij2
to obtain PSAi1 at 2 m pixel of spatial resolution. Apply
once again IDWT to each PSAi1 with the corresponding
detail coeIcients PSDij1 to obtain PMSi at 1 m pixel of
resolution, i.e. PMS1 ≡ red, PMS2 ≡ green, PMS3 ≡
blue.

• Combine the three spectral bands PMSi at 1 m pixel of
resolution to obtain the fused image, Fig. 9. This image
includes the high resolution of the input P image and the
color information of the MS information in MSi.

4.3. Medical application

With the development of new imaging methods in med-
ical diagnostics the need arises for a meaningful (and

Fig. 9. Fused MS image at 1 m of resolution (i.e. color image at
high resolution).

spatially correct) combination of all available image data
sets. Examples of imaging devices include computer to-
mography (CT), magnetic resonance imaging (MRI) or the
newer positron emission tomography (PET).

Di4erent medical imaging techniques may provide scans
with complementary and occasionally conRicting informa-
tion. The combination of images can often lead to additional
clinical information not apparent in the separate images. The
goal of image fusion is to impose a structural anatomical
framework in functional images. Often in a functional image
there simply is not enough anatomical detail to determine
the position of a tumor or other lesion.
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Fig. 10. (a) MRI and (b) PET images; (c) fused image from (a) and (b).

Generally, functional images have low spatial resolution
and anatomical images have high spatial resolution. So, with
anatomical images a lesion can be detected with an accuracy
of millimeters. On the contrary, with the functional images
this is not possible, but they have the ability to detect lesions
before the anatomy is damaged. The fusion of both types of
images could avoid undesired e4ects.

The following example illustrates the fusion of an MRI
image, Fig. 10(a) with a PET image, Fig. 10(b). The MRI
image has double the resolution of the PET.

• Apply DWT to the MRI to obtain the approximation
MRIA and details MRIj coeIcients j = h, v, d (hori-
zontal, vertical and diagonal). The PET should be image
co-registered with respect to MRIA so that both images
represent the same brain region.

• Resample and register (RS+IR) the PET image with re-
spect to MRIA, by using the landmarks as control points.

• Select and merge MRIA and PET to obtain MRIA-PET
by WA with weights of 0.4 and 0.6, respectively. This
example follows the scheme given in Fig. 1(b).

• Apply IWDT with MRIA-PET as the approximation co-
eIcients and the MRIj as the detail coeIcients.

A fused image at the resolution of MRI including the
anatomical information of MRI and the functional informa-
tion from PET, Fig. 10(c). In the fused image, the relative
position of the functional information with respect to the
anatomical landmark is clearly displayed.

5. Comparative analysis and performance evaluation

Although there have been as many attempts as there have
been fusion algorithms, as yet no universally accepted stan-
dard has emerged for evaluating image fusion performance.
In this work, we use both qualitative and quantitative meth-
ods. The qualitative methods are acceptance and veri=ca-
tion tests which are accepted or rejected by a possible user,
which determine visually the relative perceived image qual-
ity based on the contribution that the fusion makes to its

speci=c problem. This is the case for medical image fusion,
where the corresponding professional compares the results
against other non-imaging data.

The problem with de=ning a quantitative measure lies in
the diIculty of de=ning an ideal composite image based
on multisensor images or images taken at di4erent times
[3]. Nevertheless, we have used the following quantitative
performance measure for the purpose of comparing di4erent
fusion methods.

5.1. Multifocus image fusion

We design the test strategy so that a correct focused image
is captured and then we generate two images with di4erent
blurred objects by applying a lowpass mean =lter to the
desired regions containing the objects. The target image is
the original image. We have used more than two images
(up to =ve) and the performance of the di4erent strategies
is similar to that obtained with two images, so the results in
this section are obtained by using two input images.

We compare di4erent merging methods, di4erent reso-
lution levels and di4erent wavelets families. As a qual-
ity measure we use an objective =delity criterion [31], the
root-mean-square error of the di4erence image between the
ideal image and the fused image given by

erms =

[
1

MN

M−1∑
x=0

N−1∑
y=0

[
Ipr(x; y) − Ifd(x; y)

]2

]1=2

; (38)

where Ipr is the perfect result and Ifd is the fused image.
The number of multifocus images (couples) is 15, =ve

of them downloaded from the web and the remainder 10
self-generated by focusing–defocusing; Fig. 8 is a repre-
sentative example. All results are averaged between the 15
images.

We have designed a test strategy according to the follow-
ing steps:

(1) Perform a comparative study for each wavelets
family: We have considered seven decomposition levels
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Table 1
Results for the wavelets Biorthogonal family

Factors (Ñ ; N )

bior (1; 1) (3; 1) (1; 3) (2; 2) (3; 3) (1; 5) (2; 4) (4; 4) (3; 5) (5; 5) (2; 6) (3; 7) (2; 8) (6; 8) (3; 9)
Level 5 6 6 7 7 7 5 5 6 7 5 4 6 6 5
APX AWA AWA AWA AWA WA WA AWA AWA WA AWA AWA AWA AWA WA WA
DET CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM
RMS 3.21 3.09 0.93 1.24 1.98 3.55 3.12 6.57 8.54 7.89 6.76 5.88 11.24 10.28 13.66

Table 2
Results for pyramidal families

Pyramid LAP FSD COP GRP RAP MOP

Level 4 5 4 6 6 7
LP WA WA WA WA WA WA
HP CM CM CM CM CM CM
RMS 0.62 2.89 1.23 2.41 2.12 1.95

and have implemented the following coeIcient combining
methods: CM, WA, AWA, EC, RFD, BE and VA. These
methods will be analyzed later. We have also implemented
the following activity-level measurement methods: CBA,
WBA, RF-WBA, SF-WBA, ST-WBA and RBA. We have
veri=ed that similar =nal results are obtained with CBA,
WBA and RF-WBA but the results obtained with SF-WBA
and ST-WBA are worse than the previous. The worst re-
sults are obtained with RBA, as it requires good region seg-
mentation and for the images used it has been ine4ective.
Therefore, in our experiments we have used CBA.

The wavelets families analyzed are (see Refs. [15,18]):
Daubechies (dbN , N = 1::45), CoiRets (coifN , N = 1::5),
Symlets (symN , N = 2::45), Biorthogonal (bior(Ñ ; N )
with (Ñ ; N ) the given in Table 1), Reverse Biorthogonal
(rbior(Ñ ; N ) with (Ñ ; N ) as in bior), Mexican hat (meshN
with number of voices N = 1::4) and Morlet (morlN with
number of voices N = 2::4). We =rstly select the member
of each family with the best results and this member is used
as the representative member for this family so that it can
be compared against the remaining representative wavelets
family members and also against other methods.

Table 1 gives only the best results obtained for the
Biorthogonal family. The pairs of factors (Ñ ; N ), =rst row,
are ordered in the second row according to the increasing
size of the =lters. In the third row is the decomposition
level number. In the fourth and =fth rows appear the com-
bining methods for the approximation coeIcients (APX)
and details coeIcients (DET), respectively. Finally, in the
sixth row the root-mean-square error, between the fused
image and the target image, is given.

We select the bior1.3 (the best of this family) as the
representative member for this family in order to compare it
against other representative family members and with other

classical fusion methods. The members selected as the best
for each family are then given in Table 3.

(2) Comparison of the wavelets families representative
members against other fusion methods: Now we perform a
comparison of the wavelets families against the following
classical fusion methods: Laplacian pyramid (LAP) [7],
=lter-subtract-decimate hierarchical pyramid (FSD) [33],
contrast pyramid (COP) [34], gradient pyramid (GRP) [34],
ratio pyramid (RAP) [35], morphological pyramid (MOP)
[36] and neural networks (NN) (including consistency ver-
i=cation as in the original reference) [37]. We have used
Rockinger’s MATLAB toolbox [38] as the reference for the
implementation of the above methods. The lowpass =lter
used in the pyramidal methods is the following 5-separable
=lter, which is used in Ref. [33]: [1; 4; 6; 4; 1]=16.

Table 2 gives the results obtained for the above pyrami-
dal methods, =rst row. In the second row is the decompo-
sition level. The third and fourth rows show the combining
method used for the lowpass and highpass =lters, respec-
tively. Finally, in the =fth row the root-mean-square error is
given between the fused and target images.

Table 3 and Fig. 11 give the root-mean-square error val-
ues for the di4erent methods. For each family, the mem-
ber which has obtained the best results has been selected
(bior(1,3) for the Biorthogonal family). Similarly, for the
remainder of the families, the selected members are given
in the =rst row of Table 3. The best results for pyramidal
methods are collected from Table 2 and then we have added
the NN approach.

5.2. Panchromatic and MS image fusion

The approach described in Section 4.2 is based on the
wavelet method in Ref. [4], which is exactly the ARSIS
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Table 3
Results for di4erent methods

Method LAP FSD COP GRP RAP MOP NN db4, coif1, bior(1; 3), sym4, rbior(4; 4), mesh3, morl3,
size 8 size 6 size 6 size 8 size 4 size 6 size 6

RMS 0.62 2.89 1.23 2.41 2.12 1.95 2.02 0.99 1.45 0.93 3.12 1.24 2.11 1.98

Fig. 11. Root-mean-square error for di4erent fusion methods.

hybrid Model 2 described in Ref. [2] (ARS). We have em-
phasized on results obtained with di4erent wavelets families
because other comparative results are well reported in Refs.
[2,4,38]. As in Section 5.1, for this purpose we have used
the MATLAB Wavelets toolbox [18] and we have consid-
ered the set of families included within it. Note that this ap-
proach does not require activity level measurement and the
coeIcient combination is a mere substitution.

In order to assess the quality of the resulting fused im-
ages we have followed the method described in Refs. [2,39]
applied to a set of 22 images coming from the IKONOS
satellite. All the results are averaged for the 22 images. The
results are compared against the following methods: local
mean matching (LMM), local mean and variance matching
(LMVM), high-frequency addition (HFA) in Refs. [40–42]
and entropy data fusion (EDF) in Ref. [43]. Some of these
methods require the selection of a window size; hence we
have chosen the best size reported in Ref. [38] which is 3×3.

With regard to other classical methods, such as principal
component analysis (PCA), intensity-hue-saturation (IHS)
or Brovey, we have found it irrelevant to include the compar-
ative results because they are similar to the results reported
in Refs. [38,44], although in our experiments, the correlation
values between the di4erent image channels are higher than
those obtained in Ref. [38]. Indeed, we have found that the
averaged correlation, computed by us, between the panchro-

matic and the XS3 channels is 0.11 compared with the 0.04
obtained in Ref. [38], for XS1, and XS2 is 0.68 and 0.62,
respectively. This implies that the low correlation value for
the XS3 channel precludes a satisfactory fusion with IHS
and PCA. This is a well-known problem in the computer
vision community and has been reported as due to the near
infrared reRectance in the panchromatic band.

With testing purposes for the ARS method and following
Refs. [3,4] we use the =rst property described in Ref. [39],
which implies that any synthetic image, once degraded to
its original resolution, should be as identical as possible to
the original image. Hence, in our IKONOS images, the syn-
thetic images are 1 m of resolution, so these images once
degraded to 4 m should be as close as possible to the origi-
nal MSi spectral bands. For the second and third properties
we address the reader to Refs. [2,39] because they are prop-
erties referred to images obtained with better resolutions in
the sensor and the IKONOS sensor does not provide better
image resolutions than those used in our experiments. We
also use the di4erence between the means of the original
image and the synthetic image, the correlation coeIcient
between the original and synthetic images and the standard
deviations of the di4erence images.

For each wavelets family, we obtain the member of the
family giving the best results and then this member is se-
lected for a global comparison with all the others. The best
results are obtained for the member whose values are closest
to the ideal case, i.e. di4erences in the mean zero, correla-
tion coeIcient one and low standard deviations. We use the
22 test images to select each member.

The same set of wavelets families as those studied in the
above experiments have been analyzed here.

Table 4 and Fig. 12 give the statistics results on the
di4erences between the original and synthesized images, for
the Biorthogonal family, the pairs of factors (Ñ ; N ) have
been ordered according to the increasing size of the =lters.
This is because we have veri=ed that the =lter size is decisive
for all families. Indeed, we have obtained the best results
with sizes ranging from 6 to 10, since sizes above 10 are
worse. Low sizes, such as 2 for db1 (Haar), bior(1,1) or
sym1, introduce some kind of distortion around the edges.
All values in Table 4 have been averaged taking into account
all spectral bands for the 22 images because we have not
found signi=cant di4erences for each individual band.

Table 5 shows the member of each family that has
achieved the best results against each one of the remaining
classical methods.
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Table 4
Averaged Statistics on the di4erences between the original images and the synthesized images for the wavelets Biorthogonal family

Factors (Ñ ; N )

bior (1; 1) (3; 1) (1; 3) (2; 2) (3; 3) (1; 5) (2; 4) (4; 4) (3; 5) (5; 5) (2; 6) (3; 7) (2; 8) (6; 8) (3; 9)
size 2 4 6 6 8 10 10 10 12 12 14 16 18 18 20
Mean 7.32 7.40 5.11 4.03 9.54 11.28 12.55 13.57 13.45 14.01 18.91 22.13 33.12 45.87 66.32
Std. 6.78 6.77 7.98 6.06 10.21 10.67 11.02 11.03 14.56 15.78 16.34 19.67 19.54 25.89 32.21
Corr 0.91 0.92 0.96 0.97 0.95 0.94 0.93 0.93 0.91 0.90 0.89 0.89 0.87 0.86 0.87

Fig. 12. Averaged statistics on the di4erences between the original images and the synthesized images for the wavelets Biorthogonal family:
(a) mean and standard deviation; (b) correlation coeIcient.

Table 5
Averaged Statistics on the di4erences between the original images and the synthesized images for di4erent fusion methods

Fusion methods

LMM LMVM HFA EDF db4 coif1 bior(2; 2) sym5 rbio(3; 3) mesh3 morl3

Mean 3.56 4.01 5.96 6.07 5.65 4.76 4.03 7.20 6.89 8.56 9.02
Std. 4.01 4.71 7.01 8.99 6.56 6.22 6.06 9.65 9.36 12.23 12.45
Corr 0.99 0.98 0.96 0.95 0.96 0.97 0.97 0.92 0.94 0.93 0.93

Fig. 13. Averaged statistics on the di4erences between the original images and the synthesized images for di4erent fusion methods: (a)
mean and standard deviation; (b) correlation coeIcient.
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Table 5 and Fig. 13 give the statistical results for the
methods shown in the =rst row of the table. Here is the best
member for each wavelets family. As above, these values
are averaged over the 22 images and for all spectral bands.

6. Conclusions

This paper is a tutorial providing guidelines about the use
of wavelets in image fusion. There are a lot of fusion possi-
bilities and only a few application examples can be shown.
For additional examples see Refs. [45], [46] or [47]. We have
chosen the most representative examples, so that some of
them can be easily extended for performing a wavelet-based
fusion for any new application. We provide the theory for
wavelets so that the paper is self-contained in wavelets
fusion approaches.

The number of fusion possibilities with di4erent wavelets
families, resolution levels and coeIcient combinations be-
comes very high. We give quantitative results for di4er-
ent fusion methods, where the wavelets families are com-
pared with each other and with other fusion strategies. From
Tables 1 to 5 and Figs. 11 to 13 the following conclusions
can be inferred:

(1) From Table 1, the best results are obtained with bior1.3
with a decomposition level of 6. Also AWA or WA
for APX and CM for DET are the best coeIcient com-
bining methods. This is in accordance with Ref. [32].
The level number 6 appears to be the most appropriate.
The previous general conclusions are applicable to the
remaining wavelets families.

(2) From Table 2, the best results are obtained with LAP
and once again with WA and CM for the lowpass and
highpass =lters, respectively. This conclusion about WA
and CM agrees with the results obtained for the di4erent
wavelets families. This assertion is based on the fact
that the APX and DET coeIcients come from lowpass
and highpass =ltering, respectively.

(3) From Table 3 and Fig. 11 the best results are obtained
for LAP followed by bior(1,3) and db4. It is important
to note that LAP requires a decomposition level less
than any of the wavelets families. The methods coif1
and rbior(4,4) obtain acceptable results. One important
conclusion is that the results concerning wavelets fam-
ilies are obtained with =lter sizes ranging from 4 to
8, but there is no direct relation between the size and
the results, as can be seen from the sizes shown in
Table 3. Indeed, a good result is obtained with size 8
(db4) but the worst result is also obtained with size
8 (sym4) and the best result is obtained with size 6
(bior(1,3)).

(4) From the results in Table 4 and Fig. 12, we can ver-
ify that the best results are obtained with =lter sizes of
6, i.e. bior2.2 and bior1.3 followed by =lters with sizes
of 10 (bior1.5, bior2.4 and bior4.4). As the sizes in-

crease the results are worse. The above is extensible to
the remaining wavelets families. Filters with low sizes
achieve better results than those with high ones.

(5) From the results in Table 5 and Fig. 13, we can infer that
the best results are obtained with methods LMM and
LMVM, followed by bior(2,2) and coif1. Both mem-
bers have =lters of size 6. As the =lter size increases the
results are worse than the above. This occurs for db4,
rb33 (rbio(3,3)), sym5 with sizes 8, 8 and 10, respec-
tively. The worst results are obtained with mesh3 and
morl3, although they both have been generated to be of
size 6. We have carried out experiments increasing the
decomposition level without any improvement, and in-
stead obtaining worse results. This is in disagreement
with Ref. [44] where levels 3 and 5 are used.

From the above conclusions, we have the behavior and
performance of the reported methods. Now, the following
discussion about the use of wavelets can help the reader
to take a decision. The wavelet-based methods, mentioned
in the above conclusions, achieve similar results than the
classical methods. Nevertheless, their worst reported perfor-
mance is due to the presence of a high number of edges in
the source images. This has been addressed and studied by
us in multifocus images [48]. When the images are smooth,
without abrupt intensity changes, the wavelets work appro-
priately, improving the results of the mentioned classical
methods. This has been veri=ed with smooth images and
also with the medical images, where no signi=cant changes
are present. The type of images (visual CCD, remote sens-
ing, medical) is irrelevant.

The main handicap is found in the decomposition level
for multiresolution approaches. Indeed, a decomposition of
6 requires that the source images have sizes greater than
2048 × 2048, so that the merging can be carried out to a
resolution of 32 × 32 in wavelets with decomposition level
of 6, otherwise is ine4ective. In classical approaches, with
decomposition level of 4, the sizes can be of 512 × 512
pixels.

Although this tutorial is a pixel-level-based approach,
it can be easily extended to the other three fusion-level
schemes, namely [3]: signal, feature and symbol. Nev-
ertheless, special processing should be required such as
edge/region detection or object recognition [49].
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