
Smoothing and Compression with Stochastic

k-testable Tree Languages ?

Juan Ramón Rico-Juan, Jorge Calera-Rubio 1 and
Rafael C. Carrasco

Departament de Llenguatges i Sistemes Informàtics
Universitat d’Alacant, E-03071 Alacant, Spain

Abstract

In this paper, we describe some techniques to learn probabilistic k-testable tree
models, a generalization of the well known k-gram models, that can be used to
compress or classify structured data. These models are easy to infer from samples
and allow for incremental updates. Moreover, as shown here, backing-off schemes
can be defined to solve data sparseness, a problem that often arises when using trees
to represent the data. These features make them suitable to compress structured
data files at a better rate than string-based methods.

Key words: tree grammars, stochastic models, smoothing, backing-off, data
compression

1 Introduction

Stochastic models based on k-grams predict the probability of the next sym-
bol in a sequence as a function of the k − 1 previous symbols and have
been widely used in natural language modeling (Brown et al., 1992; Ney
et al., 1995), speech recognition (Jelinek, 1998) and data compression (Ru-
bin, 1976). Indeed, probabilistic models are a key component of arithmetic
data compression algorithms (Witten et al., 1987; Cover and Thomas, 1991).
In classification tasks, the need of probabilistic models often arises when the
Bayes’ decision rule for minimum error rate is applied: given a sequence
S = s1s2 . . . of observations, the model M that maximizes the conditional

? Work supported by the Spanish Comisión Interministerial de Ciencia y Tecnoloǵıa
through grant TIC2000-1599-C02.
1 Corresponding author (calera@dlsi.ua.es)

Preprint submitted to Elsevier Science

probability P (M |S) also maximizes P (S|M)P (M) and, therefore, a model
P (S|M) for the generation of sequences is needed. If the probabilities are
computed as P (S = s1s2 . . . st|M) = pM(s1)pM(s2|s1) · · · pM(st|s1s2 . . . st−1)
and the conditional probabilities are assumed to depend only on the last k−1
words, pM(st|s1 . . . st−1) = pM(st|st−k+1 . . . st−1), the resulting Markov chain
model (Chung, 1967) is known as k-gram model.

From a theoretical (although not historical) point of view, k-gram models can
be regarded as a probabilistic extension of locally testable languages (Zalc-
stein, 1972). Informally, a string language L is locally testable if every string
w can be recognized as a string in L just by looking at all the substrings in
w of length at most k. These models are easy to learn and can be efficiently
processed (Garćıa and Vidal, 1990; Yokomori, 1995).

Whenever hierarchical relations are established among the pattern compo-
nents, trees become a more natural representation of the input. For instance,
probabilistic tree grammars have been widely used to tackle ambiguity in nat-
ural language parsing (Charniak, 1993; Sima’an et al., 1996; Stolcke, 1995;
Thorup, 1996) or to process structured text (Prescod, 2000; Murata, 1997;
Chidlovskii, 2000). Context-free grammars (Hopcroft and Ullman, 1979) pro-
vide a traditional formalism that handles structural information. This kind
of grammars can be easily written and updated by linguists, although it is
difficult to learn them automatically. For instance, it is hard to find the ap-
propriate degree of generalization unless some information about the size of
the target grammar is available (Sakakibara et al., 1994).

The class of parse trees generated by a context-free grammar can be char-
acterized as a rational tree language Gécseg and Steinby (1984); Sakakibara
(1992); Common et al. (2002). In particular, the class of k-testable tree lan-
guages Knuutila (1993) is a proper subclass of the class of rational tree lan-
guages, where the effect of events that have occurred beyond a certain depth
window are ignored when processing a tree. These tree languages can be de-
fined either using the formalism of tree automata (from the acceptor point
of view) or using tree grammars (from the generation point of view). Both
approaches are equivalent and previous work (Knuutila, 1993) has proposed
identification algorithms for locally testable tree languages.

Therefore, learning tree languages represents a step towards identifying context-
free languages. In case structural descriptions are available (that is, samples
of unlabelled parse trees), the tree grammar can be identified by means of
learning algorithms (Sakakibara, 1992). Even if structured samples are only
partially available, this information can also be used to improve the learning
process Pereira and Schabes (1992). On their own, the identification of prob-
abilistic models is of interest in classification tasks. Although some general al-
gorithms have been proposed before (Carrasco et al., 2001), they require large

2

data collections to infer even small probabilistic tree grammars. In contrast,
probabilistic k-testable models (for instance, k-grams) represent an approxi-
mation to rational languages that provide a better description of small and
medium-sized samples.

Probabilistic k-testable models have been applied to natural language pro-
cessing before (Verdú-Mas et al., 2002). Here we also used the Penn Treebank
data collection (Marcus et al., 1993) in order to test the algorithm. However,
instead of defining an ad hoc classification task, we have addressed another
interesting problem: how much the inferred model helps to compress the type
of data it describes. In case the model conveys a lot of information about the
samples, a better compression rate will be obtained. For this purpose, some
adaptation of the algorithm is needed: in particular, it is very important that
any unseen tree is assigned a non-null probability.

Summarizing, in this paper, we explore the applicability of probabilistic locally
testable models to describe structured data and complete the results presented
in Rico-Juan et al. (2002). A brief description of these models can be found
in section 2 and the basic guidelines to infer this kind of models are presented
in section 3. We have checked (section 4) that using these models for adaptive
compression of tree data improves performance compared to the traditional
string-based arithmetic compression. Finally, how a backing-off scheme can be
defined for classification tasks is described in section 5.

2 Probabilistic locally testable tree languages

Given an alphabet, that is, a finite set of symbols Σ = {σ1, . . . , σ|Σ|}, the set TΣ

of Σ-trees is defined as the language generated by the context-free grammar
G = (Σ′, {T, F}, T, R), where the alphabet Σ′ contains Σ plus the left and
right parenthesis and whose set of productions R contains the rules:

• T −→ σ |σ(F) for all σ ∈ Σ
• F −→ T | TF

The depth of a tree t is

depth(t) =





0 if t = σ ∈ Σ

1 + maxm
j=1{depth(tj)} if t = σ(t1 . . . tm) ∈ TΣ − Σ

(1)

and the subset of trees is

sub(t) =




{σ} if t = σ ∈ Σ

{t} ∪ ⋃
n sub(tn) if t = σ(t1 . . . tm) ∈ TΣ − Σ

(2)

3

For instance, the Σ-tree a(a(a(ab))b) belongs to T{a,b} and its depth is 3. Its
graphical representation is depicted in fig.1.

A deterministic finite-state tree automaton (DTA) is defined as a four-tuple
A = (Q, Σ, ∆, F), where Q = {q1, . . . , q|Q|} is a finite set of states, Σ =
{σ1, . . . , σ|Σ|} is the alphabet, F ⊆ Q is the subset of accepting states and
∆ = {δ0, δ1, . . . , δM} is a collection of M transition functions of the form
δm : Σ×Qm → Q. For all trees t ∈ TΣ, the result δ(t) ∈ Q of the operation of
A on t is

δ(t) =





δ0(σ) if t = σ ∈ Σ

δm(σ, δ(t1), . . . , δ(tm)) if t = σ(t1 . . . tm) ∈ TΣ − Σ
(3)

By convention, undefined transitions lead to an absorption state ⊥6∈ F .

For instance, if Q = {q1, q2}, Σ = {a, b} and δ0(a) = q1, δ0(b) = q2, δ2(a, q1, q2) =
q2 and δ1(a, q2) = q1, the result of the operation of A on tree t = a(a(a(ab))b),
plotted in fig.1, is δ2(a, δ(a(a(ab))), δ(b)). Recursively, one gets δ(t) = δ(a, q1, q2) =
q2.

a

a b

a

a b

Fig. 1. A graphical representation of the tree a(a(a(ab))b).

The tree language L(A) recognized by the automaton A is the subset of TΣ

L(A) = {t ∈ TΣ : δ(t) ∈ F}. (4)

Every language that can be recognized by a DTA is called a rational tree
language (Gécseg and Steinby, 1984). Rational tree languages can also be
defined as the class of languages generated by regular tree grammars Common
et al. (2002). A regular tree grammar G = (N, Σ, S, R) consists of a finite set of
variables V , an alphabet Σ, an axiom S ∈ V , and a set R of production rules.
Every production rule has the form A → β where A is a variable and β ∈ TV ∪Σ.
However, every regular tree grammar can be easily normalized so that all
productions are of the form A → σ(A1 . . . An), where σ ∈ Σ and A1, . . . , An ∈
V . This form explicitly shows the equivalence between regular tree grammars
and top-down tree automata (Nivat and Podelski, 1997; Common et al., 2002)

4

which are, in turn, equivalent to the DTA defined here.

Probabilistic tree automata generate a probability distribution over the trees
in TΣ. A probabilistic DTA incorporates a probability for every transition in
the automaton, with the normalization that the probabilities of the transitions
leading to the same state q ∈ Q must add up to one. In other words, there is a
collection of functions P = {p0, p1, p2, . . . , pM} of the type pm : Σ×Qm → [0, 1]
such that they satisfy, for all q ∈ Q,

∑

σ∈Σ

M∑

m=0

∑

q1,...,qm∈Q:
δm(σ,q1,...,qm)=q

pm(σ, q1, . . . , qk) = 1 (5)

With this normalization, P defines a distribution over every language L(q) =
{t ∈ Tσ : δ(t) = q}. In order to define a probability distribution over TΣ,
every probabilistic deterministic tree automaton A = (Q, V, δ, P, ρ) provides a
function ρ : Q → [0, 1] which, for every q ∈ Q, gives the probability that a tree
satisfies δ(t) = q. Then, the probability of a tree t in the language generated
by the probabilistic DTA A is given by

p(t|A) = ρ(δ(t)) π(t) (6)

where π(t) is the product of the probabilities of all the transitions performed
when A operates on t:

π(t) =





p0(σ) if t = σ ∈ Σ

pm(σ, δ(t1), . . . , δ(tm)) π(t1) · · · π(tm) if t = σ(t1 . . . tm) ∈ TΣ − Σ

(7)
The equations (6) and (7) define a probability distribution p(t|A) provided
that conssitency is preserved:

∑

t∈TΣ

p(t|A) = 1. (8)

As shown by Chaudhuri et al. (1983) and Sánchez and Bened́ı (1997), context-
free grammars whose probabilities are estimated from random samples are
consistent. In the following, the probabilities of the DTA (or the equivalent
regular tree grammar) will be extracted from random samples and, therefore,
consistency is always preserved.

Locally testable languages, in the case of strings, are characterized by defining
the set of substrings of length k together with prefixes and suffixes of length
strictly smaller than k to check near the string boundaries (Garćıa and Vidal,
1990; Yokomori, 1995). In the case of trees, as described by Knuutila (1993),
the concept of k-fork plays the role of the substrings and the k-root and
k-subtrees play the role of prefixes and suffixes. For any k > 0, every k-

5

fork contains a node and all its descendents lying at a depth smaller that
k. The k-root of a tree is its shallowest k-fork and the k-subtrees are all
the subtrees whose depth is smaller than k. These concepts are illustrated in
fig. 2 for the tree t = a(a(a(ab))b). In this example, r2(t) = {a(ab)}, f3(t) =
{a(a(a)b), a(a(a(b)))} and s2(t) = {a(ab), a, b}.

a

a b

a

a b

a

a b

a

a b

Fig. 2. Left: Set of 3-forks contained in a(a(a(ab))b). Right: 2-root and 2-subtrees.

A tree language T is a strictly k-testable language (with k ≥ 2) if there exist
three finite subsets R,F ,S ⊆ TΣ such that

t ∈ T ⇔ rk−1(t) ⊆ R ∧ fk(t) ⊆ F ∧ sk−1(t) ⊆ S. (9)

We will denote a language defined in this way as T = Lk(R,F ,S). Languages
of this type are rational (Knuutila, 1993). Indeed, it is straightforward to
build a DTA A = (Q, Σ, ∆, F) that recognizes Lk(R,F ,S). For this purpose,
it suffices to choose:

• Q = R∪ rk−1(F ∪ S);
• F = R;

• δm(σ, t1, . . . , tm) =





σ(t1 . . . tm) if σ(t1 . . . tm) ∈ F ∪ S
⊥ otherwise

Therefore, every strictly k-testable tree language (k-testable tree language in
the following) is a rational tree language.

3 Inference of stochastic locally testable tree languages

As shown in Knuutila (1993), the class of k-testable tree languages is identi-
fiable in the limit (Gold, 1967) from positive samples. In other words, there
exists an algorithm that for every k-testable tree language L and after a finite
number of examples outputs a DTA recognizing L. Essentially, the procedure

6

to obtain the DTA given the sample S builds the DTA for Lk(rk−1(S), fk(S), sk−1(S))
following the construction at the end of former section.

For instance, for the single example sample S = {a(a(a(ab))b)} and k = 3 one
gets the set of sates Q == {a(ab), a(a), a, b} with final subset F = {a(ab)}
and transitions δ0(a) = a, δ0(b) = b, δ2(a, a, b) = a(ab) , δ2(a, a(a), b) = a(ab)
and δ1(a, a(ab)) = a(a).

We can extend this learning procedure to the case where the sample is stochas-
tically generated. A stochastic sample S = {τ1, τ2, . . . τ|S|} consists of a se-
quence of trees generated according to an unknown probability distribution.
The assumption that the underlying transition scheme (that is, the states
Q and the collection of transition functions ∆) correspond to a k-testable
DTA allows one to infer a probabilistic DTA from S in a simple way. For
this purpose, one should note that the likelihood of the stochastic sample S
is maximized (Ney et al., 1995) if the stochastic model assigns to every tree τ
in the sample a probability equal to the relative frequency of τ in S. In other
words, every transition in ∆ will be assigned a probability which coincides
with the relative number of times the rule is used when the trees in the sam-
ple are parsed by the DTA. Therefore, the procedure to infer a probabilistic
DTA from a stochastic sample S = {τ1, τ2, . . . , τ|S|} works as follows. The set
of states is built as

Q = rk−1(fk(S) ∪ sk−1(S)); (10)

and ∆ contains the transitions

δ(σ, t1, ..., tm) =





rk−1(σ(t1 . . . tm)) if σ(t1 . . . tm) ∈ fk(S) ∪ sk−1(S)

⊥ otherwise
(11)

with probabilities

pm(σ, t1, . . . , tm) =
C [k](σ(t1 . . . tm), S)

C [k−1](rk−1(σ(t1 . . . tm)), S)
(12)

where C(t, S) =
∑|S|

i=1 C(t, τi) and C(t, τi) counts the number of k-forks and
(k − 1)-subtrees 2 isomorphic to t found in τi; finally, the subset of accepting
states is

F = rk−1(S) (13)

and the probabilities ρ(t) are estimated for every t ∈ F as

ρ(t) =
1

|S|D
[k](t, S) (14)

2 Note that a tree τ may contain, depending on the depth of t, either k-forks or
(k − 1)-subtrees isomorphic to t but not both simultaneously.

7

where D[k](t, S) =
∑|S|

i=1 D[k](t, τi) and D[k](t, τi) = 1 if rk−1(τ) = t and zero
otherwise.

It is useful to store the above probabilities as the quotient of two terms, as
given by equations (12) and (14). In this way, if a new tree (or subtree) τ is
provided, the automaton A can be easily updated to account for the additional
information. For this incremental update, it suffices to increment each term
in the equations with the partial sums obtained for τ .

4 An application: tree data compression

In this section, we explore the application of the class of models considered
here to the task of tree data compression. Because stochastic modeling be-
comes a key ingredient in arithmetic compression (Witten et al., 1987, 1999),
one expects that probabilistic tree models that provide a better description
of the file content will allow for a more effective file compression. Conversely,
compression performance can be used as a measure of the quality of the prob-
abilistic model.

Recall that an arithmetic encoder uses at step n the cumulative range of
probabilities [l(en), h(en)[that the model assigns to the event en having prob-
ability h(en)− l(en). Starting with low0 = 0 and high0 = 1, a new interval is
iteratively computed as follows

lown+1 = lown + (highn − lown)l(en)

highn+1 = lown + (highn − lown)h(en)
(15)

The output of the encoder is any number in the range obtained after the whole
file is processed and implementing this computation using integer arithmetics
is a subtle task as shown in Witten et al. (1987). An important issue is that
the probabilistic model should never assign a null probability to any event
that can be observed, that is, h(en)− l(en) has to be always strictly positive.

Our procedure to compress tree data follows the guidelines of prediction by
partial matching (PPM, Cleary and Witten (1984)). Similarly to the case of
strings, a probabilistic model M [k] predicts the next code to be transmitted
based on the previous context. In this case, the context is given by the (k−1)-
fork (or, when appropriate, by the (k− 1)-root or (k− 1)-subtree) in the tree
above the node. For instance, if k = 3, the possible expansions of the nodes
shadowed in fig. 3 depend on the whole context marked with a square. In
that case, the probability p2(a, a(a), b) of the expansion t = a(a(a)b) given the
observed state q = r2(t) = a(ab) is needed. In the following, we will say that a

8

tree t is an expansion if t ∈ fk(S)∪ sk−1(S) and say that t is a root expansion
if t ∈ rk−1(S).

b

a

a

a b

a

Fig. 3. Trailing context (k = 3) for the expansion of the shadowed nodes.

In case the k-testable model M [k] contains no information about the expansion
t = σ(t1 . . . tm), the (k − 1)-order model M [k−1] is used instead to compute
the probabilities of the subexpansions t1, ..., tm. This backing-off procedure is
repeated recursively till either a) a suitable model is found for the subexpan-
sion under consideration or b) k = 1 and the ground model M [1] is applied.
On the return, when each state expansion is known, the models M [1] to M [k]

are updated.

Some important features differentiate the procedure form the standard string
PPM compression and are worth to comment:

(1) In contrast to strings, where left-to-right processing is the natural choice,
different orders are possible to perform a walk on the tree. Breadth-first
traversal offers the advantage that the model can be updated before the
whole tree is expanded. This improves compression of files consisting of
a single tree or a small amount of them.

(2) Each model M [k] with k > 1 consists of a collection of counters C [k](t)
and D[k](t) needed for the estimates (12) and (14) respectively. There is
a counter for every different argument t, where t is a k-fork or (k − 1)-
subtree in the first case and a (k−1)-root in the second case. In addition,
one needs counters for the escape codes: D[k](εr) for the root escape code
εr and C [k](εq) for the escape code εq associated to the state q. All these
counters are initialized to zero, updated with the processed part of the
tree, and they will be used to estimate the probabilities as follows. The
probability in model M [k] of the expansion t from state q = σ(t1 . . . tm)
is given by

α(k, t) =
C [k](t)

C [k−1](q) + C [k](εq)
(16)

The above formula can also be used for the escape probabilities α(k, εq).

9

Conversely, the probability in M [k] of the root expansion t is

β(k, t) =
D[k](t)

|S|+ D[k](εr)
(17)

This equation also holds for the escape code probability β(k, εr).
(3) The ground model M [1] is used when no information is available about

a expansion t = σ(a1 . . . am) with a1, ..., am ∈ Σ or t = σ. In such case,
the state is q = r1(t) = σ and one needs to code the number m of
descendents together with, if m > 0, their labels a1, ..., am. Therefore,
this ground model has two components. On the one hand, a collection of
counters Eσ(m) stores how many nodes labeled σ expanded m subtrees.
As the maximal tree-width M is in advance unknown, we initially use
M counters per symbol, Eσ(0), ..., Eσ(M − 1), plus an additional one
Eσ(εσ) that stores how often M additional counters are needed. Then,
the probability that a node labeled σ has m descendents is computed as
follows

γ(σ,m) =
1 + Eσ(m)

1 + MEσ(εσ) + Σ
MEσ(εσ)
i=0 Eσ(i)

(18)

The same equation formally holds for γ(σ, εσ).
In addition, M [1] keeps a counter C [1](σ) storing the number of nodes

labeled with σ in the sample. They are used to assign a probability to
every symbol as follows:

α(1, σ) =
1 + C [1](σ)

|Σ|+ ∑
a∈Σ C [1](a)

(19)

With all these ingredients, the tree compression algorithm executes repeatedly
a function, tcompress schematically represented in fig. 4, for every tree τ in
the input and the maximal order kmax allowed for the models. The tcompress

algorithm tcompress(k, τ) [for k > 1]
r encode(rk−1(τ))
do (∀x subtree of τ in breadth-first order)

t ← rk(x)
if (1 + depth(t) ≥ k − 1) then

f encode(k, t)
endif

enddo

endalgorithm

Fig. 4. Main tree compression algorithm.

algorithm calls a function f encode (plotted in fig. 5) that encodes the k-
forks and (k−1)-subtrees 3 and a similar function r encode (plotted in fig. 7)

3 This means that the argument t for f encode satisfies k − 1 ≤ 1 + depth(t) ≤ k.

10

that encodes the (k − 1)-root. All these functions use a generic procedure
send(ϕ, η, x) that generates the input for the arithmetic encoder, that is, the
cumulative range of probabilities assigned to the event by the model. In this
function, ϕ is either α, β, or γ, the parameter η reperesents a k- or σ- value and
x is a tree or m-value. Both ϕ and η specify the table to be used, that is, the
equation (16–19) and its first argument, while x is the parameter that selects
the table entry (the second argument in these equations). The corresponding
decoding functions are implemented in a similar fashion and can be found in
the appendix.

function f encode(k, t)
q ← rk−1(t) [k > 1 is always true]
if (C [k](t) > 0) then [t found in M [k]]

send(α, k, t)
update(k, t)

else [t not found in M [k]]
send(α, k, εq)
inc(C [k](εq))
if (k > 2) then [use M [k−1] for t = σ(t1 . . . tm)]

do (j = 1, ..., m)
if (1 + depth(tj) ≥ k − 2) then

f encode(k − 1, tj)
endif

enddo

else [use M [1] for t = σ(a1 . . . am)]
do (while m ≥ MEσ(εσ))

send(γ, σ, εσ)
inc(Eσ(εσ))

enddo

send(γ, σ,m)
inc(Eσ(m))
do (j = 1, ..., m)

send(α, 1, aj)
inc(C [1](aj))

enddo

endif

inc(C [k](t))
endif

endfunction

Fig. 5. Encoding function. The command inc increments the counter by one. Func-
tion update is expanded in fig. 6.

In order to illustrate how the algorithm works we apply it with parameter
kmax = 3 to the trees in 8. The steps performed are traced in table 9.

11

function update(k, t)
if (k > 2) then [t = σ(t1 . . . tm)]

do (j = 1, ..., m)
if (1 + depth(tj) ≥ k − 2) then update(k − 1, tj)

enddo

else [t = σ(a1 . . . am)]
inc(Eσ(m))
do (j = 1, ..., m)

inc(C [1](aj))
enddo

endif

inc(C [k](t))
endfunction

Fig. 6. Function update.

function r encode (k, t)
if (D[k](t) > 0) then [use M [k]]

send(β, k, t)
do(i = 2, ..., k)

inc(D[i](ri−1(t)))
update(i− 1, ri−1(t))

enddo

else [use M [k−1]]
send(β, k, εr)
inc(D[k](εr))
if (k > 2) then [t = σ(t1 . . . tm)]

r encode (k − 1, rk−1(t))
if(1 + depth(t) ≥ k − 1) f encode (k − 1, t)

else [t = σ]
send(α, 1, σ)
inc(C [1](σ))

endif

inc(D[k](t))
endif

endfunction

Fig. 7. Root encoding function.

In this case, encoding starts with the 2-root a(ba), but M [3] is still empty.
Then a escape code is generated (with probability 1) and a smaller context
(k = 2) is tried in order to encode the 1-root a. As M [2] is also empty a second
escape code is generated (also with probability 1) and the ground model M [1]

is called. At this point, there is no context for the next symbol and then, the
code for the label a is emitted and M [2] tries to encode a(ba) from the state a,

12

a

b a

b a

a

b a

Fig. 8. Trees used to generate a sample trace of the encoding algorithm.

Step Function Action

1 encode r(a(ba),3) send r(ε, 3)

encode r(a, 2) send r(ε, 2)

send 1(a)

encode p(a(ba), 2) send(ε, a, 2)

send 1M(2, a)

send 1(b)

send 1(a)

2 encode p(a(ba(ba)), 3) send(ε, a(ba), 3)

encode p(b, 2) send(ε, b, 2)

send 1M(0, b)

encode p(a(ba), 2) send(a(ba), a, 2)

3 encode p(a(ba), 3) send(ε, a(ba), 3)

encode p(b, 2) send(b, b, 2)

encode p(a, 2) send(ε, a, 2)

send 1M(0, a)

4 encode r(a(ba), 3) send r(a(ba), 3)

encode p(a(ba), a(ba), 3) send(a(ba), a(ba), 3)

Fig. 9. Trace of the algorithm when processing the trees in fig. 8

generating a call to encode p with k = 2. As this expansion is still unseen, the
escape code of state a is generated and the ground model is used to encode
the number of children and their labels. This ends step 1 in the table.

In step 2, the 2-fork a(ba) has to be expanded as a(ba(ba)), but there is still
no information in M [3] so, the corresponding escape code is emitted and M [2]

is called with the smaller context b. Again, the sate is not in the model, a
escape code is emitted and the ground model is called to encode zero children.
Then, M [2] is called with context a but now, this expansion is already stored
in M [2] since after step 1, the models were updated. Therefore, the code of

13

this expansion is generated.

The execution is still not finished, as the fact that a and b are leaves in the fork
a(ab) is still not coded and the model M [3] does not contain such information.
In step 3, after a new escape code, the M [2] code corresponding to state b
without children is generated and a second escape code is emitted because
M [2] does not contain an expansion of state a with no children. Then, the
ground model is used for this purpose.

Finally, step 4 describes the calls performed while the second tree is encoded.
At this point M [3] has the information needed about the state and the expan-
sion and two calls are enough for the encoding.

We checked this model with a 6.129 MByte file consisting of parse trees (with
structural and part-of-speech tags) contained in the Penn Treebank (Marcus
et al., 1993). The compression rate obtained, 13.94, is to be compared with 7.08
obtained using gzip with best compression options, 10.92 obtained with bzip2

with longest block-size or 9.08 using trigram-based arithmetic compression.
This is a clear indication that the probabilistic k-testable tree models provide
the arithmetic encoding algorithm with a suitable description of the structured
data contained in the corpus.

5 Multilevel smoothing of tree languages

A standard procedure to avoid null probabilities is the backing-off method that
has been extensively studied for string models (see, for instance, Ney et al.
(1995)). In this section we introduce a backing-off procedure that has been
successfully used in classification tasks. Different schemes are possible but the
results are not very sensitive to the details of this choice (Ney et al., 1995)
and our main purpose is to illustrate the difficulties and differences with the
string case. Indeed, the most important difference comes from the fact that
the number of descendents of a node is not bounded: on the one hand a special
ground model is needed and, on the other hand, special care has to be taken
when calculating the normalization factors as the number of unseen events is
not known.

Following the standard approach, the template used to back-off a probability
distribution pA with a second, more general, one pB is as follows:

p(x) =





pA(x)(1− λ(x)) if pA(x) > 0
Λ
F
pB(x) otherwise

(20)

The distribution pA is decreased with a discounting function λ such that 0 <

14

λ(x) < 1 and originates a discount term

Λ =
∑

x:pA(x)>0

λ(x)pA(x)

which is distributed among the unseen events. The factor F is needed to keep
the normalization:

F =
∑

x:pA(x)=0

pB(x)

In our case, the probability of a tree τ = σ(τ1 . . . τm) in model M [k] is computed
using the definitions (6) and (7) adapted to a k-testable language, so that
p(τ |M [k]) = ρ[k](rk−1(τ))π[k](τ) and

π[k](τ) =





p
[k]
0 (σ) if τ = σ ∈ Σ

p[k]
m (σ, rk−1(τ1), ..., rk−1(τm))

∏m
i=1 π[k](τi) if τ = σ(τ1 . . . τm) ∈ TΣ − Σ

(21)
We will define a backing-off scheme for the three types of elementary proba-
bilities in Eq. (21): p0(σ), pm(σ, t1, ..., tm) with m > 0 and ρ(t) following the
template (20). For this purpose, we will use counters C [k], D[k] and Eσ with
the same meaning as in former section.

Sometimes, we will need to predict the number m of descendents of a node
labeled σ. For this purpose we define

p[1]
σ (m) =





Eσ(m)

C[1](σ)
(1− λ[1]

σ (m)) if Eσ(m) > 0

Λ
[1]
σ

F
[1]
σ

Pµσ(m) if Eσ(m) = 0 ∧ C [1](σ) > 0

Pµ(m) otherwise

(22)

where λ[1]
σ are strictly positive discounting functions that generate, for each σ,

a global discounting factor

Λ[1]
σ =

1

C [1](σ)

∑
m

Eσ(m)λ[1]
σ (m) (23)

which is normalized with

F [1]
σ = 1− ∑

n:Eσ(n)>0

Pµσ(n) (24)

Here, Pµ and Pµσ are non-vanishing probability distributions (for instance,
Poisson-like) over the positive integers such that their expectation value coin-
cides with the average number µ of descendents of the nodes in the sample or

15

the average number µσ of descendents of nodes labeled σ, that is

µσ =

∑
m mEσ(m)∑
m Eσ(m)

(25)

Note that Λ[1]
σ > 0 when C [1](σ) > 0, as this implies Eσ(m) > 0 for some m.

The ground model M [1] has as a second ingredient: the probabilities p[1](σ)
that a node has label σ:

p[1](σ) =





C[1](σ)
N

(1− λ[1](σ)) if C [1](σ) > 0
Λ[1]

F [1] otherwise
(26)

where λ[1](σ) is a strictly positive function, N =
∑

a C [1](a) is the number of
nodes in the sample, the normalizing factor F [1] is the number of different
alphabet symbols not found in S and

Λ[1] =
1

N

∑
a

C [1](a)λ[1](a) (27)

Note that any non-empty sample (that is, with N > 0) has C [1](σ) > 0 for
some σ and, therefore, Λ[1] > 0.

With these ingredients, we are ready to define backing-off schemes for the
elementary probabilities with k = 2: given t = σ(a1 . . . am), they are computed
as follows

p[2]
m (σ, a1, ..., am) =





C[2](t)

C[1](σ)
(1− λ[2](t)) if C [2](t) > 0

Λ[2](σ)

F [2](σ)
p[1]

σ (m)
∏m

i=1 p[1](ai) otherwise
(28)

where

Λ[2](σ) =
∑

u:C[2](u)>0∧r1(u)=σ

C [2](u)

C [1](σ)
λ[2](u) (29)

and the normalization factor is

F [2](σ) = 1− p
[2]
0 (σ)− ∑

m>0:Eσ(m)>0

p[1]
σ (m)

∑
a1,...,am:

C[2](σ(a1...am))>0

m∏

i=1

p[1](ai) (30)

Again, it is easy to realize that the value of any probability of this type is
strictly positive.

In case k > 2, p
[k]
0 (σ) = 1. However, the probabilities of type p[k]

m with m > 0,

16

given t = σ(t1 . . . tm) with ti = ai(si1 . . . simi
), are defined as

p[k]
m (σ, t1, ..., tm) =





C[k](t)

C[k−1](rk−1(t))
(1− λ[k](t)) if C [k](t) > 0

Λ[k](rk−1(t))

F [k](rk−1(t))

∏m
i=1 p[k−1]

mi
(ai, si1, ..., simi

) otherwise

(31)
where

Λ[k](q) =
1

C [k−1](t)

∑

u:C[k](u)>0∧rk−1(u)=q

C [k](u)λ[k](u) (32)

and the normalization factor is

F [k](σ(τ1 . . . τm)) = 1− ∑
u1,...,um:

C[k](σ(u1...um))>0∧rk−2(ui)=τi

m∏

i=1

p[k−1]
mi

(ai, vi1, ..., vimi
) (33)

where ui = ai(vi1, ..., vimi
).

Finally, ρ[k] probabilities can be defined in case k = 2 as

ρ[2](σ) =





D[2](σ)
|S| (1− θ[2](σ)) if D[2](σ) > 0

Θ[2]

G[2] p[1]
σ (0) otherwise

(34)

where the discounting factor Θ[2] is

Θ[2] =
1

|S|
∑

a:D[2](a)>0

D[2](a)θ[2](a) (35)

and its corresponding normalization

G[2] = 1− ∑

a:D[2](a)>0

p[1](a) (36)

In case k > 2 we use instead for t = σ(t1 . . . tm)

ρ[k](σ(t1 . . . tm)) =





D[k](t)
|S| (1− θ[k](t)) if D[k](σ(t1 . . . tm)) > 0

Θ[k]

G[k] ρ[k−1](rk−2(t)) p[k−1]
m (σ, t1, ..., tm) otherwise

(37)
where

Θ[k] =
1

|S|
∑

u:D[k](u)>0

D[k](u) θ[k](u) (38)

and the suitable normalizing factor is

G[k] = 1−∑
a

∑
m

∑
u1,...,um:

D[k](a(u1...um))>0

ρ[k−1](rk−2(a(u1 . . . um))) p[k−1]
m (a, u1, ..., um)

(39)
All these equations provide an efficient backing-off scheme that guarantees

17

that no event is assigned a null probability.

As an illustration, consider the tiny sample S = {a(a(ab)b)}. The probabilities
of the events seen in the sample are summarized in the following table

ρ[3](a(ab)) = (1− θ
[3]
a(ab)) ρ[2](a) = (1− θ[2]

a)

p
[3]
2 (a, a(a), b) = 1

2
(1− λ

[3]
a(ab)) p

[2]
2 (a, a, b) = 2

4
(1− λ[2]

a)

p
[3]
2 (a, a, b) = 1

2
(1− λ

[3]
a(ab)) p

[2]
1 (a, a) = 1

4
(1− λ[2]

a)

p
[3]
1 (a, a(ab)) = (1− λ

[3]
a(a)) p

[2]
0 (a) = 1

4
(1− λ[2]

a)

p
[3]
0 (a) = p

[3]
0 (b) = 1 p

[2]
0 (b) = 2

2
(1− λ

[2]
b)

In order to obtain, for instance, the probability of tree a(a(ab)b)) with k = 3
one needs

p(|a(a(ab)b)|M [3]) = ρ[3](a(ab))p
[3]
2 (a, a(ab), b)p

[3]
2 (a, a, b)p

[3]
0 (a)p

[3]
0 (b)2 (40)

where, only for the second factor, backing-off needs to be applied

p
[3]
2 (a, a(ab), b) =

λ
[3]
a(ab)

1− p
[2]
1 (a, a)p

[2]
0 (b)− p

[2]
0 (a)p

[2]
0 (b)

p
[2]
2 (a, a, b)p

[2]
0 (b) (41)

Substituting the above expression in (40), the result can be now computed
using only the probabilities in the table.

6 Conclusion

We have described how a probabilistic extension of the k-testable tree lan-
guages allows for simple statistical learning procedures and can be used to
implement arithmetic compression algorithms or backing-off techniques. The
models of this type can be updated incrementally and may be inferred us-
ing medium-sized samples with better results than some state merging meth-
ods (Carrasco et al., 2001) which tend to output too simple models. The higher
compression rates achieved when processing tree data files show that this class
of models provide a suitable description of the structured data.

References

Brown, P. F., Pietra, V. J. D., deSouza, P. V., Lai, J. C., and Mercer, R. L.
(1992). Class-based n-gram models of natural language. Computational
Linguistics, 18(4):467–479.

18

Carrasco, R. C., Oncina, J., and Calera-Rubio, J. (2001). Stochastic inference
of regular tree languages. Machine Learning, 44(1/2):185–197.

Charniak, E. (1993). Statistical Language Learning. MIT Press.
Chaudhuri, R., Pham, S., and Garcia, O. (1983). Solution of an open problem

on probabilistic grammars. IEEE Transactions on Computers, 32(8):758–
750.

Chidlovskii, B. (2000). Using regular tree automata as XML schemas. In
Hoppenbrouwers, J., de Souza Lima, T., Papazoglou, M., and Sheth, A.,
editors, Proc. IEEE Advances on Digital Libraries Conference 2000, pages
89–98.

Chung, K. L. (1967). Markov Chains with Stationary Transition Probabilities.
Springer, Berlin, 2 edition.

Cleary, J. G. and Witten, I. H. (1984). Data compression using adaptive
coding and partial string matching. IEEE Transactions on Communicaton,
32(4):396–402.

Common, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S.,
and Tommasi, M. (2002). Tree automata techniques and applications. Draft
book; available electronically on http://www.grappa.univ-lille3.fr/tata.

Cover, T. M. and Thomas, J. A. (1991). Elements of Information Theory.
Wiley Series in Telecommunications. John Wiley & Sons, New York, NY,
USA.

Garćıa, P. and Vidal, E. (1990). Inference of k-testable languages in the strict
sense and application to syntactic pattern recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 12(9):920–925.

Gécseg, F. and Steinby, M. (1984). Tree Automata. Akadémiai Kiadó, Bu-
dapest.

Gold, E. (1967). Language identification in the limit. Information and Control,
10:447–474.

Hopcroft, J. and Ullman, J. D. (1979). Introduction to Automata Theory,
Language, and Computation. Addison–Wesley, Reading, MA.

Jelinek, F. (1998). Statistical Methods for Speech Recognition. The MIT Press,
Cambridge, Massachusetts.

Knuutila, T. (1993). Inference of k-testable tree languages. In Bunke, H., ed-
itor, Advances in Structural and Syntactic Pattern Recognition (Proc. Intl.
Workshop on Structural and Syntactic Pattern Recognition, Bern, Switzer-
land). World Scientific.

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. (1993). Building a large
annotated corpus of english: the penn treebank. Computational Linguistics,
19:313–330.

Murata, M. (1997). Transformation of documents and schemas by patterns
and contextual conditions. In Nicholas, C. K. and Wood, D., editors, Prin-
ciples of Document Processing, Third International Workshop, PODP’96
Proceedings, volume 1293, pages 153–169.

Ney, H., Essen, U., and Kneser, R. (1995). On the estimation of small proba-
bilities by leaving-one-out. IEEE Trans. on Pattern Analysis and Machine

19

Intelligence, 17(12):1202–1212.
Nivat, M. and Podelski, A. (1997). Minimal ascending and descending tree

automata. SIAM Journal on Computing, 26(1):39–58.
Pereira, F. and Schabes, Y. (1992). Inside-outside re-estimation from partially

bracketed corpora. In Proceedings of the 30th annual meeting of the ACL,
pages 128–135, Newark.

Prescod, P. (2000). Formalizing XML and SGML instances with forest au-
tomata theory. Technical report, University of Waterloo, Department of
Computer Science, Waterloo, Ontario. Draft Technical Paper.

Rico-Juan, J. R., Calera-Rubio, J., and Carrasco, R. C. (2002). Stochastic
k-testable tree languages and applications. In Pieter W. Adriaans, Hen-
ning Fernau, M. v. Z., editor, Grammatical Inference: Algorithms and Ap-
plications, 6th International Colloquium: ICGI 2002, volume 2484 of Lecture
Notes in Computer Science, pages 199–212.

Rubin, F. (1976). Experiments in text file compression. Communications of
the ACM, 19(11):617–623.

Sakakibara, Y. (1992). Efficient learning of context-free grammars from posi-
tive structural examples. Information and Computation, 97(1):23–60.

Sakakibara, Y., Brown, M., Underwood, R. C., Mian, I. S., and Haussler, D.
(1994). Stochastic context-free grammars for modeling RNA. In Hunter,
L., editor, Proceedings of the 27th Annual Hawaii International Conference
on System Sciences. Volume 5 : Biotechnology Computing, pages 284–294,
Los Alamitos, CA, USA. IEEE Computer Society Press.

Sima’an, K., Bod, R., Krauwer, S., and Scha, R. (1996). Efficient disambigua-
tion by means of stochastic tree substitution grammars. In Jones, D. B. and
Somers, H. L., editors, Proc. of the Int. Conf. on New Methods in Language
Processing. Manchester, UK, 14–16 Sep 1994, pages 50–58, London, UK.
UCL Press.

Sánchez, J. and Bened́ı, J. (1997). Consistency of stochastic context-free gram-
mars from probabilistic estimation based on growth transformations. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19(9):1052–
1055.

Stolcke, A. (1995). An efficient context-free parsing algorithm that computes
prefix probabilities. Computational Linguistics, 21(2):165–201.

Thorup, M. (1996). Disambiguating grammars by exclusion of sub-parse trees.
Acta Informatica, 33(6):511–522.

Verdú-Mas, J. L., Forcada, M. L., Carrasco, R. C., and Calera-Rubio, J.
(2002). Tree k-grammar models for natural language modelling and pars-
ing. In Caelli, T., Amin, A., Duin, R. P. W., Kamel, M. S., and de Rid-
der, D., editors, Structural, Syntactic, and Statistical Pattern Recognition,
Joint IAPR International Workshops SSPR 2002 and SPR 2002, Windsor,
Ontario, Canada, Proceedings, volume 2396 of Lecture Notes in Computer
Science, pages 53–63. Springer.

Witten, I. H., Moffat, A., and Bell, T. C. (1999). Managing Gigabytes: Com-
pressing and Indexing Documents and Images. Morgan Kauffman Publish-

20

ing, San Francisco, 2nd edition.
Witten, I. H., Neal, R. M., and Cleary, J. G. (1987). Arithmetic coding for

data compression. Communications of the ACM, 30(6):520–540.
Yokomori, T. (1995). On polynomial-time learnability in the limit of strictly

deterministic automata. Machine Learning, 19(2):153–179.
Zalcstein, Y. (1972). Locally testable languages. Journal of Computer and

System Sciences, 6(2):151–167.

A Decoding functions

The corresponding decoding functions can be found in fig. A.2 and A.1. These
functions call procedures get that play the inverse role of function send in
compression.

function r decode (k)
t ← get(β, k)
if (t! = εr) then

do(i = 2, ..., k)
inc(D[i](ri−1(t)))
update(i− 1, ri−1(t))

enddo

else

inc(D[k](εr))
if k > 2 then

q ← r decode(k − 1)
t ← f decode(q)

else

σ = get(α, 1)
inc(C [1](σ))
t ← σ

endif

inc(D[k](t))
endif

return t
endfunction

Fig. A.1. Root decoding function.

21

function f decode (k)
k ← 2 + depth(q)
t ← get(α, k, q)
if (t! = εq) then

update(t)
else

inc(C [k](εq))
if (k > 2) then [q = σ(τ1 . . . τm)]

do (j = 1, ..., m)
if (1 + depth(τj) = k − 1) then

tj = f decode(τj)
endif

enddo

t ← σ(t1 . . . tm)
else [q = σ]

do (while get(γ, σ) = εσ)
inc(Eσ(εσ))

enddo

m ← get(γ, σ)
inc(Eσ(m))
do (j = 1, ..., m)

aj ← get(α, 1)
inc (C [1](aj))

enddo

t ← σ(a1 . . . am)
endif

inc(C [k](t))
endif

return t
endfunction

Fig. A.2. Decoding function.

22

