
Overlap pattern synthesis with an efficient nearest
neighbor classifier

P. Viswanath, M. Narasimha Murty, Shalabh Bhatnagar∗
Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India

Abstract

Nearest neighbor (NN) classifier is the most popular non-parametric classifier. It is a simple classifier with no design phase
and shows good performance. Important factors affecting the efficiency and performance of NN classifier are (i) memory
required to store the training set, (ii) classification time required to search the nearest neighbor of a given test pattern, and
(iii) due to the curse of dimensionality the number of training patterns needed by it to achieve a given classification accuracy
becomes prohibitively large when the dimensionality of the data is high. In this paper, we propose novel techniques to improve
the performance of NN classifier and at the same time to reduce its computational burden. These techniques are broadly
based on: (i) overlap based pattern synthesis which can generate a larger number of artificial patterns than the number of
input patterns and thus can reduce the curse of dimensionality effect, (ii) a compact representation of the given set of training
patterns called overlap pattern graph (OLP-graph) which can be incrementally built by scanning the training set only once
and (iii) an efficient NN classifier called OLP-NNC which directly works with OLP-graph and does implicit overlap based
pattern synthesis. A comparison based on experimental results is given between some of the relevant classifiers. The proposed
schemes are suitable for applications dealing with large and high dimensional datasets like those in data mining.

Keywords:Nearest neighbor classifier; Pattern synthesis; Compact representation; Data mining

1. Introduction

Nearest neighbor (NN) classifier is a very popular non-
parametric classifier[1–3]. It is widely used because of its
simplicity and good performance. It has no design phase and
simply stores the training set. A test pattern is classified to
the class of its nearest neighbor in the training set. So the
classification time required for the NN classifier is largely
for reading the entire training set to find the NN.1 Thus the

∗ Corresponding author. Fax: +91 80 23602911.
E-mail addresses:shalabh@csa.iisc.ernet.in(S. Bhatnagar),

viswanath@csa.iisc.ernet.in(P. Viswanath),mnm@csa.iisc.ernet.in
(N.M. Murty).

1 We assume that the training set is not preprocessed (like in-
dexed, etc.) to reduce the time needed to find the neighbor.

two major shortcomings of the classifier are that the entire
training set needs to be stored and searched. To add to this
list, its performance (classification accuracy) depends on the
training set size.

Cover and Hart[4] show that the error for NN classifier
is bounded by twice the Bayes error when the available
sample size is infinity. However, in practice, one can never
have an infinite number of training samples. With a fixed
number of training samples, the classification error for 1-
NN classifier tends to increase as the dimensionality of the
data gets large. This is called the peaking phenomenon[5,6].
Jain and Chandrasekharan[7] point out that the number of
training samples per class should be at least 5–10 times
the dimensionality of the data. The peaking phenomenon
with NN classifier is known to be more severe than other
parametric classifiers such as Fisher’s linear and quadratic

http://www.elsevier.com/locate/patcog
mailto:shalabh@csa.iisc.ernet.in
mailto:viswanath@csa.iisc.ernet.in
mailto:mnm@csa.iisc.ernet.in

classifiers [8,9]. Duda et al. [3] mention that for non-
parametric techniques, the demand for a large number of
samples grows exponentially with the dimensionality of the
feature space. This limitation is called thecurse of dimen-
sionality. Thus, it is widely believed that the size of training
sample set needed to achieve a given classification accuracy
would be prohibitively large when the dimensionality of
data is high.

Increasing the training set size has two problems, viz., (i)
space and time requirements get increased and (ii) it may
be expensive to get training patterns from the real world.
The former problem can be solved to some extent by using
a compact representation of the training set like PC-tree
[10], FP-tree[11], CF-tree[12], etc., while the latter by re-
sampling techniques, like bootstrapping[13] which has been
widely studied[14–18]. These two remedies are however
orthogonal, i.e., they have to be followed one step after the
other (cannot be combined into a single step).

An elegant solution to the above problems would be to
find acompact and generalized abstraction for the training
set. The abstraction being compact solves the space and
time requirements problem. The generalization implies that
not only the given patterns but also other new patterns are
possible to be generated from it.

In this paper we propose (i) a novel pattern synthesis
technique calledoverlap-based pattern synthesis(OLP-
synthesis), (ii) a corresponding compact representation of
the training set called OLP-graph and (iii) an efficient NN
classifier called OLP-NNC.

The effectiveness of OLP-synthesis is established both
informally and formally. The number of synthetic patterns
generated by OLP-synthesis can be exponential in the num-
ber of original patterns.2 As a result, the synthetic patterns
cannot be explicitly stored.

To overcome the above problem, OLP-NNC directly
works with the OLP-graph and avoids explicit synthetic
pattern generation. That is, OLP-NNC implicitly does OLP-
synthesis and the nearest neighbor for a given test pattern
is found from the entire synthetic training set. So OLP-
graph acts as a compact and generalized abstraction for the
training set. Further, it can be incrementally constructed by
scanning the training set only once, whereas the compact
structures like FP-tree[11] require two database scans and
cannot be constructed incrementally. Addition of new pat-
terns and deletion of existing patterns from the OLP-graph
can be done easily. Unlike compact representations like
CF-tree [12], this is independent of the order in which
the original patterns are considered. Hence OLP-graph is
a suitable representation for large training sets which can
vary with respect to time like in data mining applications.

Empirical studies show that (i) the space requirement for
OLP-graph is smaller than that for the original training set
and the rate at which its size increases with respect to the

2 By original patterns, we mean the given training patterns
(to contrast with the synthetic patterns).

original set becomes smaller and smaller as the original
set grows, (ii) the classification time needed by OLP-NNC
using the synthetic dataset is of the same order of magnitude
as that of conventional NN classifier using the input data
set and (iii) the performance of OLP-NNC is better than
the conventional NN classifier. We also compare our results
with those of other classifiers like the Naive Bayes classifier
and NN classifier based on the bootstrap method given by
Hamamoto et al.[18]. Naive Bayes classifier can be seen
as carrying on a pattern synthesis implicitly by assuming
statistical independence between features.

The rest of the paper is organized as follows: Section 2
describes pattern synthesis. Section 3 describes OLP-graph
with its properties. OLP-NNC is explained in Section 4.
Experimental results are described in Section 5 and conclu-
sions in Section 6.

2. Pattern synthesis

Pattern synthesis can be seen as a method of generat-
ing artificial new patterns from the given training patterns.
Broadly this can be done in two ways viz.,model-based
pattern synthesisand instance-based pattern synthesis.

Model-based pattern synthesis first derives a model based
on the training set and uses this to generate patterns. The
model derived can be a probability distribution or an ex-
plicit mathematical model like a Hidden Markov model. This
method can be used to generate as many patterns as needed.
There are two drawbacks of this method. First, any model
depends on the underlying assumptions and hence the syn-
thetic patterns generated can be erroneous. Second, it might
be computationally expensive to derive the model. Another
argument against this method is that if pattern classification
is the purpose, then the model itself can be used without
generating any patterns at all.

Instance-based pattern synthesis, on the other hand, uses
the given training patterns and some of the properties about
the data. It can generate only a finite number of new patterns.
Computationally this can be less expensive than deriving a
model. This is especially useful for non-parametric classi-
fiers like NNC which directly use the training instances. Fur-
ther, this can also result in reduction of the computational
requirements of NNC.

We present in this paper an instance-based pattern syn-
thesis technique calledoverlap based pattern synthesis, first
providing key motivation. We also present an approximate
version of the method.

2.1. Overlap based pattern synthesis—main ideas

Let F be the set of features. There may exist a three-block
partition of F, say, {A,B,C} with the following proper-
ties. For a given class, there is a dependency (probabilistic)
among features inA∪B. Similarly, features inB∪C have a
dependency. However, features inA (or C) can affect those

11

1 1 1 1

1111

1

1 1

1

1

1 1

1

1 1
1 1

1111

1

1

1

1

1

1

1

1

11

11 1

 P QX Y
Two given patterns

(for digit ‘3’)
Two new patterns

Fig. 1. Illustration of synthetic patterns. Note: The empty cells are assumed to have 0’s. Shaded portion is the overlap.

in C (or A) only through features inB. Suppose now that we
are given two patternsX = (a1, b, c1) andY = (a2, b, c2)

such thata1 is a feature-vector that can be assigned to the
features inA, b to the features inB andc1 to the features inC,
respectively. Similarly,a2, b andc2 are feature-vectors that
can be assigned to features inA, B, andC, respectively. Then,
our argument is that the two patterns(a1, b, c2), (a2, b, c1)

are also valid patterns in the same class. If these two new
patterns are not already in the class of patterns then it is only
because of the finite nature of the set. We call this type of
generation of additional patterns asoverlap-based pattern
synthesis, because this kind of synthesis is possible only if
the two given patterns have the same feature-values for fea-
tures inB. In the given example, feature-vectorb is common
betweenX andY and, therefore, is called theoverlap.

We present one simple example with hand-written dig-
its which has geometric appeal also.Fig. 1 illustrates
two given patterns (X and Y) for OCR digit ‘3’, and
two new patterns (P and Q) generated from the given
patterns. In this example, the digits are drawn on a two-
dimensional rectangular grid of size 5× 4. A cell with
‘1’ indicates presence of ink. Empty cells are assumed to
have ‘0’. Patterns are represented row-wise. So the pattern
X = (0,1,1,0,1,0,0,1,0,0,1,0,0,0,0,1,0,1,1,0) and
Y = (1,1,1,1,0,0,0,1,0,0,1,0,0,0,0,1,1,1,1,1). Let
the feature set beF={f1, . . . , f20}, and the three-block par-
tition of F be{A,B,C} which satisfies the earlier-mentioned
properties withA = {f1, . . . , f5}, B = {f6, . . . , f16} and
C = {f17, . . . , f20}, respectively. ThenX and Y have an
overlap and we can generate two new patterns,P andQ, as
shown inFig. 1.

2.2. Overlap based pattern synthesis—formal procedure

To describe the overlap-based pattern synthesis formally,
we use the following notation and definitions. A pattern
(data instance) is described as an assignment of valuesX=
(x1, . . . , xd) to a set of featuresF = (f1, . . . , fd). As usual,
we assume that all the data instances (including those in
the training set) are drawn from some probability distribu-
tion over the space of feature vectors. Formally, for each

assignment of valuesX to F, we have a probabilityPr(F =
X). That is, a set of features is also seen as a random vec-
tor. Further,X[fi] is the value of featurefi in instanceX.
That is, ifX= (x1, . . . , xd), thenX[fi]=xi . Let A be some
subset ofF. Given a feature vectorX, we useXA to denote
the projection ofX onto the features inA.

Let � = {A,B,C} be a three-block partition ofF. Let
X, Y and Z be three given feature vectors. ThenW =
(XA, YB,ZC) is a feature vector such that,

W [fi] =X[fi], if fi ∈ A
= Y [fi], if fi ∈ B
= Z[fi], if fi ∈ C.

Let X={X1, X2, . . . , Xn} be a set of patterns belonging to
class�l . The synthetic set generated fromX with respect to
a given three-block partition� = {A,B,C} of F is denoted
as SS�(X) and is obtained as follows:

(1) Initially SS�(X)= X.
(2) For each pair of patterns(Xi,Xj) for 1� i < j�n, if

Xi
B

=X
j
B

, add two patterns(Xi
A
,Xi

B
,X

j
C
), (X

j
A
,X

j
B
,

Xi
C
) to SS�(X) if they are not already in it.

It is easy to see thatSS�(X) andX are obtained from the
same distribution provided for any assignment of values
a, b, andc to the random vectorsA,B, andC, respectively,
Pr(A = a |B = b, C = c,Class= �l) = Pr(A = a |B =
b,Class= �l). That is,A is conditionally independent of
C, given B and class is�l . Since we restrict our attention
to one class at a time, we can equivalently state the rule as
Pr(A=a |B=b, C=c)=Pr(A=a |B=b). We will use the
notationI (A,C |B) to denote the conditional independence
of two random variablesA andC given random variableB.

If there is more than one such three-block partition,
then we apply the synthesis technique sequentially (in
some order). Let{�1, . . . , �m} be the m possible three-
block partitions satisfying the conditional independence
requirement, then a synthetic set that can be obtained is
SS�m(SS�m−1(· · · (SS�1(X)))). For this kind of synthesis,
three-block partitions can be seen as the building blocks and

when applied in a sequence gives raise to the general form
of the synthesis. That is, from given two original patterns,
one can derive many synthetic patterns by applying the
technique with respect to the given three-block partitions
in a sequence.

2.3. Overlap-based pattern synthesis—an approximate
method

If partitions,�i = {Ai, Bi, Ci} such thatI (Ai, Ci |Bi) is
true for 1� i�m are given, then it can be used for pattern
synthesis. Unfortunately, there may not exist any such par-
tition fully satisfying the conditional independence require-
ment. But there may exist partitions which approximately
satisfy the requirement. Furthermore, finding either a true or
an approximate partition might be very hard. In this section,
we present one simple algorithm which provides a heuris-
tic approach to dealing with this problem. The method is
based on pairwise correlations between features. The par-
titions obtained by this method may not strictly satisfy the
conditional independence requirement. Nevertheless, based
on empirical results, the patterns generated using these par-
titions are shown to improve the classification accuracy of
NNC.

Our intuition for constructing a candidate partition is
based on the following: assume that a partition,�={A,B,C}
does exist such thatI (A,C |B) is true. We can think that
the features inA directly influence features inB and that
in turn directly influence those inC. However, there is an
indirect influence of features inA on features inC, via fea-
tures in B. Therefore, features inA will tend to be quite
strongly correlated with features inB, similarly features in
B will be strongly correlated with features inC. But cor-
relation between features inA and C will be weak. There
is a well-known “folk-theorem” that probabilistic influence
tends to attenuate over distance; that is, direct influence is
stronger than indirect influence. (This has been shown both
formally and empirically in certain special cases in[19,20].)
Therefore, we use these heuristics to choose appropriate par-
titions. Further, we would like to find as many partitions as
possible. This is done as explained below.

We obtain an ordering of features such that features which
are close by (according to this ordering) are highly correlated
than for distant ones. If(f1, f2, . . . , fd) is an ordered set
of features such thatfi is the ith feature then we define a
criterion or costJ = ∑

∀i,j |cor(fi , fj)| × |i − j | where
cor(fi , fj) is the correlation factor for the pair of features
fi and fj . We find an ordering of features for which the
costJ is minimum. We give two methods for finding such
an ordering of features.

If the number of features is small such that performing
an exhaustive search over all possible orderings is feasible,
then this is done to find the best ordering of features having
minimumJ value. Otherwise, we (i) select a random order-
ing of features, (ii) randomly choose two distinct features
fi, fj and swap their positions (to get a new ordering of

features) if it decreases the cost. Step (ii) is repeated for a
pre-specified number of times and the resulting ordering of
features is taken.

Let (f ′
1, f

′
2, . . . , f

′
d
) be the final ordering of features

(such thatf ′
i

is the ith feature), derived from the above-
mentioned process. For a given threshold correlation factor
t (0� t�1), we get d partitions �i = {Ai, Bi, Ci} for
(1� i�d) as follows whered is the number of features.
Ai = (f ′

1, f
′
2, . . . , f

′
i−1), Bi = (f ′

i
, f ′
i+1, . . . , f

′
j−1) and

Ci = (f ′
j
, f ′
j+1, . . . , f

′
d
) such that |cor(f ′

i
, f ′
k
)|< t for

all f ′
k

∈ Ci . It is possible forAi or Ci to be empty. It is
worth noting that alwaysA1 and Cd are empty. A con-
cise representation of all partitions i.e.,(�1, �2, . . . , �d)
is the list of integersL = (|B1|, |B2|, . . . , |Bd |) such
that |Bi | corresponds to the partition�i with Ai =
(f ′

1, f
′
2, . . . , f

′
i−1), Bi = (f ′

i
, f ′
i+1, . . . , f

′|Bi |+i−1) and

Ci = (f ′|Bi |+i , f
′|Bi |+i+1, . . . , f

′
d
). L is called the overlap

lengths list.

2.4. An example

Let the ordered set of features beF = (f ′
1, f

′
2, . . . , f

′
6),

L = (2,2,3,2,2,1) be the representation of partitions for
a class and the given original patterns for the class be
X = {(a, b, c, d, e, f), (p, b, c, q, e, r), (m, n, c, q, e, o)}.
Then SS�1(X) = X, since no two patterns inX have
common values for first and second features simultane-
ously.(SS�2(SS�1(X))={(a, b, c, d, e, f), (a, b, c, q, e, r),
(p, b, c, d, e, f), (p, b, c, q, e, r), (m, n, c, q, e, o)}, be-
cause for the two patterns inX viz., (a, b, c, d, e, f) and
(p, b, c, q, e, r) the features inB2 = (f ′

2, f
′
3) have common

values and so we get two additional synthetic patterns,
viz., (a, b, c, q, e, r) and(p, b, c, d, e, f), respectively. Fi-
nally, the entire synthetic set,SS�6(. . . (SS�2(SS�1(X))))=
{(a, b, c, d, e, f), (a, b, c, q, e, r), (a, b, c, q, e, o), (p, b, c,
d, e, f), (p, b, c, q, e, r), (p, b, c, q, e, o), (m, n, c, q, e, r),
(m, n, c, q, e, o)}.

3. A compact representation for synthetic patterns

For carrying out partition-based pattern synthesis, even
though all possible partitions of the set of features are found,
it would be a computationally hard job to generate all possi-
ble synthetic patterns. Further, the number of synthetic pat-
terns that can be generated can be very large when compared
with the given original set size. This results in increased
space requirement for storing the synthetic set. In this sec-
tion we present a data structure calledoverlap pattern graph
(OLP-graph) which is a compact representation for storing
synthetic patterns. OLP-graph, for a given collection of par-
titions of the set of features, can be constructed by reading
the given original training patterns only once and is also
suitable for searching the NN in the synthetic set.

For a given class of original patterns(X), for a given col-
lection of partitions of the set of features({�i | 1� i�d}),
overlap pattern graph (OLP-graph) is a compact data struc-
ture built by inserting each original pattern into it. But the
patterns that can be extracted out of the OLP-graph form
the synthetic setSS�d (. . . (SS�1(X))).

OLP-graph has two major parts, viz., (i) directed graph
and (ii) header table. Every node in the graph has (i) a feature
value, (ii) an adjacency list of arcs and (iii) a node-link. A
path (consisting of nodes and arcs) of OLP-graph from one
end to the other represents a pattern. If two patterns have
an overlap with respect to a partition of the set of features,
then these two patterns share a common sub-path. A node
of the graph represents a feature for a pattern.

Header table and node links facilitate in finding the over-
lap. Header table consists of an entry for every feature. An
entry in it points to a node in the graph which represents that
feature for a pattern. The node link of a node points to an-
other node which represents the same feature but for some
other pattern. That is, a header table entry for featurefi is
a pointer to the head of a linked list of nodes. Each node in
this linked list represents featurefi for some pattern. This
linked list is calledfeature-linked-list offi .

A pattern is progressively inserted feature by feature. For
this purpose, for every featurefi (1� i�d) a possible over-
lap with the existing patterns in the OLP-graph with respect
to the partition�i is looked for. If no overlap is possible
then a new node is created for the feature.

3.1. An example

For the example presented in Section 2.4 the correspond-
ing OLP-graph is shown inFig. 2.

Node links which formfeature-linked-listsare shown in
dotted lines. A path consisting of nodes and arcs from the left
end to the right end represents a pattern that can be extracted
from the OLP-graph. Thus, all patterns that can be extracted
out form the synthetic setSS�6(. . . (SS�2(SS�1(X)))).

An important point to observe is that first and second
patterns in the original set have an overlap according to the
partition �2 i.e., they have an overlap (or, same feature-
values) for features inB2 = (f ′

2, f
′
3). In the OLP-graph, the

node corresponding tob is shared but that corresponding to
c is not. The reason is that if the node corresponding toc is
also shared thenm → n → c → d → e → f becomes a
valid path, i.e.,(m, n, c, d, e, f) becomes a synthetic pattern
which can be extracted out of the graph. However, this is not
a valid synthetic pattern according to overlap-based pattern
synthesis (Section 2.2) based on the partitions given. To
make this point clearer, a definition of the propertynode-
sharability along withsharable-nodeis given below.
Node-sharability and sharable-node: For a given OLP-graph
G, patternX, featuref ′

i
and partition�i = {Ai, Bi, Ci}, we

saynode-sharability(G,X, f ′
i
, |Bi |) is true if there is a sub-

path of nodes inG, vi → vi+1 → · · · → vi+|Bi |−1 such
that feature value invj is equal toX[f ′

j
] for (i�j� i +

a

p

m n

b c

c

d

q

e

e

e o

r

f

Header Table

f1 f2 f3 f4 f5 f6’ ’ ’ ’ ’ ’

Fig. 2. Illustration of OLP-graph.

|Bi | − 1), andvi is a node in thefeature-linked-listof f ′
i
.

In this context,sharable-node(G,X, f ′
i
, |Bi |) is vi .

Let G0 be the initial empty OLP-graph andGi be the
OLP-graph after inserting theith pattern from the given orig-
inal set. For the example|B2|=2 and|B3|=3. Then,node-
sharability (G1, (p, b, c, d, e, f), f

′
2,2) is true and hence

the node corresponding tob is shared. Butnode-sharability
(G1, (p, b, c, d, e, f), f

′
3,3) is false, so a new node forc is

created.

3.2. OLP-graph construction

An OLP-graph can be constructed for each class
of patterns and for a given overlap lengths listL =
(|B1|, |B2|, . . . , |Bd |) as described in the following method:

Build-OLP-graph(X, L)
{
//Let G be the empty OLP-graph having header table
with all entries being empty.

For each patternX in X
{

Parent= NULL;
For i = 1 to d
{

If (node-sharability(G,X, fi, |Bi |) is true)
{
v = sharable-node(G,X, fi, |Bi |);
Add-arc(Parent,v);

}
Else
{
v = Create a new node;
v.feature-value=X[fi];
Add-to-feature-linked-list(v, fi);
Add-arc(Parent,v);

}
Parent= v;

}
}
Output(G);
}

The above method iteratively adds patterns from the orig-
inal set to the already built OLP-graph.

The functionsAdd-to-feature-linked-list(v, fi) appends
nodev to the feature-linked-list offi , andAdd-arc(u, v) will
add an arc to the adjacency list of arcs of nodeu pointing
to nodev provided such an arc already does not exist in the
adjacency list.

3.3. Properties of OLP-graph

(1) The synthetic setSS�d (SS�d−1(· · · (SS�1(X)))) gen-
erated by doing overlap pattern synthesis and the
one extracted from the corresponding OLP-graph are
the same.

(2) For a given original set the OLP-graph is independent of
the order in which the original patterns are considered.
That is, the synthetic set generated from the OLP-graph
is independent of the order in which the original patterns
are arranged to build the OLP-graph.

(3) OLP-graph can be incrementally built.
(4) Addition or deletion of a pattern from the OLP-graph

can be made inO(n) time wheren is the number of
original patterns used to build the OLP-graph.

It is easy to see that the above properties are true.

3.4. Time complexity of build-OLP-graph

Let n be the number of patterns in the class for which
the method is called. Since each pattern is considered only
once, the method does a single scan over the training set.
Because the patterns are considered to be stored in a disk
(secondary storage medium), the number of times these are
accessed from the disk is an important measure in applica-
tions (like data mining) where the total training set cannot
be accommodated in the main memory.

The time complexity of the method isO(n2dl), where
d is the dimensionality of patterns andl is the maximum
element inL. The reason is that all patterns are considered
once (total ofn patterns), for each pattern every feature is
considered once (total ofd features), and for each feature
its feature-linked-listis searched to check whether thenode-
sharability property holds or not. Each search fornode-
sharability takes at mostO(l) time. Feature-linked list for
any feature can be at most of sizen.

Sinced is constant and(l�d), the effective time com-
plexity of the method isO(n2).

3.5. Space complexity of build-OLP-graph

The space required by the method is largely due to the
space occupied by the OLP-graphG. G consists of a header
table and a graph. The space required for the header table is
O(d), and that for the graph isO(nd). Since each original
pattern (total ofn patterns) occupies a path inG, a path is
of sized. So the effective upper bound on space complexity

is O(n). But empirical studies (Section 5) show that the
actual space consumed by an OLP-graph is much smaller
than that of the original patterns. The reason is that many
patterns in a class can have an overlap and thus can share
a common sub-path. Another important point to note from
the empirical studies is that the rate of increase in the size
of G decreases asn increases and for somen1>n, it can
be assumed to become zero. That is, the size ofG does
not increase after adding a sufficient number of patterns to
it. This is a useful property in cases where the data sets
are large and grow with time, as in applications like data
mining.

4. An efficient NN classifier using the synthetic
patterns

For each class, even though OLP-graph is a compact
representation for the synthetic set that can be generated
by overlap pattern synthesis, the conventional NN classifier
with the entire synthetic set takes a large amount of time.
The reason is that the synthetic set can be exponentially
larger (in size) as compared to the original set which de-
pends on the overlap lengths list considered.

We propose a NN classifier called OLP-NNC which has
classification time upper bound equal toO(n) wheren is
the original training set size. OLP-NNC stores the par-
tial distance computations in the nodes of the OLP-graph
and avoids recomputing the same. This method is suitable
for distance measures like Hamming distance, Squared Eu-
clidean distance, etc., where the distance between two pat-
terns can be found over its parts (called partial distance) and
added up later to get the actual distance.

OLP-NNC first finds the distance between the test pattern
and its NN within a synthetic set of a given class (repre-
sented by an OLP-graph). The class label assigned to the
test pattern then is that for the NN or the pattern with the
least distance. Algorithms 1 and 2 describe finding distance
of NN within a class. Distance measure used is squared Eu-
clidean distance. Note that NN found using either Euclidean
or squared Euclidean distance measures are same.

Algorithm 1 Find-Min-Dist(GraphG, Test PatternT)

{Let min-distancebe an integer initialized to maxi-
mum possible value.}
for (each nodev in the feature-linked-list off1 in G)
do
d=Find-Dist(v, T ,1);
if (d <min-distance) then

min-distance=d;
end if

end for
return(min-distance);

Algorithm 2 Find-Dist(Nodev, Test PatternT, Inte-
ger i)

if (v is marked as visited)then return
(v·partial-distance);

else
d = (T [fi] − v.feature-value)2;
FindL= List of descendant nodes ofv;
if (L is not empty)then
for (each nodew in L) do
d = d + Find-Dist(w, T , i + 1);
if (d <min-distance) then

min-distance= d;
end if

end for
v · partial -distance= min-distance;

else
v · partial -distance= d;

end if
Mark v as visited;
return(v · partial-distance);

end if

5. Experiments

5.1. Datasets

We performed experiments with five different datasets,
viz., OCR, WINE, THYROID, GLASS and PENDIGITS,
respectively. Except the OCR dataset, all others are from the
UCI Repository[21]. OCR dataset is also used in[22,10].
The properties of the datasets are given inTable 1.For OCR,
THYROID and PENDIGITS datasets, the training and test
sets are separately available. For the remaining datasets 100
patterns are chosen randomly as the training patterns and
the remaining as the test patterns.

All the datasets have only numeric valued features. The
OCR dataset has binary discrete features, while the others
have continuous valued features. Except OCR dataset, all
other datasets are normalized to have zero mean and unit
variance for each feature and subsequently discretized as
follows. Leta be a feature value after normalization, anda′

Table 1
Properties of the datasets used

Dataset Number Number Number Number
of features of classes of training of test

examples examples

OCR 192 10 6670 3333
WINE 13 3 100 78
THYROID 21 3 3772 3428
GLASS 9 7 100 114
PENDIGITS 16 10 7494 3498

be its discrete value. We used the following discretization
procedure.

If (a <− 0.75) thena′ = −1;
Else-If (a <− 0.25) thena′ = −0.5;
Else-If (a <0.25) thena′ = 0;
Else-If (a <0.75) thena′ = 0.5;
Elsea′ = 1.

5.2. Classifiers for comparison

The classifiers chosen for comparison purposes are as
follows:
NNC: The test pattern is assigned to the class of its NN in
the training set. The distance measure used is Euclidean dis-
tance. It has both space and classification time requirements
equal toO(n) wheren is the number of original training
patterns.
k-NNC: A simple extension of NNC, where the most com-
mon class in thek NN (k�1) is chosen. The distance mea-
sure is Euclidean distance. Three-fold cross validation is
done to choose thek value. Space and classification time re-
quirements of the method are bothO(n) whenk is assumed
to be a small constant when compared withn.
Naive–Bayes classifier(NBC): This is a specialization of the
Bayes classifier where the features are assumed to be sta-
tistically independent. Further, the features are assumed to
be discrete valued. LetX = (x1, . . . , xd) be a pattern and
l be a class label. Then the class conditional probability,
P(X | l)=P(x1 | l)×· · ·×P(xd | l). HereP(xi | l) is taken
as the frequency ratio of number of patterns in class with
label l and with featurefi value equal toxi to that of total
number of patterns in that class. A priori probability for each
class is taken as the frequency ratio of number of patterns in
that class to the total training set size. The given test pattern
is classified to the class for which the posteriori probability
is maximum. OCR dataset is used as it is, whereas the other
datasets are normalized (to have zero mean and unit vari-
ance for each feature) and discretized as done for the other
classifiers. Design time for the method isO(n), but the ef-
fective space and classification time requirements areO(1)
only.
NNC with bootstrapped training set(NNC(BS)): We used the
bootstrap method given by Hamamoto et al.[18] to generate
an artificial training set. The bootstrapping method is as
follows. Let X be a training pattern and letX1, . . . , Xr be
its r NN in its class. ThenX′ = (∑r

i=1Xi)/r is the artificial
pattern generated forX. In this manner, for each training
pattern an artificial pattern is generated. NNC is done with
this new bootstrapped training set. The value ofr is chosen
according to a three-fold cross validation. Bootstrapping step
requiresO(n2) time, whereas space and classification time
requirements are bothO(n).
OLP-NNC: This method is given in Section 4. The thresh-
old correlation factor used in the overlap-based pattern syn-
thesis is chosen based on a three-fold cross validation from

Table 2
A comparison between the classifiers (showing classification accu-
racies (%))

Dataset NNC k-NNC NBC NNC(BS) OLP-NNC

OCR 91.12 92.68 81.01 92.88 93.85
WINE 91.03 92.31 91.03 93.29 93.60
THYROID 92.44 93.70 83.96 93.35 93.23
GLASS 68.42 68.42 60.53 68.42 70.18
PENDIGITS 96.08 96.34 83.08 96.36 96.08

Table 3
A comparison of percentage accuracies and computational require-
ments for THYROID dataset for various threshold correlation fac-
tors

Classifier : OLP-NNC

Threshold CA (%) Space (KB) Design Classification
time (s) time (s)

0.0 92.44 173.95 20.24 16.17
0.1 93.23 144.70 9.68 10.23
0.2 92.79 86.11 7.22 8.44
0.3 92.65 5.23 2.96 1.85
0.4 92.65 4.94 1.30 0.69
0.5 92.65 3.46 1.23 0.55
0.6 92.65 3.04 1.07 0.47
0.7 92.65 2.36 0.92 0.38
0.8 92.65 1.45 0.78 0.27
0.9 92.65 1.36 0.55 0.20
1.0 92.65 1.35 0.38 0.15

Classifier : NNC
— 92.44 158.42 0 14.48

Classifier :k-NNC
— 93.70 158.42 0 16.52

Classifier : NBC
— 83.96 1.26 0.28 0.12

Classifier : NNC(BS)
— 93.35 158.42 23.26 15.06

{0.0,0.1, . . . ,1.0}. It has design time requirement equal to
O(n2). Space and classification time requirements are both
O(n).

5.3. Experimental results

Table 2 gives a comparison between the classifiers. It
shows the classification accuracy (CA) for each of the classi-
fiers as a percentage over respective test sets. The parameter
values (likek in k-NNC, r in NNC(BS) and threshold corre-
lation factor in OLP-NNC) are chosen based on three-fold
cross validation. Some of the observations are: (i) for OCR,
WINE and GLASS datasets OLP-NNC outperforms the rest
of the classifiers, (ii) OLP-NNC is better than to NNC for

Table 4
A comparison between the classifiers showing percentage accura-
cies and computational requirements for various training set sizes
for OCR data set

Classifier Number CA (%) Space Design Classification
of training (KB) time time
patterns (s) (s)

NNC 2000 87.67 772 0 98.01
4000 90.16 1544 0 175.25
6670 91.11 2575 0 306.53

k-NNC 2000 87.79 772 0 106.92
4000 90.22 1544 0 200.21
6670 92.68 2575 0 329.00

NBC 2000 80.71 15.36 4.02 0.46
4000 81.03 15.36 5.28 0.51
6670 81.01 15.36 7.26 0.49

NNC(BS) 2000 88.86 772 16.11 99.16
4000 90.84 1544 34.23 172.74
6670 92.88 2575 55.56 310.27

OLP-NNC 2000 92.44 311 6.03 91.74
4000 92.89 473 10.26 145.51
6670 93.85 629 22.31 205.05

all datasets except PENDIGITS for which the CA for both
OLP-NNC and NNC is the same, and (iii) OLP-NNC sig-
nificantly outperforms NBC over all datasets. In fact, except
for the WINE dataset, the difference in CA between OLP-
NNC and NBC over all datasets is almost 10% or higher.

For OLP-NNC, there seem two ways to further reduce
the computational requirements without degrading the CA
much. First, one could increase the threshold correlation fac-
tor in doing the pattern synthesis. This would result in a com-
pact OLP-graph structure that in turn would result in reduced
space and classification time requirements.Table 3demon-
strates this for the THYROID dataset. The second way is to
reduce the original training set size by taking only a random
sample of it as the training set.Table 4demonstrates this for
OCR dataset. It can be observed that OLP-NNC even with
(only) 2000 original training patterns outperforms NNC and
is almost equal tok-NNC and NNC(BS) with 6670 training
patterns with respect to CAs and clearly shows a significant
reduction in both the space and classification time require-
ments. The difference is almost of an order of magnitude in
favor of OLP-NNC, in terms of space requirements when
compared with NNC,k-NNC and NNC(BS). Similar results
are observed for the remaining datasets and hence are not
reported.

6. Conclusion

Overlap-based pattern synthesis is an instance-based pat-
tern synthesis technique which considers from the given
training set, some of the properties about the data. This can

result in reduction in both the curse of dimensionality ef-
fect and computational requirements for the NN classifier.
Approximate pattern synthesis can be realized by consid-
ering pairwise correlation factor between the features and
this is empirically shown to improve the classification ac-
curacy in most cases. Synthetic patterns can be stored in a
compact data structure called OLP-graph and can be used
to find the NN of a given test pattern inO(n) time, wheren
is the number of given original training patterns. The tech-
niques described are suitable for large and high dimensional
datasets.

References

[1] E. Fix, J. Hodges Jr., Discriminatory analysis: non-parametric
discrimination: consistency properties, Report No. 4, USAF
School of Aviation Medicine, Randolph Field, Texas, 1951.

[2] E. Fix, J. Hodges Jr., Discriminatory analysis: non-parametric
discrimination: small sample performance, Report No. 11,
USAF School of Aviation Medicine, Randolph Field, Texas,
1952.

[3] R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification,
second ed., Wiley-interscience Publication, New York, 2000.

[4] T. Cover, P. Hart, Nearest neighbor pattern classification, IEEE
Trans. Inf. Theory 13 (1) (1967) 21–27.

[5] K. Fukunaga, D. Hummels, Bias of nearest neighbor error
estimates, IEEE Trans. Pattern Anal. Mach. Intell. 9 (1987)
103–112.

[6] G. Hughes, On the mean accuracy of statistical pattern
recognizers, IEEE Trans. Inf. Theory 14 (1) (1968)
55–63.

[7] A. Jain, B. Chandrasekharan, Dimensionality and sample
size considerations in pattern recognition practice, in: P.
Krishnaiah, L. Kanal (Eds.), Handbook of Statistics, vol. 2,
North-Holland, 1982, pp. 835–855.

[8] K. Fukunaga, D. Hummels, Bayes error estimation using
parzen andk-NN procedures, IEEE Trans. Pattern Anal. Mach.
Intell. 9 (1987) 634–643.

[9] K. Fukunaga, Introduction to Statistical Pattern Recognition,
second ed., Academic Press, New York, 1990.

[10] V. Ananthanarayana, M. Murty, D. Subramanian, An
incremental data mining algorithm for compact realization of
prototypes, Pattern Recognition 34 (2001) 2249–2251.

[11] J. Han, J. Pei, Y. Yin, Mining frequent patterns without
candidate generation, in: Proceedings of ACM SIGMOD
International Conference of Management of Data, Dallas,
Texas, USA, 2000.

[12] Z. Tian, R. Raghu, L. Micon, BIRCH: an efficient data
clustering method for very large databases, in: Proceedings
of ACM SIGMOD International Conference of Management
of Data, 1996.

[13] B. Efron, Bootstrap methods: another look at the jackknife,
Annu. Statist. 7 (1979) 1–26.

[14] A. Jain, R. Dubes, C. Chen, Bootstrap technique for error
estimation, IEEE Trans. Pattern Anal. Mach. Intell. 9 (1987)
628–633.

[15] M. Chernick, V. Murthy, C. Nealy, Application of bootstrap
and other resampling techniques: evaluation of classifier
performance, Pattern Recognition Lett. 3 (1985) 167–178.

[16] S. Weiss, Small sample error rate estimation fork-NN
classifiers, IEEE Trans. Pattern Anal. Mach. Intell. 13 (1991)
285–289.

[17] D. Hand, Recent advances in error rate estimation, Pattern
Recognition Lett. 4 (1986) 335–346.

[18] Y. Hamamoto, S. Uchimura, S. Tomita, A bootstrap technique
for nearest neighbor classifier design, IEEE Trans. Pattern
Anal. Mach. Intell. 19 (1) (1997) 73–79.

[19] D. Draper, S. Hanks, Localized partial evaluation of belief
networks, in: Proceedings of the Tenth Annual Conference
on Uncertainty in Artificial Intelligence (UAI’94), 1994,
pp. 170–177.

[20] A.V. Kozlov, J.P. Singh, Sensitivities: an alternative to
conditional probabilities for Bayesian belief networks, in:
Proceedings of the Eleventh Annual Conference on
Uncertainty in Artificial Intelligence (UAI’95), 1995,
pp. 376–385.

[21] P.M. Murphy, UCI repository of machine learning
databases. Department of Information and Computer
Science, University of California, Irvine, CA, 1994,
http://www.ics.uci.edu/mlearn/MLRepository.html.

[22] T.R. Babu, M.N. Murty, Comparison of genetic algorithms
based prototype selection schemes, Pattern Recognition 34
(2001) 523–525.

About the Author—P. VISWANATH received his M.Tech (Computer Science) from the Indian Institute of Technology, Madras, India in
1996. From 1996 to 2001, he worked as a faculty member at BITS-Pilani, India and Jawaharlal Nehru Technological University, Hyderabad,
India. Since August 2001, he is working for his Ph.D. at the Indian Institute of Science, Bangalore, India. His areas of interest include
Pattern Recognition, Data Mining and Algorithms.

About the Author—M. NARASIMHA MURTY received his Ph.D. from the Indian Institute of Science, Bangalore, India in 1982. He is a
professor in the Department of Computer Science and Automation at the Indian Institute of Science, Bangalore. He has guided 14 Ph.D.
students in the areas of Pattern Recognition and Data Mining. He has published around 80 papers in various journals and conference
proceedings in these areas. He worked on Indo-US projects and visited Michigan State University, East Lansing, USA and University of
Dauphine, Paris. He is currently interested in Pattern Recognition.

About the Author—SHALABH BHATNAGAR received his Ph.D. from the Indian Institute of Science, Bangalore in 1998. He has held
visiting positions at the Institute for Systems Research, University of Maryland, College Park, USA; Free University, Amsterdam, Netherlands
and the Indian Institute of Technology, Delhi. Since December 2001, he is working as an Assistant Professor at the Indian Institute of Science.
His areas of interest include Performance Modelling and Analysis of Systems, Stochastic Control and Optimization with applications to
Communication Networks and Semi-conductor Manufacturing. More recently he has also been interested in problems in Pattern Recognition
and Evolutionary Algorithms.

http://www.ics.uci.edu/mlearn/MLRepository.html

	Overlap pattern synthesis with an efficient nearestneighbor classifier
	Introduction
	Pattern synthesis
	Overlap based pattern synthesis---main ideas
	Overlap based pattern synthesis---formal procedure
	Overlap-based pattern synthesis---an approximate method
	An example

	A compact representation for synthetic patterns
	An example
	OLP-graph construction
	Properties of OLP-graph
	Time complexity of build-OLP-graph
	Space complexity of build-OLP-graph

	An efficient NN classifier using the synthetic patterns
	Experiments
	Datasets
	Classifiers for comparison
	Experimental results

	Conclusion
	References

