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Abstract

A novel score-level fusion strategy based on Bayesian adaptation for user-dependent

multimodal biometric authentication is presented. In the proposed method, the fu-

sion function is adapted for each user based on prior information extracted from

a pool of users. Experimental results are reported using on-line signature and fin-

gerprint verification subsystems on the MCYT real bimodal database. The pro-

posed scheme outperforms both user-independent and user-dependent standard ap-

proaches. As compared to non-adapted user-dependent fusion, relative improve-

ments of 80% and 55% are obtained for small and large training set sizes respec-

tively.
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1 Introduction

A number of works have focused on information fusion for multimodal bio-

metrics in the last decade [1]. The prevalent approach is to combine the scores

provided by the different biometric systems using a user-independent fusion

function (also referred to as global approaches hereafter). Motivated by the en-

hanced universality and performance that can be achieved by exploiting user-

dependencies at the decision level, user-dependent score-level fusion methods

have been recently proposed (also referred to as local approaches hereafter)

[2]. In this case, one of the main problems encountered is the training data

scarcity. This can be partially overcome by considering both global and local

training data and trading-off both sources of information [3].

In the present work, an operational procedure for dealing with small training

set sizes in user-dependent multimodal biometric authentication is presented.

The new approach is based on Bayesian adaptation [4] of the localized fu-

sion functions from the prior knowledge provided by pooling user-independent

data. The new method is evaluated on real biometric data from the MCYT

bimodal corpus [5], outperforming significantly the non-adapted approach.

2 Adapted score fusion based on Quadratic Discriminants

Given R different unimodal authentication systems, each one computes a sim-

ilarity score between an input biometric pattern and the enrolled pattern of

the given claimant. Let the similarity scores be combined into a multimodal

score x = [x1, . . . , xR]′. Let the training set for estimating the fusion function

be X = (xi, yi)
N
i=1, where yi ∈ {ω0 = Impostor, ω1 = Client}. Score distri-
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butions are modelled as multivariate Gaussians p(x|ω0) = N(x|µ0,σ
2
0) and

p(x|ω1) = N(x|µ1, σ
2
1), respectively 1 . The fused score sT of a multimodal

test pattern xT is defined as follows

sT = f(xT ) = log p(xT |ω1)− log p(xT |ω0) (1)

which is known to be a Quadratic Discriminant (QD) function consistent with

Bayes estimate in case of equal impostor and client prior probabilities. The

score distributions are estimated using the available training data as follows:

Global The training set XG consists of multimodal scores from a pool of

users, and ({µG,0, σ
2
G,0}, {µG,1,σ

2
G,1}) are estimated by using the Maximum

Likelihood criterion [4]. The resulting fusion function fG(x) is applied at the

operational stage regardless of the claimed identity.

Local A different fusion function fj,L(x) is obtained for each client by using

Maximum Likelihood density estimates ({µj,L,0, σ
2
j,L,0}, {µj,L,1,σ

2
j,L,1}) com-

puted from a set of development scores Xj of the specific client j = 1, . . . , M .

Adapted The adapted fusion function fj,A(x) of client j trades off the gen-

eral knowledge provided by XG, and the user specificities provided by Xj,

through Maximum a Posteriori density estimation [4]. This is done by adapt-

ing the sufficient statistics as follows [4]:

µj,A,i = αiµj,L,i + (1− αi)µG,i

σ2
j,A,i = αi(σ

2
j,L,i + µ2

j,L,i) + (1− αi)(σ
2
G,i + µ2

G,i)− µ2
j,A,i

(2)

For each class i = {0, 1}, an adaptation coefficient αi = Ni/(Ni + r) is used,

where Ni is the number of local training scores in class i, and r is a fixed

relevance factor.

1 σ2 and µ2 are shorthand for diag(Σ) and diag(µµ′) respectively.
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3 Experiments

Experiments are carried out by using both the minutiae-based fingerprint ver-

ification system and the function-based on-line signature verification system

used in [3] on real bimodal data from MCYT corpus [5]. In particular, 75× 7

client and 75 × 10 impostor bimodal attempts in a near worst-case scenario

are considered (best impostors from a pool of 750 fingers in case of finger-

print, skilled forgers in case of signature). Error rates are computed by using

a variant of bootstrap resampling for training/testing the different methods,

as done in [3], using the following configuration: 200 global bootstrap data sets

of M users with replacement, and 50 local bootstrap data sets of N samples

without replacement (half of them in each class, client and impostor).

Comparative performance results are given in Fig. 1. Remarkable performance

improvement is obtained with the adapted approach using a relevance factor

r = 2.5. As compared to the local fusion approach, approximately 80% and

55% relative performance improvements in the EER are obtained for small (6

samples) and large (12 samples) local training set sizes, respectively. In both

cases, the global fusion approach is also outperformed (48% and 60% relative

improvements, respectively).

4 Conclusion

Bayesian adaptation has been introduced for user-dependent score fusion in

multimodal biometric authentication. Experiments have been carried out us-

ing fingerprint and signature subsystems on real bimodal data. A non-biased

experimental protocol based on a worst case scenario and bootstrap error es-

4



timation has been used. Proposed adapted method has been demonstrated

to provide remarkable performance improvements with respect to the non-

adapted approaches commonly used.
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Fig. 1. Equal error rates of local (a), adapted (b), and global (c) approaches for

multimodal fusion based on QDs.
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