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Summary 

 

This paper presents a probabilistic approach for robust foreground segmentation that distinguishes moving objects from 

their moving cast shadows in indoor image sequences. Both foreground and shadow can be detected even in monocular 

grayscale sequences. To handle nonstationariness, the background, shadow, and edge models are set up and adaptively 

updated. A Bayesian framework is proposed to unify the various information including the segmentation label, 

background, intensity, and edge. The notion of Markov random field is used to encourage the spatial connectivity of the 

segmented regions. The solution is obtained by maximizing the posterior probability density of the segmentation field. 

Experiments on the test data show that our technique greatly improves the accuracy of segmentation. 
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Abstract: This paper presents a novel method of foreground and shadow segmentation in monocular indoor image 

sequences. The models of background, edge information, and shadow are set up and adaptively updated. A Bayesian 

network is proposed to describe the relationships among the segmentation label, background, intensity, and edge 

information. A MAP-MRF (maximum a posteriori – Markov random field) estimation is used to boost the spatial 

connectivity of segmented regions. 
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1. Introduction 

 

Detecting dynamic objects in image sequences is very important in application areas such as surveillance and object-

based coding. Effective and efficient background removal is critical in these systems. Background subtraction based on 

intensity or color is a commonly used technique to detect foreground objects. The background model is built from 

observed images and foreground elements are identified if they show significant difference from the background. 
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To deal with illumination or object changes in the background, many researchers [1] [2] have abandoned nonadaptive 

methods of backgrounding. The accumulation of errors in the background over time makes the method useful only in 

stationary environments. Friedman and Russell [3] classify each pixel by a probabilistic model of how that pixel looks 

when it is part of different classes and use an incremental EM algorithm to learn the pixel model. Stauffer and Grimson 

[4] model each pixel as a mixture of Gaussians and update the model in an adaptive way. The Gaussian distributions are 

then evaluated to determine which are possibly from a background process. Elgammal et al. [5] employ kernel density 

estimation for nonparametric background modeling. Recently, hidden Markov models [6] [7] have been used to model 

the dynamical dependencies in the background process. 

 

Besides the nonstationariness of the background, camouflage and shadow are two classic problems of subtraction. If 

foreground objects have similar colors as the background, they may be erroneously removed from the scene. In addition, 

moving shadows cast on the background may be erroneously detected as foreground [8]. Depth computation from stereo 

cameras can be used to handle these two problems [9]. For monocular color video sequences, false segmentation caused 

by shadows can be reduced by computing differences in a normalized color space that is insensitive to illumination 

change [10] [11]. Moreover, edge information can be employed to improve the reliability of the results [12]. Stauder et al. 

[13] assume that static edges in the background remain under shadow and penumbras exist at the boundary of shadows. 

However, this is sometimes not true due to the properties of the imaging process. Mikic et al. [14] instead approximate 

the change of the camera response for the shadowed region by a diagonal matrix. 

 

On the other hand, graphical probabilistic models provide a natural tool for handling uncertainty and complexity through 

the combination of probability theory and graph theory. In particular, Bayesian belief networks and Markov random 

fields are playing increasingly important roles in the design and analysis of machine intelligent systems [15]. Graphical 

models have attracted more and more attention in vision applications such as traffic scene analysis [16] [17], layer 

extraction from image sequences [18], and human motion tracking [19]. 

 

To solve the above mentioned problems in monocular indoor grayscale sequences, a unified framework of foreground 

segmentation is proposed in this paper. We introduce a Bayesian network to combine the background, intensity, and 
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edge information. A generalized model is built for the appearance change under shadow. Camouflage is decreased by 

encouraging the formation of continuous segmentation regions. Parameters in the model can be updated adaptively. The 

solution is obtained by maximizing the posterior probability density of the segmentation field using a noniterative 

algorithm. Experiments show that our method greatly improves the accuracy of segmentation. The rest part of the paper 

is arranged as follows: Section 2 presents the formulation of the models. Section 3 and 4 describes the segmentation 

method. Section 5 proposes the implementation details. Section 6 discusses the experimental results. At the end, our 

technique is concluded in Section 7. 

 

2. Model Representation 

 

Given the image sequence {gk}, we would like to classify each pixel of each image as foreground (moving object), 

shadow, or background. The segmentation label for a point is defined as 

sk(x) =








foreground in the is  site if ,3
foreground by the shadowed is  site if ,2

background in the is  site if ,1

x
x
x

, ∀x ∈ X, k = 1, 2, …, 

where sk(x) is the label of a single pixel x within the image at time k, and X is the spatial domain of the video scene. 

Static shadows are considered to be part of the background. The entire segmentation field is expressed compactly as sk. 

 

2.1. Background Model 

 

In order to segment the foreground in a video sequence, the system must first model the background of the video scene. 

Each image acquired by the camera contains noise components. Assume that independent Gaussian noise corrupts each 

pixel in the scene, so that the observation model for the background becomes 

bk(x) = µb,k(x) + nk(x),                    (1) 

where random variable bk(x) is the intensity of a single pixel x within the background at time k, and µb,k(x) is the 

intensity mean. nk(x) is the independent zero-mean additive noise with variance )(2
, xkbσ at time k. The parameter vector 

(µb,k(x), )(2
, xkbσ )T is denoted as θb,k(x), and the entire background is expressed as θb,k. For each site x in the background, 
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the mean intensity and variance at time k could be estimated from its history. In this work, the intensity of each point is 

represented by its grayscale value, which ranges from 0 to ymax = 255. 

 

2.2. Edge Model 

 

The edge model is built by applying the edge operator to the scene, which produces a horizontal difference image and a 

vertical difference image. For the kth frame gk, eg,k(x) is the edge vector at site x = (x1, x2), 

eg,k(x) = ( )(, xh
kge , )(, xv

kge )T,                   (2a) 

)(, xh
kge = gk(x1 + 1, x2) – gk(x1 – 1, x2),                 (2b) 

)(, xv
kge = gk(x1, x2 + 1) – gk(x1, x2 – 1),                 (2c) 

where gk(x) is the intensity of a single point x within the kth video frame, )(, xh
kge and )(, xv

kge are the horizontal difference 

and vertical difference, respectively. The entire difference image is expressed as eg,k. 

 

Similarly, we can define the edge information for the background, 

eb,k(x) = ( )(, xh
kbe , )(, xv

kbe )T,                   (3a) 

)(, xh
kbe = bk(x1 + 1, x2) – bk(x1 – 1, x2),                 (3b) 

)(, xv
kbe = bk(x1, x2 + 1) – bk(x1, x2 – 1).                 (3c) 

From the background model we know that eb,k(x) is of bivariate normal distribution with mean difference µe,k(x) and 

covariance matrix Σe,k(x) for each site x. µe,k(x) is determined by the intensity means of the four neighboring points, 

E[ )(, xh
kbe ] = µb,k(x1 + 1, x2) – µb,k(x1 – 1, x2),               (4a) 

E[ )(, xv
kbe ] = µb,k(x1, x2 + 1) – µb,k(x1, x2 – 1).               (4b) 

By the independent noise assumption in the background model, Σe,k(x) can be calculated from the variances of the 

neighboring points, 

Var[ )(, xh
kbe ] = ),1( 21

2
, xxkb +σ  + ),1( 21

2
, xxkb −σ ,              (5a) 

Var[ )(, xv
kbe ] = )1,( 21

2
, +xxkbσ  + )1,( 21

2
, −xxkbσ ,              (5b) 
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Cov[ )(, xh
kbe , )(, xv

kbe ] = 0.                   (5c) 

 

The parameter vector (µe,k(x), Σe,k(x))T is denoted as θe,k(x), and the entire field at time k is expressed as θe,k. The edge 

model can be used to locate changes in the structure of the scenes as edges appear, vanish, or rotate. 

 

2.3. Shadow Model 

 

Given the background intensity of a point x when illuminated, we use a linear transformation to approximate the change 

of intensity for the same point when shadowed in the video frame at time k, 

gk(x) = akbk(x) + ck, if sk(x) = 2.                  (6) 

When ak equals 1, the edge information will not change if the area is shadowed by the foreground. Moreover, if we 

extend the image input from one-channel (grayscale) to multi-channel (R, G, B), the chromaticity [10] [17] will remain 

unchanged under such a linear transformation when ck is zero. So the shadow model can be viewed as the generalization 

of the previous assumptions. With this model for the appearance change, we can easily estimate means and variances for 

the points under shadow. For a point x under shadow, its intensity mean is akµb,k(x)+ck, and its variance is )(2
,

2 xkbka σ  at 

time k. Thus the mean of pixel intensity under shadow is controlled by ak and ck, and the variance is controlled by ak. At 

the beginning a0 and c0 are manually initialized according to the visual environment, then parameters ak and ck are 

adaptively updated over time (see Section 5.1). 

 

3. Adaptive Backgrounding 

 

For static background, a sequence of background images may be recorded at the beginning and the intensity mean and 

variance of each pixel can be calculated. 

 

For nonstationary background, the update method is based on the ideas from Stauffer et al. [4] and Harville et al. [20]. 

The recent history of each pixel, {gi(x)}1≤i≤k, is modeled by a mixture of Gaussian distributions. The probability of the 

current observation is 
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p(gk(x)) = )),(),(|)(()( 2
,,

1
, xxxx kikik

K

i
ki gpw σµ∑

=

               (7a) 

p(gk(x) | µi,k(x), )(2
, xkiσ ) =

)(2
1

, xkiσπ
exp })]()([

)(2
1{ 2

,2
,

xx
x kik

ki
g µ

σ
−− ,        (7b) 

where K is the number of distributions (Usually from three to five are used.), wi,k(x) is the normalized weight of the ith 

Gaussian in the mixture at time k, µi,k(x) and )(2
, xkiσ  are the mean and variance of the ith Gaussian at time k. 

 

At current time k, each new value gk(x) is checked to match the existing Gaussian distributions (The value is matched if 

it is within 3 standard deviations of a distribution.). If the ith Gaussian is found to match the new value, its distribution 

parameters are updated as follows, 

wi,k(x) = (1 – α)wi,k–1(x) + α,                   (8a) 

µi,k(x) = (1 – α)µi,k–1(x) + αgk(x),                  (8b) 

)(2
, xkiσ = (1 – α) )(2

1, x−kiσ  + α(gk(x) – µi,k–1(x))2,              (8c) 

where α is the learning rate. (8) is equivalent to the expectation with an exponential factor for the past values. For 

unmatched distributions, the means and variances remain the same, while the weights should be renormalized. If none of 

the distributions are matched, the distribution of the lowest weight is replaced with a Gaussian with the new value as its 

mean, initially low weight and high variance. 

 

As the parameters of the mixture model change, the Gaussian distribution that has the highest ratio of weight over 

variance is chosen as the background model for each site. 

θb,k(x) = ( )(, x
x kmµ , )(2

, x
x kmσ )T,                  (9) 

where mx = arg
)(
)(

max
,

,

x
x

ki

ki

i

w
σ

. Each time after background updating, the background edge information θe,k at time k can be 

calculated by (4) and (5). 
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4. Bayesian Foreground Detection 

 

To extract the foreground given the current frame gk, difference image eg,k, background θb,k, and background edge 

information θe,k, we wish to compute the maximum a posteriori (MAP) estimation of the segmentation field sk. Using the 

Bayes’ rule and ignoring the constants with respect to the unknowns,  

kŝ = arg
ks

max p(sk | θb,k, θe,k, gk, eg,k) 

= arg
ks

max p(sk, θb,k, θe,k, gk, eg,k) 

= arg
ks

max p(θb,k, θe,k, gk, eg,k | sk) p(sk),                 (10) 

where θb,k is defined in Section 2.1, eg,k and θe,k are described in Section 2.2. The likelihood model p(θb,k, θe,k, gk, eg,k | sk) 

and the prior model p(sk) must be defined for the video sequence. 

 

4.1. Likelihood Model 

 

Assuming conditional independence among spatially distinct observations, we factorize the likelihood model as 

p(θb,k, θe,k, gk, eg,k | sk) 

=∏
∈Xx

e xxexxθxθ ))(|)(),(),(),(( ,,, kkgkkkb sgp .               (11) 

 

Figure 1. A Bayesian network for foreground segmentation. 

 

The relationships among sk(x), θb,k(x), θe,k(x), gk(x), and eg,k(x) can be modeled by a Bayesian network in Figure 1. Given 

the segmentation label, background, and background edge information at the site, we assume that the image intensity is 

independent on the image edge. The conditional independence relationships implied by the belief network allow us to 

represent the joint more compactly [21]. Using the chain rule, the likelihood can be factorized as the product of the 

intensity likelihood p(gk(x) | θb,k(x), sk(x)) and edge likelihood p(eg,k(x) | θe,k(x), sk(x)) at site x. 
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p(θb,k(x), θe,k(x), gk(x), eg,k(x) | sk(x)) 

= p(θb,k(x)) p(θe,k(x)) p(gk(x) | θb,k(x), sk(x)) p(eg,k(x) | θe,k(x), sk(x)) 

∝ p(gk(x) | θb,k(x), sk(x)) p(eg,k(x) | θe,k(x), sk(x)).              (12) 

 

When site x is labeled as the background, we can calculate the intensity likelihood model p(gk(x) | θb,k(x), sk(x)) using the 

background model, 

p(gk(x) | θb,k(x), sk(x) = 1) 

= 
)(2

1

, xkbσπ
exp })]()([

)(2
1{ 2

,2
,

xx
x kbk

kb
g µ

σ
−− .              (13) 

 

When site x is shadowed, the density can be calculated by the shadow model, 

p(gk(x) | θb,k(x), sk(x) = 2) 

= 
)(2

1

, xkbka σπ
exp

)(2
1{ 2

,
2 xkbka σ

− }])()([ 2
, kkbkk cag −− xx µ .           (14) 

 

When site x is labeled as the foreground, the background has no contribution to the image intensity information. Uniform 

distribution is assumed for the pixel. The conditional probability density becomes 

p(gk(x) | θb,k(x), sk(x) = 3) 

= p(gk(x) | sk(x) = 3) 

=
max

1
y

.                        (15) 

Here [0, ymax] (ymax = 255) is the range of grayscale value for pixel intensity. 

 

Figure 2. The first-order neighborhood system. 

 

For each point x, denote the set of its four nearest neighboring points by Mx (the first-order neighborhood, see Figure 2). 

Consider the spatial connectivity of the image, we assume the neighboring points have the same segmentation labels. 

Thus the edge likelihood p(eg,k(x) | eb,k(x), sk(x)) can be approximated by 
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p(eg,k(x) | θe,k(x), sk(x)) 

≈ p(eg,k(x) | θe,k(x), sk(y) = sk(x), ∀y ∈ Mx) 

= p(eg,k(x) | θe,k(x), ||)()( x

xy
xy M

M
kk ss∏

∈

= ),                (16) 

where |Mx| is the number of  elements in the set. 

 

Similarly, when the neighborhood area Mx belongs to the background, the density can be computed by the edge model, 

p(eg,k(x) | θe,k(x), ∏
∈

=
xy

y
M

ks 1)( ) 

=
|)(|2

1

, xΣe kπ
exp )()]()([

2
1{ 1

,,, xΣxμxe ee
−−− k

T
kkg )]}()([ ,, xμxe e kkg − .         (17) 

 

When the neighborhood area Mx is shadowed, the density can be computed from the shadow model, 

p(eg,k(x) | θe,k(x), ||2)( x

xy
y M

M
ks∏

∈

= ) 

=
|)(|2

1

,
2 xΣe kkaπ

exp T
kkkg

k
a

a
)]()([

2
1{ ,,2 xμxe e−− )]}()()[( ,,

1
, xμxexΣ ee kkkgk a−− .      (18) 

 

When neighborhood area Mx belongs to the foreground, we assume that the points within Mx are independent and 

identically distributed (i. i. d.). From (15), we know 

p(eg,k(x) | θe,k(x), ||3)( x

xy
y M

M
ks∏

∈

= ) 

= p(eg,k(x) | ||3)( x

xy
y M

M
ks∏

∈

= ) 

= p( )(, xh
kge | ||3)( x

xy
y M

M
ks∏

∈

= ) p( )(, xv
kge | ||3)( x

xy
y M

M
ks∏

∈

= ) 

= )
|)(|1( 2

max

,

max y
e

y

h
kg x

− )
|)(|1( 2

max

,

max y
e

y

v
kg x

− .                (19) 
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4.2. Prior Model 

 

The prior model p(sk) represents the prior probability of the segmentation field. We model the density by a Markov 

random field [22]. That is, if Nx is the neighborhood of a pixel x, then the conditional distribution of a single label at x 

completely depends on the labels within its neighborhood Nx. According to the Hammersley-Clifford theorem, the 

density is given by a Gibbs distribution with the following form [23]: 

p(sk) ∝ exp{– )|)(( csV k
Cc

k ∈∑
∈

xx },                 (20) 

where C is the set of all cliques c, and Vk is the clique potential function at time k. A clique is a set of pixels that are 

neighbors of each other. The clique potential depends only on the pixels within clique c. Only one-pixel and two-pixel 

cliques are used in our work. 

 

The single-pixel clique potentials can be defined as  

V1,k(sk(x)) = ksk ),(xη .                     (21) 

They reflect our prior knowledge of the probabilities of different region types. The lower the value of ksk ),(xη , the more 

likely that a point x is labeled as sk(x) at time k. 

 

Spatial connectivity can be imposed by the following two-pixel clique potential, 

V2(sk(x), sk(y)) = 2||||
1
yx −

(1 – δ(sk(x) – sk(y))),               (22) 

where δ(⋅) is the Kronecker delta function, and ||⋅|| denotes the Euclidian distance. Thus two neighboring pixels are more 

likely to belong to the same class than to different classes. The constraint becomes stronger with decrease of the distance 

between the neighboring sites. 

 

Combining the above models, the Bayesian MAP estimate is obtained by minimizing the objective function 

Fk(sk) = ∑
∈Χx

xx ))(,(,1 kk sU + ∑
∈Χx

xx ))(,(,2 kk sU + λ1 ))((,1∑
∈Xx

xkk sV + λ2 ∑
∈C

kk ssV
},{

2 ))(),((
yx

yx ,     (23) 
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where U1,k(x, sk(x)) = –ln p(gk(x) | θb,k(x), sk(x)), and U2,k(x, sk(x)) = –ln p(eg,k(x) | θe,k(x), sk(x)). p(gk(x) | θb,k(x), sk(x)) and 

p(eg,k(x) | θe,k(x), sk(x)) are the likelihood models for intensity and edge respectively. The parameters η1,k, η2,k, η3,k, λ1 and 

λ2 should be determined carefully to control the influence of each term in (23). 

 

5. Implementation 

 

5.1. Parameter Determination 

 

After the segmentation of the kth frame, denote the set of points labeled as s (s = 1, 2, 3) by Xs,k. The single-pixel clique 

potential can be reestimated as 

*
,kiη = – 

∑
s

ks

ki

||
||

,

,

X
X

, i = 1, 2, 3.                  (24) 

With the learning rate α, ηi,k+1 can be updated in an adaptive way. 

ηi,k+1 =(1 – α)ηi,k + *
,kiαη .                    (25) 

 

The parameters of the linear transformation in the shadow model can be reestimated from the set X2,k by the least squares 

method, 

*
ka =

∑∑
∑∑∑

∈∈

∈∈∈

−

−

kk

kkk

kbkkb

kbkkkbk gg

,2,2

,2,2,2

)(||))((

)()(||)()(

2
,,2

2
,

,,2,

XxXx

XxXxXx

xXx

xxXxx

µµ

µµ

,             (26a) 

*
kc =

||

)()(

,2

,
*

,2,2

k

kbkk
kk

ag

X

xx
XxXx
∑∑
∈∈

− µ

.                  (26b) 

The shadow model is then updated adaptively. 

ak+1 =(1 + αη*
,2 k )ak – **

,2 kk aαη ,                   (27a) 

ck+1 =(1 + αη*
,2 k )ck – **

,2 kk cαη .                   (27b) 
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In (27) the effective learning rate αη*
,2 k− changes with the ratio of shadowed points in the scene. This helps to make a 

robust updating process, especially for the frames where there are only few shadowed points. 

 

Parameters α, λ1, and λ2 are manually determined to reflect the importance of previous knowledge, one-pixel clique 

potential, and two-pixel clique potential respectively. 

 

5.2. Optimization 

 

Obviously, there is no simple method of performing the optimization in (23), furthermore, the objective function does 

not have a unique minimum since it is nonconvex in terms of sk(x). To arrive at a sub-optimal estimate, we use a local 

technique known as highest confidence first (HCF). HCF is a noniterative and deterministic algorithm that guarantees to 

reach a local optimum after a finite number of steps [24]. Its feature is the introduction of a special uncommitted label 0 

in the labeling strategy, so that the original label set is augmented by this label into {0,1,2,3}. 

 

Given the labels of the points within the neighborhood Nx, the conditional posterior potential for a point x at time k is 

defined as 

fk(x, sk(x)) = U1,k(x, sk(x)) + U2,k(x, sk(x)) + λ1V1,k(sk(x)) + λ2 ∑
∈ xy

yx
N

kk ssV ))(),((*
2 ,       (28a) 



 =

=
otherwize. ,))(),((

.0)( if  ,0
))(),((

2

*
2 yx

y
yx

kk

k
kk ssV

s
ssV               (28b) 

 

Figure 3. The fifth-order neighborhood system. 

 

In our work, the fifth-order neighborhood system is used (see Figure 3). Based on the conditional posterior potential, we 

can define the stability measure of site x. 

Sk(x, sk(x)) = 







−

=−−

≠

≠

otherwise.  , ))](,(),([min

.0)( if , ))](,(),([min

)(,0

min,)(,0 min,

xxx

xxxx

x

x

kkkss

kkkkss

sfsf

ssfsf

k

k           (29) 



 14 

where smin,k(x) = arg ),(min
0

sfks
x

≠
. 

 

The stability measure [25], i.e. Sk(x, sk(x)), determines the order in which the points are to be labeled. All points are 

initially labeled as uncommitted (or zero), and a committed (or non-zero) label can only be changed to another non-zero 

value. The label assignment procedure terminates when the objective function (23) can no longer be decreased. 

 

6. Results and Discussion 

 

The algorithm has been tested on monocular indoor sequences. To reduce the computation afford, we 

assume )(2
, xkbσ = 2

,kbσ  for every point at the step of Bayesian foreground detection in Section 4. Figure 4 shows the 

segmentation results for the “aerobic” sequence. Figure 4a shows four frames of the sequence. Using the same estimated 

background, the segmentation results of both simple background subtraction and our method are shown in Figure 4b-4d. 

Comparing with the results of simple background subtraction, the accuracy of object detection is greatly improved by the 

proposed approach. The moving cast shadows (the gray regions in Figure 4c) are exactly removed from the foreground. 

The flickering background pixels that will be detected as foreground by simple background subtraction method are 

correctly classified by our algorithm. The camouflage at the neck makes the head almost separated from the body in 

figure 4b, while this effect is successfully overcome in figure 4d. 

 

Figure 4. (a) Frames of the “aerobic” sequence. (b) The segmentation results of simple background subtraction. (c) The 

segmentation results of the proposed algorithm. (d) The foreground detected by the proposed algorithm. 

 

The comparison of the proposed method with two recent adaptive background subtraction techniques, background 

variation [1] and mixture of Gaussians [4], has also been investigated. The performance of the proposed technique, 

background variation (BV), and mixture of Gaussians (MG) is tested on a “laboratory” sequence. All the three methods 

are initialized using the first 50 frames of the sequence. A smoothing operation is applied on the detection results of BV 

and MG before comparison. The segmentation results are shown in Figure 5. Figure 5a shows four frames of the 

sequence. The manually segmented “ground truth” foreground images are shown in Figure 5b. The segmentation results 
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of BV, MG, and our technique are shown in Figure 5c-5e, respectively. Besides visual comparison, the results are also 

evaluated quantitatively in terms of the false negative number and rate (the number and portion of foreground pixels that 

are missed) and the false positive number and rate (the number and portion of non-foreground pixels that are marked as 

foreground) by comparing to the “ground truth” images. The errors for the four scenes in Figure 5a are summarized in 

Table 1. It can be seen that moving shadows cast on the floor, wall, and table result in an increase of falsely detected 

foreground pixels in Figure 5c and 5d. Large shadow attachments may cause failures in further analysis such as object 

recognition and tracking. Here cast shadows follow the movement of the person, so that they could not be learned by the 

background model as background changes. Moreover, there are a number of lights from the ceiling in the scene. Without 

an explicit shadow model, it is difficult to know which Gaussians in the mixture are produced by shadows. 

 

Figure 5. (a) Frames of the “laboratory” sequence. (b) The “ground truth” foreground. (c) The segmentation results of 

BV. (d) The segmentation results of MG. (e) The segmentation results of the proposed algorithm. 

 

Table 1. Quantitative evaluation of different methods. 

 

Figure 6 shows the segmentation results by the proposed method for another “laboratory” sequence. The open cabinet in 

the third and fourth images is classified as background after a period of background updating. However, it can be seen 

from Figure 5e and 6b that erroneous segmentation sometimes takes place at boundary areas. The spatial constraint from 

the MRF formulation is relatively weak at object boundaries, so that errors are more likely to happen at these areas when 

the foreground has similar color as the background or the pixel intensity under shadow is far from its mean. 

 

Figure 6. (a) Frames of another “laboratory” sequence. (b) The segmentation results of the proposed algorithm. 

 

During the segmentation process given in Section 4, the density of the image intensity at site x is modeled as

p(gk(x) | θb,k(x)) = ∑
=

3

1)(
, ))(),(|)(())((

x
xxθxx

ks
kkbkk sgpsp .            (30) 

Comparing this to the right side of (7a) in the case of K = 3, it can be found that uniform distribution is assumed for the 

foreground in (30), while Gaussian distribution is assumed in (7a). Since in the foreground there is no particular reason 
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to prefer one value over any other, (30) could be thought as the improvement of (7a). However, the mixture of different 

kinds of distributions is much harder to estimate than the mixture of only Gaussians. Since foreground regions usually 

have large variances, from (9) we can see that such a difference will not make the backgrounding process in Section 3 to 

produce biased results. 

 

7. Conclusion 

 

In this paper we have presented an adaptive approach for foreground segmentation and shadow detection in monocular 

indoor image sequences. Graphical probabilistic models are employed in our approach. In our work, three sources of 

information are employed in object and shadow detection. The first is edge information, the difference images help 

locate changes in the scene. The second is spatial information, objects and shadows usually form continuous regions, and 

the third is temporal information, the models are updated from previous segmentation results. 

 

Experimental results show that our method successfully deals with nonstationary background, camouflage and shadows 

in grayscale video sequences. Moreover, the algorithm can be easily implemented for color image sequences. How to 

further decrease the computation load of the optimization process and automatically determine all the parameters in our 

model is the topic of our future study. 
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Table 1. Quantitative evaluation of different methods. 
method false negative 

   number              rate 
false positive 

   number              rate 
total 

errors 
BV 254 3.0% 5267 5.1% 5521 
MG 255 3.0% 6904 6.7% 7159 

proposed 178 2.1% 961 0.9% 1139 
 
 

Figure 1. A Bayesian network for foreground segmentation. 
 
 

Figure 2. The first-order neighborhood system. 
 
 

Figure 3. The fifth-order neighborhood system. 
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      (a)      (b)       (c)           (d) 
Figure 4. (a) Frames of the “aerobic” sequence. (b) The segmentation results of simple background subtraction. (c) The 

segmentation results of the proposed algorithm. (d) The foreground detected by the proposed algorithm. 
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    (a)      (b)      (c)      (d)      (e) 

Figure 5. (a) Frames of the “laboratory” sequence. (b) The “ground truth” foreground. (c) The segmentation results of 
BV. (d) The segmentation results of MG. (e) The segmentation results of the proposed algorithm. 

 
 

(a)     

(b)    
Figure 6. (a) Frames of another “laboratory” sequence. (b) The segmentation results of the proposed algorithm. 
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