

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor del artículo publicado en:
This is an author produced version of a paper published in:

Pattern Recognition 38.10 (2005): 1483 – 1494

DOI: http://dx.doi.org/10.1016/j.patcog.2005.02.020

Copyright: © 2005 Elsevier

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1016/j.patcog.2005.02.020

Switching Class Labels to Generate

Classification Ensembles

Gonzalo Mart́ınez-Muñoz ∗ and Alberto Suárez

Escuela Politécnica Superior, Universidad Autónoma de Madrid, C/ Francisco
Tomás y Valiente, 11, Madrid E-28049, Spain

Abstract

Ensembles that combine the decisions of classifiers generated by using perturbed
versions of the training set where the classes of the training examples are randomly
switched can produce a significant error reduction, provided that large numbers of
units and high class switching rates are used. The classifiers generated by this proce-
dure have statistically uncorrelated errors in the training set. Hence, the ensembles
they form exhibit a similar dependence of the training error on ensemble size, in-
dependently of the classification problem. In particular, for binary classification
problems, the classification performance of the ensemble on the training data can
be analysed in terms of a Bernoulli process. Experiments on several UCI datasets
demonstrate the improvements in classification accuracy that can be obtained using
these class-switching ensembles.

Key words: Classification, Ensemble methods, Bagging, Boosting, Decision tree

1 Introduction

Classification methods based on pooling the decisions of an ensemble of clas-
sifiers have demonstrated great potential for improvement in many regression
and classification problems [1–15]. To produce a reduction of the error rate,
the classifiers generated must perform well on the proposed task and yet be
sufficiently diverse. In order to achieve this diversity, ensemble algorithms in-
troduce some systematic variation into the learning task, either by perturbing

∗ Corresponding author. Tel.: +34-91-497-3364; fax: +34-91-497-2235.
Email addresses: gonzalo.martinez@uam.es (Gonzalo Mart́ınez-Muñoz),

alberto.suarez@uam.es (Alberto Suárez).

Preprint submitted to Elsevier Science 18 March 2005

the training data or by taking advantage of instabilities in the learning algo-
rithm.

One of the common procedures to generate classifier ensembles is bagging [3]
(Bootstrap sampling and aggregation). In bagging, diversity is obtained by
constructing each classifier in the ensemble with a different set of labelled
examples, which is obtained from the original training set by re-sampling
with replacement. Bagging then combines the decisions of the classifiers using
unweighted voting. Bagging is believed to improve the performance of sin-
gle classifiers mainly by reducing the variance error [4]. Breiman categorises
bagging decision trees as a particular instance of random forest classification
techniques [12]. A random forest is a tree-based ensemble that uses some kind
of independent randomisation in the construction of every individual classi-
fier. Many variants of bagging and random forests with excellent classification
performance have been developed: In [9] trees in the ensemble are grown by
randomly selecting among the best partitions at every tree node. In double-
bagging [13] two classifiers are grown in each iteration by making use of the
out-of-bag examples [16]. Attribute-bagging [14] selects a random subset of
attributes at every iteration. IPG-ensembles [15] use different random parti-
tions of the training data as input for the iterative growing and pruning tree
construction algorithm of Gelfand et al. [17].

Another common algorithm for generating ensembles is boosting [1]. In boost-
ing, the committee members are sequentially generated using weighted train-
ing data. Initially all example weights are equal to 1. At each iteration of
the boosting process these weights are updated according to the classifica-
tion given by the last committee member generated: weights of incorrectly
classified examples are increased and weights of correctly classified ones are
decreased. In this way the base learner focuses on the harder examples. This
entails a reduction both in bias and variance [10]. A weighted vote is used to
make the final class assignment. Boosting has demonstrated to be one of the
most effective methods for constructing ensembles [2,7,9].

In this article we present a variant of the output flipping ensembles proposed by
Breiman in [18], that belongs to the category of random forests. In Breiman’s
work, each classifier in the ensemble is generated using the original training
set with randomised class labels: The class label of each example is switched
according to a probability that depends on an overall switching rate (defined
as the proportion of training examples that are switched on average) and on
the proportions of the different class labels in the original training set. The
switching probabilities are chosen to maintain the class distribution of the
original training set. Error rates similar or better than bagging are reported
by using ensembles with 100 classifiers.

In this article we show that still lower error rates can be achieved with ensem-

2

bles generated by class switching provided that we use fairly large ensembles
(≈ 1000 classifiers) and relatively high class switching rates. In contrast to
[18], we do not require that the original class distribution be maintained in
the perturbed training data. This makes it possible to use larger values of the
switching rate in unbalanced data sets. Larger values of the switching rate are
sometimes needed to get better classification accuracy.

The paper is organised as follows: Section 2 introduces the algorithm for gener-
ating the ensemble by switching the class labels of the training examples. Sec-
tion 3 describes a simple experiment that is used to analyse in detail the clas-
sification strategy of the proposed ensemble. The classification performance
of the class switching ensemble algorithm is compared to that of Breiman’s
flipping ensemble algorithm, bagging and boosting in 15 datasets. Some of
these problems are synthetic and some are real-world (taken from the UCI
repository [19]). Finally, the conclusions of this research are summarised.

2 Switching Outputs

In Ref. [18], Breiman proposes to generate diverse classifiers by randomly
switching the class labels of the training dataset according to the transition
matrix

Pj←i = wPj for i 6= j

Pi←i = 1 − w(1 − Pi) ,
(1)

where Pj←i is the probability that an example with label i gets the label j, Pi is
the proportion of elements of class i in the training set, and w is proportional
to the switching rate (average fraction of switched examples),p,

w =
p

1 −
∑

j P 2
j

=
p

2
∑

j

∑

k>j PjPk

. (2)

This form of the transition matrix, Eq. (1), is chosen to maintain the class
proportions approximately constant.

In order for this method to work, the value of the switching rate p should be
small enough to ensure that the training error tends to zero as the size of the
ensemble grows. In a binary classification problem, the condition is

p < Pmin, (3)

3

where Pmin is the proportion of examples that belong to the minority class. The
inequality (3) ensures that, on average, the fraction of switched examples in the
minority class is smaller than 1/2. Switching rate values over this limit would
flip the class label of more than half of the minority class examples. Hence, the
minority feature space regions would be flooded with examples labelled as the
majority class and consequently these regions would be classified incorrectly
by the ensemble.

In this work we propose to generate ensembles of classifiers using different
perturbed versions of the training set. In each perturbed set, a fixed fraction
p of examples of the original training data is selected at random. The class
label of each of these examples is randomly switched to a different one. This
defines the following transition probability matrix

Pj←i = p/(K − 1) for i 6= j

Pi←i = 1 − p ,
(4)

where K is the number of classes. This label switching procedure produces
training sets whose class distribution is usually different from that of the
original training data. In fact, the class distribution of the perturbed set tends
to equalise with increasing p for the unbalanced sets.

In order to guarantee the convergence of the ensemble in the training set there
should be, for any given class, a majority of correctly labelled examples (i.e.
not switched). This condition is fulfilled on the training set (on average) if
Pj←i < Pi←i and according to Eq. (4) we have

p < (K − 1)/K, (5)

independently of the initial class distribution. Following this equation we de-
fine the maximum value of p

pmax = (K − 1)/K. (6)

It is also convenient to define the ratio of the class switching probability to its
maximum value

p̂ = p/pmax. (7)

Thus, for unbalance datasets, the proposed method increases the range of
allowed values of p, with respect to the class flipping method proposed by
Breiman [18]. This is a key factor in improving the generalisation capacity of
the ensemble, as will be shown in section 4.

4

In order for the algorithm to work efficiently we need to use a base learner that
manages to obtain a training error as low as possible. Note that a classifier
that achieves perfect classification (0 error rate) on the perturbed training set
exhibits an error rate in the original training set equal to the proportion of
switched examples (p). An unpruned decision tree grown until all data have
been separated fulfils this requirement. In fact, such decision tree always ob-
tains a 0-error tree provided that there are no training examples with identical
attributes values belonging to different classes in the perturbed set.

An interesting characteristic of the class-switching procedure is that the ran-
dom selection of examples creates classifiers that have statistically independent
errors and equal erring probability (Note that in all cases the same number
of examples are switched and that the base classifiers have nearly 0 error on
the perturbed sets) on the original training set. Hence, we can obtain the es-
timation of the training error independently of the learning task at hand. In
a binary classification problem the ensemble performance can be analysed in
terms of a Bernoulli process, where each classifier has a (1− p) probability of
correctly classifying a given training example. The decision of a given classi-
fier on a training example is, by construction, independent of that from the
other classifiers. Thus, the probability of having a number of ensembles giving
a correct classification is given by the binomial distribution. The ensemble
training error can be estimated as the probability of having more than half of
the classifiers misclassifying a given example

train error(M) =
M
∑

m=b1+M/2c







M

m





 pm(1 − p)M−m, (8)

where M is the number of classifiers in the ensemble (which is assumed to be
odd to avoid ties). Based on the binomial distribution we can also estimate
the margin curves for a class-switching ensemble on the training data for a
two-class problem as:

train margin(x) =
bM(x+1)/2c

∑

m=0







M

m





 pM−m(1 − p)m , (9)

where x is the classification margin, defined as the fraction of correct classifiers
minus the fraction of incorrect classifiers for the two-class problem [5]. For a
given example, the margin is equal to −1 when all committee members agree
on an incorrect classification and equal to 1 when all members agree on the
correct classification.

The curves corresponding to Eqs. (8) and (9) are depicted in top and bottom
plots of Fig. 1, respectively. In Fig. 1 (top plot) the training error estimation is

5

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 20 40 60 80 100 120 140 160 180 200

Er
ro

r

Number of classifiers (M)

p=0.4
p=0.3
p=0.2
p=0.1

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1
x

M=1001
M=101

M=11

Fig. 1. (Top plot) Training error estimation in a binary classification problem versus
ensemble size for ensembles with class switching rate p = 0.1 (dotted line), p = 0.2
(short trait line), p = 0.3 (long trait line) and p = 0.4 (solid line). (Bottom plot)
Margin curves estimations in a binary classification problem for ensembles with
class switching rate p = 0.4 for ensemble sizes 11(short trait line), 101(long trait
line) and 1001(solid line)

depicted for different values of p and for odd numbers of classifiers. Note that
all the error curves tend to 0 (since we are considering a binary classification
problem and the selected values of p are under 0.5). The plots show that
for higher values of p more classifiers are needed for the ensemble training
error to converge. Fig. 1 (bottom plot) shows the ensemble margin curves for
the training set, with p = 0.4 and ensembles composed of 11, 101 and 1001

6

classifiers, respectively. Observe that all curves are centred at x = 1 − 2p and
that, with increasing M all examples tend to have margin equal to 1 − 2p.

Equations (8) and (9) and plots in Fig. 1 are valid only for the training set.
Nonetheless, we expect to observe some characteristics of these curves in the
corresponding curves for the test set. In particular, the behaviour of the gen-
eralisation error rate depends on the value of p: Since the error on the test set
is usually higher than on the train set, the effective threshold for p should be
lower than the value given by Eq. (6). Below this value of p the error rate of
the ensemble decreases with increasing ensemble size. The size of the ensemble
needed to achieve convergence becomes larger as p approaches the threshold
from below.

3 A simple classification experiment

In order to gain insight into the workings of the class-switching ensemble in
comparison to other common ensemble procedures (bagging, boosting) we
analyse in detail a simple learning task: Consider a linearly separable bi-
nary classification problem on a two dimensional feature space, where the two
classes are separated by the line y = x. This diagonal boundary is difficult
to describe by a tree algorithm such as C4.5, that generates divisions only
parallel to the feature space axis. This limitation implies that C4.5 usually
finds poor separation boundaries for this kind of problems. The training set
consists of 300 random feature vectors uniformly distributed at random in the
unit square (x ∼ U [0, 1] and y ∼ U [0, 1]). Using this data, bagging, boosting
and class-switching (p = 0.4 and p = 0.2) ensembles of up to 1001 C4.5 trees
are generated. The values of the parameters used in the tree generation are
the same as those described in the experiments presented in section 4.

The performance of the different ensembles is evaluated on a test set consisting
of a 300×300 regular grid of points in the unit square. Fig. 3 depicts the classifi-
cation results for different stages of the process. The first row shows the results
using a single tree and the last row shows the ensembles using 1001 trees. Odd
number of trees are used to avoid draws in the voting process. This figure shows
that bagging and boosting converge faster than class-switching ensembles to
their asymptotic classification behaviour. The class-switching algorithm starts
rather poorly. In fact, a single classifier in this ensemble exhibits a classifica-
tion pattern that does not resemble the original one. For value p = 0.4 of
the class switching rate even when 101 classifiers are used the feature space
is not properly separated. A large number of classifiers (≥ 1000) is needed
to correctly define the boundary. This is coherent with Eq. (8), and further
reinforces the conjecture that a large number of classifiers is needed for con-
vergence. In a spite of the slow convergence, the final classification accuracy

7

Bagging Boosting class-switching class-switching

p = 0.2 p = 0.4

1
11

10
1

10
01

Fig. 2. Classification map for a perfectly separable linear problem for bagging, boost-
ing and class-switching ensembles (p = 0.2 and p = 0.4). The number of trees used
in each of the ensembles is marked on the left side of each line (1,11,101,1001 trees,
from top to bottom).

is better than bagging or boosting. Even more interesting than the final accu-
racy is the profile of its final boundary. Bagging and boosting produce class
boundaries that bear a strong resemblance to the boundaries produced by
C4.5. Class switching ensembles produce a more convoluted decision bound-
ary, whose shape is quite different from those generated by C4.5. This suggests
that the class-switching algorithm can lead to a significant bias reduction of
the base learner.

The origin of the differences in complexity of the boundaries can be traced
to the fact that bagging and boosting, and class-switching ensembles pose
different classification problems to the base learners. For each ensemble unit,
bagging and boosting generate a learning problem that has a clear relation
with the original problem. In fact, each of the classifiers in a bagging ensemble

8

Bagging Boosting class-switching class-switching

p = 0.2 p = 0.4

gr
ey

-s
ca

le
m

ap
co

n
to

u
r

m
ap

Fig. 3. Margin map for a perfectly separable linear problem for bagging, boosting
and class-switching (p = 0.2 and p = 0.4) ensembles using 1001 classifiers (see
details in the text)

is a reasonably good solution of the problem. Boosting is different in this re-
spect from bagging but still produces problems that are closely related to the
original one. In fact, as the size boosting ensemble grows, the importance of the
misclassified examples is increased. Thus, the base learner tends to focus on
solving the harder parts of the problem. By contrast, the class-switching algo-
rithm generates surrogate learning problems that can be quite different from
the original one (especially for high values of p), whose resemblance to the
original problem is only statistical: the decision boundary becomes defined
only asymptotically, as the number of classifiers becomes large.

Figure 3 shows the margin map of the final decision (M = 1001) for the differ-
ent ensembles (margin in the sense of votes difference (weighted or unweighted)
between the most voted class and the second most voted class instead of using
the margin based on the difference between the true class minus the incorrect
class as defined in [5]). The first row represents the value of the margin using
a raster of inverted grey-scale values map, where lighter grey values indicate
lower margin values. The second row plots the margin values as an isoline
map, i.e. each line represents locations in the feature space with equal margin
values. The true problem boundary (the diagonal y = x) is also depicted,
with a long trait line. Isolines for margins 0 (the ensemble decision boundary,
marked by darker lines in the plots), and 0.2, 0.6 and 0.8 are shown. In the
bagging and boosting ensembles, the isolines for values 0.2, 0.6 and 0.8 appear
in pairs (one line for each class) at locations that are further away from the de-
cision boundary as the margin value increases. In the class-switching ensemble
with p = 0.2 the pairs of 0.2 and 0.6 margin isolines appear. The pair of lines
for margin value 0.2 appear very near to the decision boundary, whereas for

9

margin value 0.6 these lines have a rather convoluted structure and fill up the
feature space. In the class-switching ensemble with p = 0.4 only the pair of 0.2
margin isolines appear. For this ensemble there are no points where the margin
is 0.6 or higher. The differences between margin maps in the various ensem-
bles are apparent in this figure: bagging generates large connected areas where
all classifiers agree and a ”narrow” uncertainty border. Boosting delineates a
more precise frontier at the expense of lower margins on zones adjacent to the
decision boundary (the uncertainty border region is broader). Both bagging
and boosting exhibit progressively higher margin values when moving to re-
gions that are further away from the boundary. The class-switching procedure
generates a more delocalised margin map. Asymptotically, as the number of
classifiers in the ensemble increases, the margin map consists in extended flat
regions with constant margin ≈ 1 − 2p separated by narrow boundaries of
lower margin values.

4 Experiments on UCI datasets

In order to evaluate the improvements in classification accuracy that can be
obtained with class-switching ensembles, we compare the performance of this
method with: C4.5, Breiman’s class flipping ensembles [18], boosting and bag-
ging. All ensemble methods are implemented using C4.5 Release 8 as the base
classifier. For C4.5, bagging and boosting we use the default options of the
C4.5 package. For class-switching and flipping ensembles we took away the ma-
jor improvement of Release 8 in relation to Release 7; that is, a MDL(Minimum
Description Length)-penalty term that is applied to continuous attributes.
Such a penalty generally produces better and smaller trees [20]. However, it
stops the growth of C4.5 trees before all pure node leafs are obtained. Hence,
it does not fulfil the requirement for class-switching ensembles, i.e. nearly zero
training error. We also set the minimum number of elements for a leaf to 1
and fully developed trees (i.e. no pruning) are used. This configuration is also
similar to Breiman’s implementation of class flipping ensembles [18] that used
unpruned CART trees [21].

The boosting variant implemented is the one described in [10], based on [7].
In this algorithm reweighting (instead of resampling) is used, as suggested in
[2], allowing all training examples to be included for the generation of every
ensemble unit. A minimum weight limit for the training examples of 10−8 is
set to avoid numeric underflow problems. The boosting process is continued
even when a base learner obtains an error over 0.5 or equal to 0. In such cases
the training set is substituted by a bootstrap sample from the original training
set with all weights set to 1. This strategy prevents Adaboost from stopping
too early. The last classifier is discarded if its error is over 0.5 and it is kept in
the ensemble with a weight equal to ln(1010) - equivalent to assigning a very

10

Table 1
Characteristics of the datasets used in the experiments

Dataset Train Test Attributes Classes Class distribution

Australian 500 190 14 2 383/307

Breast W. 500 199 9 2 458/241

Diabetes 468 300 8 2 500/268

German 600 400 20 2 700/300

Heart 170 100 13 2 150/120

Horse-Colic 244 124 21 2 232/136

Ionosphere 234 117 34 2 225/126

New-thyroid 140 75 5 3 150/35/30

Segment 210 2100 19 7 eq. distrib.

Threenorm 300 5000 20 2 eq. distrib.

Tic-tac-toe 600 358 9 2 626/332

Twonorm 300 5000 20 2 eq. distrib.

Vowel 600 390 10 11 eq. distrib.

Waveform 300 5000 21 3 eq. distrib.

Wine 100 78 13 3 71/59/48

small error (≈ 10−10) to the classifier - if its error is equal to 0. In 5 of the
studied datasets this last modification produced some differences that always
increased the average accuracy of boosting.

We have tested the implemented algorithms in 15 different machine learning
problems. Three of the sets are synthetic data sets (Threenorm, Twonorm
and Waveform) proposed by Breiman [22,21]. The remaining problems are in-
cluded in the UCI repository [19]: Australian credit, Breast Cancer Wisconsin,
Pima Indian Diabetes, German Credit, Heart, Horse Colic, Ionosphere, New-
Thyroid, Image Segmentation, Tic-tac-toe, Vowel and Wine. The datasets have
been selected in order to sample a variety of problems: real and synthetic data;
sets with different numbers of classes and attributes. Table 1 displays, for each
dataset, the number of examples used for training and testing, the number of
attributes, the number of classes and the number of examples for each class.
The proportions of the training set is about 2/3 of the total number of ex-
amples except for the synthetic sets and for the Image Segmentation set, in
which the training set size described in its documentation was used.

For each dataset 100 experiments were carried out. Each experiment involved
the following steps:

11

(1) Generate a stratified random partition of the data in training and testing
for the real sets and a random sampling for the synthetic datasets (see
Table 1 for sizes).

(2) Construct a C4.5 tree, and ensembles of 1000 trees using class-switching
and flipping (with p̂ values of: 1/5, 2/5, 3/5 and 4/5) and boosting and
bagging.

(3) Compute the error of the classifiers on the testing set to obtain an esti-
mate of the generalisation error.

Table 2 presents a summary of the average test errors obtained by C4.5 and
the different ensembles using 1000 trees. The lowest average test error for
every dataset is set in boldface and the second best is underlined. Standard
deviation are only shown for C4.5. Except for some values displayed (marked
with italics in the table), the standard deviations of the results are smaller
than those reported for C4.5. The class-switching ensemble produces nine best
results in 8 sets (2 × p̂ = 4/5, 5 × p̂ = 3/5 and two for p̂ = 2/5). Flipping
produces the best results in 4 sets (for 2× p̂ = 3/5 and 2× p̂ = 2/5). Boosting
produces the best results in the synthetic sets Threenorm and Twonorm and
in Tic-tac-toe. Bagging is better in the difficult sets Diabetes and Heart.

A summary of the overall performance of the studied algorithms is shown in
Table 3. This is displayed in form of win/draw/loss records, where the first
(second / third) numbers displayed in each cell correspond to the number
of sets in which the algorithm displayed in the first column on the left of
the table wins (draws / losses) with respect to the algorithm displayed in
the topmost row. For each column, the record with a higher wins − losses
value is highlighted in bold face, if positive. In this table we see that the
only algorithm that outperforms all the rest is class-switching together with
p̂ = 3/5. Moreover, class-switching with p̂ = 3/5 and p̂ = 2/5 are the only two
algorithm configurations that outperform boosting.

Figure 4 shows the dependence of the average train error (top plot) and test
error (bottom plot) on the ensemble size in class-switching ensembles for dif-
ferent values of p̂ in the Breast Cancer Wisconsin data set. The training error
curves shown on the top plot are similar to those on Fig. 1, and confirm the
analysis of the train error based on Eq. (8). Note, however, that the coinci-
dence is not exact: the train error curves for the Breast Cancer Wisconsin
dataset do not start for one classifier in the value of p. This is due to the fact
that the Breast Cancer Wisconsin set has several examples with equal feature
values, which cannot be separated if the class-switching algorithm changes the
class label of some (and not all) of these examples.

Table 2 and Fig. 4 confirm that for both the train error and the test error the
convergence of the error class-switching ensembles is related to p̂, the ratio
of the actual switching probability and the maximum switching probability,

12

Table 2. Average test error (in %) using 1000 classifiers for C4.5, class-switching, flipping, boosting and bagging. The average best result
for each problem is highlighted in bold type. The second best results are underlined. Means with standard deviation greater than that
reported for C4.5 are shown in italics

C4.5 class-switching (p̂ =) flipping (p̂ =) boosting bagging

4/5 3/5 2/5 1/5 4/5 3/5 2/5 1/5

Australian 14.3±2.2 14.8 13.0 13.0 13.5 20.8 13.6 13.0 13.6 13.4 13.3

Breast W. 5.4±1.4 3.0 3.1 3.1 3.6 34.4 7.1 3.8 3.8 3.2 3.9

Diabetes 27.0±2.6 25.7 25.6 25.4 25.8 34.7 29.2 26.2 25.7 26.1 24.6

German 28.9±2.2 26.7 25.0 25.1 26.8 30.0 29.9 26.7 26.3 25.5 25.7

Heart 23.6±3.5 22.4 21.2 21.7 22.8 29.0 22.1 21.8 23.1 19.5 19.1

Horse-colic 15.9±2.9 15.8 16.1 16.0 15.8 36.7 18.4 15.3 15.6 17.1 16.0

Ionosphere 10.9±2.8 8.1 6.9 6.2 6.3 35.9 18.7 7.0 6.3 6.4 7.5

New-thyroid 8.4±3.1 3.9 4.0 4.2 5.1 30.2 30.3 10.8 4.5 5.7 6.1

Segment 10.3±1.4 7.6 5.5 5.7 7.0 7.5 5.5 5.7 7.1 6.5 8.1

Threenorm 31.7±1.2 18.7 17.7 18.2 19.9 18.7 17.7 18.2 20.0 15.7 19.1

Tic-tac-toe 17.3±2.3 6.7 3.4 3.9 6.3 34.8 19.1 6.5 6.2 1.2 8.9

Twonorm 21.6±0.7 4.6 3.8 4.0 5.5 4.6 3.8 4.0 5.6 3.7 6.6

Vowel 26.5±2.4 4.9 4.7 6.1 8.4 5.0 4.6 6.0 8.4 7.5 13.2

Waveform 29.0±1.3 19.2 16.9 17.3 19.3 22.5 17.5 17.6 19.4 17.4 19.4

Wine 9.2±4.0 2.6 1.2 1.8 3.1 7.7 1.5 1.5 3.0 4.1 6.4

13

Table 3. Win/draw/loss records summary. For each column, the record with higher wins− losses is highlighted in bold face (if positive)

C4.5 class-switching flipping boosting bagging

p̂ = 4/5 p̂ = 3/5 p̂ = 2/5 p̂ = 1/5 p̂ = 4/5 p̂ = 3/5 p̂ = 2/5 p̂ = 1/5

C4.5 X 1/0/14 1/0/14 1/0/14 0/0/15 9/0/6 7/0/8 1/0/14 0/0/15 1/0/14 1/0/14

cl
as

s-
sw

it
ch

in
g p̂ = 4/5 14/0/1 X 3/0/12 4/0/11 10/1/4 12/2/1 7/0/8 4/1/10 8/1/6 6/0/9 10/0/5

p̂ = 3/5 14/0/1 12/0/3 X 10/2/3 13/0/2 15/0/0 11/3/1 13/1/1 13/0/2 10/0/5 12/0/3

p̂ = 2/5 14/0/1 11/0/4 3/2/10 X 14/0/1 14/0/1 10/0/5 8/4/3 14/0/1 11/0/4 12/1/2

p̂ = 1/5 15/0/0 4/1/10 2/0/13 1/0/14 X 12/0/3 8/0/7 5/0/10 7/2/6 5/0/10 10/0/5

fl
ip

p
in

g

p̂ = 4/5 6/0/9 1/2/12 0/0/15 1/0/14 3/0/12 X 1/0/14 1/0/14 3/0/12 1/0/14 4/0/11

p̂ = 3/5 8/0/7 8/0/7 1/3/11 5/0/10 7/0/8 14/0/1 X 5/1/9 7/1/7 3/0/12 6/0/9

p̂ = 2/5 14/0/1 10/1/4 1/1/13 3/4/8 10/0/5 14/0/1 9/1/5 X 9/1/5 5/0/10 11/0/4

p̂ = 1/5 15/0/0 6/1/8 2/0/13 1/0/14 6/2/7 12/0/3 7/1/7 5/1/9 X 5/0/10 9/1/5

boosting 14/0/1 9/0/6 5/0/10 4/0/11 10/0/5 14/0/1 12/0/3 10/0/5 10/0/5 X 11/0/4

bagging 14/0/1 5/0/10 3/0/12 2/1/12 5/0/10 11/0/4 9/0/6 4/0/11 5/1/9 4/0/11 X

14

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 20 40 60 80 100 120 140 160 180 200

Er
ro

r

Number of classifiers

p=0.4
p=0.3
p=0.2
p=0.1

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 100 200 300 400 500 600 700 800 900 1000

Er
ro

r

Number of classifiers

p=0.4
p=0.3
p=0.2
p=0.1

Fig. 4. Average train (top plot) and test (bottom plot) errors for the Breast Cancer
Wisconsin dataset

defined in Eq. (7) : Higher p̂ values result in slower convergence. In the Breast
Cancer Wisconsin set, for example, the class-switching ensemble with p̂ = 4/5
obtained the best accuracy, but it needed 200, 400 and 800 classifiers to arrive
to error rates equivalent to bagging, class-switching ensemble with p̂ = 1/5 and
boosting, respectively. Slight improvements can be obtained if more classifiers
are generated (see the bottom plot in Fig. 4). In some other sets (Threenorm,
Tic-tac-toe and Twonorm) the class-switching ensemble with p̂ = 4/5 can
produce better results if larger ensembles are generated (In Twonorm an error
of 3.8 is obtained when using 2000 trees and in Tic-tac-toe an error of 4.9 is
obtained for 5000 trees).

15

Table 4
Average number of base classifier (in %) with test error higher than pmax

class-switching

Dataset p̂ = 4/5 p̂ = 3/5

Australian 9.2 0.1

Breast W. 0.3 0.0

Diabetes 12.1 1.0

German 12.9 1.1

Heart 21.4 6.2

Horse-Colic 9.4 0.2

Ionosphere 12.1 0.5

New-thyroid 4.2 0.0

Segment 0.0 0.0

Threenorm 3.5 0.0

Tic-tac-toe 5.2 0.0

Twonorm 0.2 0.0

Vowel 0.0 0.0

Waveform 0.1 0.0

Wine 5.3 0.1

It is important to note that also the classification accuracy is related to p̂.
From Table 2 and Fig. 4 we see that higher values of p̂ tend to produce higher
accuracies. However, when using values of p̂ near to 1 (p̂ = 4/5), the class-
switching test errors are generally worse than p̂ = 3/5. This can be explained
by looking at generalisation errors of the generated individual classifiers. Table
4 presents the average number of classifiers that have generalisation errors
higher than pmax (i.e. those that impair the overall ensemble performance) for
class-switching ensembles with p̂ = 3/5 and p̂ = 4/5. In the German Credit
dataset, class-switching ensembles with p̂ = 4/5 have an average of 12.9%
of the classifiers with individual test error rate over 0.5 (even though the
ensemble has an average error rate of 26.7), whereas with p̂ = 3/5 this value
is reduced to 1.1% (producing an generalisation error of 25.0).

The flipping and class-switching algorithms produce very similar generalisa-
tion errors in the datasets with equal distributed classes. However, and as
expected from Eq. (3), using flipping together with p values that are above
the proportion of the minority class produces too many examples labelled
with the majority class in the feature space region where the minority class

16

Table 5
Average test errors for Threenorm using unbalance sets for class-switching/flipping
algorithms

p̂ = 4/5 p̂ = 3/5 p̂ = 2/5 p̂ = 1/5

Pmin = 0.5 18.7/18.7 17.7/17.7 18.2/18.2 19.9/20.0

Pmin = 0.4 18.9/37.8 17.9/23.8 17.9/19.8 19.5/19.6

Pmin = 0.3 18.0/30.0 17.1/29.6 17.3/22.7 18.0/19.1

Pmin = 0.2 15.1/20.0 14.6/20.0 14.4/19.9 14.9/17.0

Pmin = 0.1 9.7/10.0 9.6/10.0 9.6/10.0 9.6/10.0

examples are located. This misleads the base learning algorithm, which labels
these regions incorrectly. In Table 2 this effect can be observed for Pmin ≈ p
and Pmin ≤ p. In those cases the ensemble labels all the feature space as be-
longing to the majority class, producing test errors equal to the proportion of
the minority class.

Since the main error differences between our algorithm and Breiman’s occur
mainly when the datasets are unbalanced, we have carried out a detailed
comparison between both methods for the synthetic set Threenorm. We select
the Threenorm set because the results obtained by both algorithms are very
similar when a balanced dataset (approximately equal number of examples
from both classes) is used. Furthermore, using a synthetic set allows us to
modify the a priori class probabilities when generating the training and testing
sets. Both algorithms are tested using Pmin (i.e., the fraction of examples
belonging to the minority class) values of: 0.4, 0.3, 0.2 and 0.1. For each
value of Pmin we generated 10 training sets of 300 examples and one test
set composed of 5000 with the same class proportions. The average errors
for both algorithms in the test sets for different values of p̂ and Pmin are
shown in Table 4 together, for reference, with the results for the balance sets
(Pmin = 0.5) from Table 2. The results show that with decreasing Pmin the
range of available values of p for the flipping algorithm is reduced and its
generalisation capability is also reduced. Flipping and class-switching obtain
similar results for the balanced set. Nevertheless, it is significantly worse than
class-switching (1.9 error percentage points worse) when slightly unbalanced
sets are used (Pmin = 0.4), considering the best accuracy of each algorithm
across the different values of p̂. This difference increases for Pmin = 0.3 and
Pmin = 0.2 to 2.0 and 2.4 respectively. For Pmin = 0.1 the difference decreases
to 0.4 error percentage points. However, this last experiment configuration is
quite difficult since only 30 examples of the minority class are used.

17

5 Conclusions

In this article we show that randomly switching the class labels can be used
to construct ensembles with error accuracies better than bagging and com-
parable or better than boosting on several UCI datasets. This improvements
of classification are only reached for relatively high class switching rates and
large ensembles.

Randomising outputs as a method to generate ensembles of classifiers was
first proposed by Breiman in [18]. In this reference, the classification exper-
iments are carried out with ensembles of 100 classifiers, which are too small
to exhibit the method’s full potential. In this work, we have shown that fairly
large ensembles (with up to 1000 units) are needed to attain the asymptotic
ensemble error rate, especially for high class switching values (p). Contrary to
Breiman’s prescription, the probability of switching class label is kept constant
(i.e. independent of the original label and class distribution) for every training
example. This has the advantage that higher switching rates can be used for
unbalance datasets and, as the experiments show, better accuracies can be
produced. In balanced datasets, Breiman’s method and the class switching
ensembles presented here have comparable classification accuracies.

Another important issue studied in this article is the relation between the
switching rate parameter p with the accuracy and convergence of the ensemble.
Higher p values introduce more noise in the individual classification problems
that the base algorithm tackles. This means that, for higher p’s, every learner
represents a classification pattern that bears less resemblance to the original
problem, and that, as a consequence, larger ensembles are needed to capture
the regularities in the original unperturbed problem. Notwithstanding, far
from being a drawback, high p values produce more complex boundaries that
can produce better generalisation accuracy. There still exists an upper limit
for p, which is reached when the generated individual classifiers exhibit gen-
eralisation errors close to random guessing. The experiments carried out show
that class-switching ensembles with relative switching rates of 3/5 achieve the
best average performance on the tested datasets.

The simple procedure used for the generation of perturbed training sets allows
a statistical analysis of the ensemble training in terms of a Bernoulli process.
Provided that the base classifiers are sufficiently flexible to obtain a perfect
classification on the perturbed training sets, the learning curves displaying the
dependence of the training error on the size of the class-switching ensemble
can be described with a sum of binomial terms. Furthermore these curves
are independent of the learning problem, except in sets that contain several
examples characterised by the same feature vector.

18

Acknowledgements

This work has been supported by the Spanish ”Dirección General de Investi-
gación”, project TIC2001-0572-C02-02.

References

[1] Y. Freund, R. E. Schapire, A decision-theoretic generalization of on-line
learning and an application to boosting, in: Proc. 2nd European Conference
on Computational Learning Theory, 1995, pp. 23–37.

[2] J. Quinlan, Bagging, boosting, and C4.5, in: Proc. 13th National Conference
on Artificial Intelligence, Cambridge, MA, 1996, pp. 725–730.

[3] L. Breiman, Bagging predictors, Machine Learning 24 (2) (1996) 123–140.

[4] L. Breiman, Arcing classifiers, The Annals of Statistics 26 (3) (1998) 801–849.

[5] R. Schapire, Y. Freund, P. Bartlett, W. Lee, Boosting the margin: A new
explanation for the effectiveness of voting methods, The Annals of Statistics
12 (5) (1998) 1651–1686.

[6] M. Skurichina, R. P. W. Duin, Bagging for linear classifiers, Pattern Recognition
31 (7) (1998) 909–930.

[7] E. Bauer, R. Kohavi, An empirical comparison of voting classification
algorithms: Bagging, boosting, and variants, Machine Learning 36 (1-2) (1999)
105–139.

[8] A. J. C. Sharkey, Combining Artificial Neural Nets: Ensemble and Modular
Multi-Net Systems, Springer-Verlag, London, 1999.

[9] T. G. Dietterich, An experimental comparison of three methods for constructing
ensembles of decision trees: Bagging, boosting, and randomization, Machine
Learning 40 (2) (2000) 139–157.

[10] G. I. Webb, Multiboosting: A technique for combining boosting and wagging,
Machine Learning 40 (2) (2000) 159–196.

[11] G. Rätsch, T. Onoda, K.-R. Müller, Soft margins for AdaBoost, Machine
Learning 42 (3) (2001) 287–320.

[12] L. Breiman, Random forests, Machine Learning 45 (1) (2001) 5–32.

[13] T. Hothorn, B. Lausen, Double-bagging: combining classifiers by bootstrap
aggregation, Pattern Recognition 36 (6) (2003) 1303–1309.

[14] R. Bryll, R. Gutierrez-Osuna, F. Quek, Attribute bagging: improving accuracy
of classifier ensembles by using random feature subsets, Pattern Recognition
36 (6) (2003) 1291–1302.

19

[15] G. Mart́ınez-Muñoz, A. Suárez, Using all data to generate decision tree
ensembles, IEEE Transactions on Systems, Man and Cybernetics C 34 (4)
(2004) 393– 397.

[16] L. Breiman, Out-of-bag estimation, Tech. rep., Statistics Department,
University of California (1996).

[17] S. Gelfand, C. Ravishankar, E. Delp, An iterative growing and pruning
algorithm for classification tree design, IEEE Trans. Pattern Anal. Machine
Intell. 13 (2) (1991) 138–150.

[18] L. Breiman, Randomizing outputs to increase prediction accuracy, Machine
Learning 40 (3) (2000) 229–242.

[19] C. L. Blake, C. J. Merz, UCI repository of machine learning databases (1998).
URL http://www.ics.uci.edu/∼mlearn/MLRepository.html

[20] J. R. Quinlan, Improved use of continuous attributes in C4.5, Journal of
Artificial Intelligence Research 4 (1996) 77–90.

[21] L. Breiman, J. H. Friedman, R. A. Olshen, C. J. Stone, Classification and
Regression Trees, Chapman & Hall, New York, 1984.

[22] L. Breiman, Bias, variance, and arcing classifiers, Tech. Rep. 460, Statistics
Department, University of California (1996).

About the author - GONZALO MARTÍNEZ-MUÑOZ received the univer-
sity degree in Physics and the M.Sc degree in Computer Science from the
Universidad Autónoma de Madrid (UAM), Madrid, Spain, in 1995 and 2001,
respectively. He is currently pursuing the Ph.D. degree. Currently, he is Assis-
tant Professor of Object Oriented Programming and Experimental Algorith-
mics in the Computer Science Department of the Universidad Autónoma de
Madrid, Madrid, Spain. From 1996 to 2002, he was with Geosys SL, a Spanish
company specialized in geographical information systems and remote sensing,
as a Software Designer and Developer in the framework of research and devel-
opment projects. His research interests include pattern recognition, decision
trees, machine learning, and genetic algorithms.

About the author - ALBERTO SUÁREZ received the degree of Licenciado
in Chemistry from the Universidad Autónoma de Madrid, Madrid, Spain, in
1988, and the Ph.D. degree in physical chemistry from the Massachusetts
Institute of Technology (MIT), Cambridge, MA, in 1993. Currently, he is a
Professor in the Computer Science Department of the Universidad Autónoma
de Madrid, Madrid, Spain. He has held postdoctoral positions at Stanford
University, Stanford, CA, the Université Libre de Bruxelles, Brussels, Belgium,
and the Katholieke Universiteit Leuven, Leuven, Belgium. He has worked on
relaxation theory in condensed media, stochastic and thermodynamic theories
of nonequilibrium systems, lattice-gas automata, and decision tree induction.

20

His research interests include machine learning, computational finance, and
information processing in the presence of noise.

21

