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Abstract

A lot of alternatives and constraints have been proposed in order
to improve the Fisher criterion. But most of them are not linked to
the error rate, the primary interest in many applications of classifica-
tion. By introducing an upper bound for the error rate a criterion is
developed which can improve the classification performance.
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1 Introduction

Linear feature extraction is a valuable preprocessing step in a classification
problem. It can be useful for visualization of data or to avoid problems con-
nected with overfitting and unstable estimates as well to save storage space.
One of the most well-known selection criteria for a projection is the Fisher
criterion. It evaluates the between-class variance relative to the within-class
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variance. In the literature different constraints are introduced in order to get
the best value in the Fisher criterion (see for example [2]). But the Fisher
criterion is just an heuristic substitute for the main goal, minimal error rate.
So a good value in the criterion need not lead to a good error rate [4]. As
it is impossible in most cases to calculate the error rate directly an upper
bound in the projection space is used in order to obtain an improved feature
extraction criterion.

2 Criteria for Feature Extraction

Suppose that there are K known classes in a d dimensional problem with
mean µi, covariance matrix Σi and a priori probability πi of class i (i =
1, 2, . . . , K). Then let µ0 =

∑K
i=1 πiµi be the overall mean and

ΣB =
K∑

i=1

πi(µi − µ0)(µi − µ0)
T , (1)

ΣW =
K∑

i=1

πiΣi, (2)

ΣT = ΣB + ΣW (3)

are the within-class, between-class and total covariance matrices. The Fisher
criterion for a set of so-called discriminant vectors γj, j = 1, 2, . . . , r, is given
by

JF (γj) =
γT

j ΣBγj

γT
j ΣW γj

. (4)

Optimal γj are found by maximizing (4) under different constraints: The
constraint used in classical linear discriminant analysis (CDA) is

γT
i ΣW γj = 0, ∀i 6= j, i, j = 1, 2, . . . , r. (5)

In the feature extraction literature different alternatives to (5) are used (see
[2] and the references therein): For example the Foley-Sammon linear dis-
criminant analysis (FSDA) uses

γT
i γj = 0, ∀i 6= j, i, j = 1, 2, . . . , r (6)

or in uncorrelated linear discriminant analysis (UCDA) the constraint

γT
i ΣT γj, ∀i 6= j, i, j = 1, 2, . . . , r (7)
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is used. It is shown in [2] that with (5) and (7) the resulting vectors are
equivalent and that there are at most r ≤ min(d,K−1) different discriminant
vectors γ with JF (γ) > 0.

Allocation to the classes in a Linear Discriminant Analysis (LDA) is done
by

a(y) = arg max
i

πi|2πΣW |−0.5 exp(−0.5(y − µi)
T (ΣW )−1(y − µi)), (8)

for any feature vector y and corresponding means and covariances derived
from observed data x. In case of a Nearest Mean (NM) Classifier in (8) all
πi are set to πi = 1

K
and ΣW is set to ΣW = I.

However, (4) is not linked to the misclassification probability. Indeed,
maximization of (4) leads to maximization of scatter between the class means
which might lead to the problem that classes which are already well separated
are separated most in the projection while distances between classes which are
relatively close are minimized and so misclassification between these classes
is more frequent than necessary [3, p. 93].

3 Optimal Separation Criterion

As in linear feature extraction the generated features are sums of the original
features it can be shown that under mild assumptions [1] the new features
Y = XΓ with data matrix X ∈ IRn×d and feature extraction matrix Γ =
(γ1, γ2, · · · , γr) ∈ IRd×r are normally distributed. With Lemma 1 this can
be utilized to get an upper bound for the Bayes error rate for classification
problems after feature extraction. Let

δ(i, j)2 = (µi − µj)
T Σ−1

W (µi − µj) ∀i 6= j, i, j = 1, 2, . . . , K (9)

be the squared Mahalanobis distance between the classes i and j.

Lemma 1: Given normally distributed data with means µ1, . . . , µK , equal
covariance matrices Σ1 = · · · = ΣK , and equal a priori probabilities π1 =
· · · = πK the error rate (err) of (8) is bounded by

err ≤ K − 1

K

K∑
i=1

Φ

(
−1

2
min

j=1,...,K,j 6=i
δ(i, j)

)
, (10)

where Φ is the (cumulative) distribution function of the standard normal
distribution.
The proof of Lemma 1 is given in the appendix.
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The assumption of equal a priori probabilities is not necessary but enables
are more simple form of (10).

For multi-class problems this error bound can be calculated quite fast
without the use of resampling methods. Moreover it enables a new criterion
for feature extraction. Let

δ(i, j|Γ)2 :=
(
(µi − µj)

T Γ
) (

ΓT ΣW Γ
)−1 (

ΓT (µi − µj)
)

(11)

be the squared Mahalanobis distance in the projected space then the Optimal
Separation (OS) criterion can be defined as follows:

JOS(Γ) :=
K − 1

K

K∑
i=1

Φ

(
−1

2
min

j=1,...,K,j 6=i
δ(i, j|Γ)

)
. (12)

Note that in (12) it is no longer possible to calculate the discriminant vectors
stepwise like in Fisher’s criterion but the whole projection matrix Γ must be
evaluated. The projection matrix that minimize (12) is called the Optimal
Separation Projection (OSP).

Unfortunately in order to minimize (12) stochastic optimization methods
must be used as the derivative of JOS to Γ does not exist everywhere (caused
by the use of min(·)) and also there are local minima which must be overcome.
For example Simulated annealing can used to obtain the optimal Γ in terms
of (12) and to avoid the aforementioned problems.

4 Experimental Results

The data set consists of 13 economic variables with quarterly observations
from 1961/2 to 2002/4 of the German business cycle. The German business
cycle is classified in a four phase scheme: upswing, upper turning point,
downswing and lower turning point. The last complete business cycle ends in
1994/1, which is the last observation for training. The remaining observations
are used as test data in order to calculate the error rate. The training data
was used for checking the Fisher (4) as well as the Optimal Separation (12)
criterion where optimization of (4) is done under the CDA (5) as well as
under the FSDA (6) constraint. Table 1 shows the good performance of the
FSDA method for the Fisher criterion and also the bad performance of the
Optimal Separation Projection method in terms of the Fisher criterion but
the good performance especially for r = 2 in terms of the OS criterion. But
this is expected as the OSP method aims at minimizing this criterion.

In order to check the classification performance of these feature extraction
methods two different classifiers are used: Linear Discriminant Analysis (8)
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Fisher Criterion OS Criterion
r CDA FSDA OSP CDA FSDA OSP
1 91.04 91.04 87.60 0.89 0.89 0.88
2 59.63 76.16 44.06 0.40 0.45 0.33
3 17.09 44.16 17.09 0.25 0.44 0.25

Table 1: Optimal Values for Fisher and Optimal Separation criterion

LDA Classifier NM Classifier
r CDA FSDA OSP CDA FSDA OSP
1 0.26 0.26 0.26 0.67 0.67 0.56
2 0.41 0.33 0.15 0.48 0.45 0.26
3 0.22 0.33 0.22 0.19 0.44 0.19

Table 2: Error Rates for feature extraction methods with different classifiers

and Nearest Mean Classifier. One can see that with this data the OSP
method performs best in terms of the error rate - even though it is worst in
terms of the Fisher criterion. The best error rate which can be achieved is
0.15 with r = 2 with OSP and the LDA Classifier.

5 Conclusion

By the (reasonable) assumption of a normal distribution in the projected
space an upper bound for the misclassification error can be proofed. With
help of this error bound a criterion for feature extraction can be set up which
can improve the classification performance of the extracted features compared
to other feature extraction criteria used in pattern recognition. Still more
research about the closeness of this bound as well as improved methods for
calculation of the optimal feature extraction matrices are necessary.

Acknowledgments

This work has been supported by the Collaborative Research Center “Re-
duction of Complexity for Multivariate Data Structures” (SFB 475) of the
German Research Foundation (DFG).

5



A Proof of Lemma 1

To proof the Lemma first note that in the case of 2 classes the misclassification
probability under the assumptions of the Lemma is given by [3, page 61]:

Φ

(
−1

2

(
(µ1 − µ2)

T Σ−1
W (µ1 − µ2)

) 1
2

)
. (13)

So it is easy to verify that the probability of assigning an observation to class
i when in fact it comes from class j is

err(j|i) ≤ Φ

(
−1

2

(
(µi − µj)

T Σ−1
W (µi − µj)

) 1
2

)
. (14)

Let err(j) be the probability of assigning an object from class j to a class
i 6= j then with (14) and the Bonferroni inequality P (

⋃
i Ai) ≤

∑
i P (Ai) it

follows that

err(i) = P (
⋃
j 6=i

a(x) = j|class(x) = i)

≤
∑
j 6=i

P (a(x) = j|class(x) = i) =
∑
j 6=i

err(j|i)

≤
∑
j 6=i

max
j 6=i

err(j|i) = (K − 1) max
j 6=i

err(j|i)

≤ (K − 1)Φ

(
−1

2
min
j 6=i

δ(j, i)

)
.

The proof is finished by noting that err =
∑K

i=1 πierr(i) and πi = 1
K

.�
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