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Abstract Legendre orthogonal moments have been widely used in the field of 

image analysis. Because their computation by a direct method is very time expensive, 

recent efforts have been devoted to the reduction of computational complexity. 

Nevertheless, the existing algorithms are mainly focused on binary images. We 

propose here a new fast method for computing the Legendre moments, which is not 

only suitable for binary images but also for grey levels. We first set up the recurrence 

formula of one-dimensional (1D) Legendre moments by using the recursive property 

of Legendre polynomials. As a result, the 1D Legendre moments of order p, Lp = 

Lp(0), can be expressed as a linear combination of Lp-1(1) and Lp-2(0). Based on this 

relationship, the 1D Legendre moments Lp(0) is thus obtained from the array of L1(a) 

and L0(a) where a is an integer number less than p. To further decrease the 

computation complexity, an algorithm, in which no multiplication is required, is used 

to compute these quantities. The method is then extended to the calculation of the 

two-dimensional Legendre moments Lpq. We show that the proposed method is more 

efficient than the direct method. 

 

Keywords: Legendre Moments; Fast algorithm; Recurrence formula; Grey level 

images 
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1 Introduction 

 Since Hu introduced the moment invariants [1], moments and moment functions 

of image intensity values have been successfully and widely used in the field of image 

analysis, such as object recognition, object representation, edge detection [2]. 

Orthogonal moments (e.g. Legendre moment and Zernike moment) can be used to 

represent an image with the minimum amount of information redundancy [3]. Since 

the computation of orthogonal moments of a two-dimensional (2D) image by a direct 

method involves a significant amount of arithmetic operations, some fast algorithms 

have been developed to reduce the computational complexity. However, the existing 

methods for fast computation of Legendre moments are mainly focused on binary 

image [4-6]. Now the moments of a grey level image are also used in many 

applications, such as texture analysis [7], therefore, we propose a fast algorithm for 

computing the Legendre moments for grey level images. The principle is as follows. 

The recurrence formula of one-dimensional (1D) Legendre moments is firstly 

established by using the recursive property of Legendre polynomials. The 1D 

Legendre moments of order p, Lp = Lp(0), is expressed as a linear combination of 

Lp-1(1) and Lp-2(0). Based on this relationship, the 1D Legendre moments Lp(0) can 

thus be obtained from the array of L1(a) and L0(a) where a is an integer number less 

than p. An algorithm based on a systolic array in which no multiplication is required 

is used to compute these quantities. We propose then an extension of the method to 

the 2D Legendre moment Lpq computation.  

 The remainder of this paper is organized as follows. In Section 2, we first 
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describe a new approach for computing 1D Legendre moments for a 1D signal, and 

then extend the method to the 2D Legendre moment calculation. Section 3 gives the 

detailed analysis of the computational complexity and some experimental results. 

Section 4 provides some concluding remarks. 

2. Fast computation of 2D Legendre moments 

 The (p+q)th-order Legendre moment of an image with intensity function f(x, y) is 

defined by 
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where Pp(x) is pth order Legendre polynomial given by 
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 For a digital image of size N!N, Eq. (1) can be approximated by 
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with xi = (2i – N – 1)/(N – 1), yj = (2j – N – 1)/(N – 1). 

 The Legendre polynomial obeys the following recursive relation 
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with P0(x) = 1, P1(x) = x. 

 In the following, we present an algorithm for the fast calculation of the 2D 

Legendre moment for grey level images. For the sake of simplicity, let us first 

consider the computation of the 1D Legendre moments.  

 For a 1D discrete signal f(xi) 1 " i " N the 1D Legendre moment is given by 
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Let us now introduce the following notation  
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It can be easily seen that Lp = Lp(0). Thus, we turn to the fast computation of Lp(a) in 

the following. 

 Substitution of Eq. (4) into Eq. (6) yields 
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therefore, we have the following recurrence relation for p # 2 

!
"

#
$
%

&
'
''++= '' )(
32
1)1(12)( 21 aL

p
paL

p
paL ppp           (8) 

with 

   !
= "

=
"

=
N

i
Ni

a
i aG

N
xfx

N
aL

1
0 )(

1
1)(

1
1)(            (9) 

)1(
1

3)(
1

3)(
1

1
1 +

!
=

!
= "

=

+ aG
N

xfx
N

aL N

N

i
i

a
i             (10) 

!
=

=
N

i
i

a
iN xfxaG

1
)()(                (11) 

 The above discussion shows that the 1D Legendre moments Lp = Lp(0), for p # 2, 

can be deduced from the values of L0(a) and L1(a) where a is an integer less than p, 

L0(a) and L1(a) being obtained by GN(a). The calculation of Eq. (11) leads to 

distinguish two different cases: N odd and N even. 

(1) N = 2L + 1 
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  Since xi = (2i – N – 1)/(N – 1), we deduce from Eq. (11) that 
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Eq. (12) can be rewritten as 
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with 
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(2) N = 2L 

    Eq. (11) becomes 
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or 
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with 
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    We discuss, in the following two subsections, the way to efficiently calculate 

GN(a) from Eqs. (13) or (17), according to the different modalities of the 1D signal 

f(xi). 

 

2.1. f(xi) = 1, for i = 1, 2, …, N. 

 

    In this case, Eqs. (13) and (17) become 
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    The above equations show that to obtain the values of GN(a), we only need to 

calculate the following summation 
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    For the computation of Eq. (22), which is just the 1D geometric moment of order 

a of a ‘binary’ signal, we use the formulae proposed by Spiliotis and Mertzios [8] 
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and for a # 4, the recurrence formula 
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2. 2. f(xi) $ f(xj) for some i $ j     

 

   Eq. (17) can be written as 
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Here g3(xi) and g4(xi) are given by Eqs. (18) and (19), respectively. 

   It can be seen from Eqs. (13) and (25) that we need to calculate the summation of 

the form 
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   Note that SM(a) is the 1D geometric moment of order a of an arbitrary 1D signal. 
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Since many algorithms are available in the literature to speed up the computation of 

Eq. (28), we decided to choose the method proposed by Chan et al. [9]. Their method 

is able to efficiently compute the grey level image moments. It makes use of a systolic 

array for computing the moments in which no multiplication is required. We recently 

applied such a method to efficiently calculating the Zernike moments [10]. 

   Thus, the 1D Legendre moments Lp(0), for 0 " p " M (M denoting the maximal 

order we want to calculate), can be efficiently obtained using the previously presented 

algorithm. Fig. 1 shows the computation order of Lp(0) for p varied from 0 to 5. 

 

   Let us now describe the method for fast computation of the 2D Legendre moments 

Lpq. The double summation in Eq. (3) can be split into the following separate form 
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where Yiq is the qth-order row moment of row i given by     
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 These equations show that the computation of 2D Legendre moments of grey 

level images can be decomposed into two steps. First, the 1D Legendre moments Yiq, 

for 1" i " N and 0 " q " M, are computed by using the algorithm described in 

Subsections 2.1 and 2.2, according to the different image modalities of f(xi, yj). Then, 

the row moments Yiq are applied to compute the 2D Legendre moments Lpq. That is, 

after the first step, the 2D Legendre moments Lpq can be calculated as a 1D moments 
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by setting the image intensity function f(xi, yj) to the Yiq previously computed. The 

algorithm for computing the 2D Legendre moments is depicted in figure 2. It should 

be pointed out that such a strategy can also be realized in parallel. 

  

3. Computation complexity and experimental results 

  Let the image size be N!N pixels, and M the maximum order of Legendre 

moments to be calculated. The direct computation of Eq. (3) requires approximately 

M2N2/2 additions and multiplications, respectively. In the following, we give a 

detailed analysis of the computational complexity of our algorithm. 

We first briefly describe the computational complexity of the algorithm when 

applied to binary images. From Ref. [8], the computation of the geometrical moments 

up to the order M of a binary image with N!N pixels, requires approximately 4M 

power calculations, 2M2 multiplications, and M2 additions (note that these numbers 

are not dependent on N). The computation of the 2D Legendre moments Lpq, by using 

the recursive algorithm, needs O(NM3) additions and O(M3) multiplications. 

Therefore, the algorithm is very efficient in comparison with the direct method. 

The computational complexity of the method for grey level images takes into 

account the parity of N. 

 

(1) For odd value of N 
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Let us first consider the number of operations required in the computation of ith 

row moments Yiq (0 " q " M). Note that the functions g1(x) and g2(x) defined by Eqs. 

(14) and (15) are used for odd value of N. To obtain the values of Yiq, we must 

calculate GN(a) with Eq. (13) for 0 " a " M. This step needs only (M+1)2(N/2–1) 

additions. The computation of Yiq (for 0 " q " M) from the pre-calculated GN(a), 

requires M(M–1)/2 additions and 2M(M–1) multiplications. Therefore, the 

computation of N rows Yiq (for 1 " i " N) needs approximately M2(N2+N)/2 additions 

and 2M2N multiplications. 

When all Yiq, for 1 " i " N and 0 " q " M, are obtained, the 2D Legendre moments 

Lpq, for 0 " p+q " M, can be calculated in a similar way. The corresponding addition 

and multiplication numbers are M3N/12+M2N and 2M3/3+2M2. 

Accordingly, the overall computation makes use of M2N2/2+M3N/12 additions and 

2M2N+2M3/3 multiplications approximately. 

 

(2) For even value of N 

 

The functions h1(x) and h2(x), that are defined by Eqs. (26) and (27), will be used 

in the computation of GN(a). The only difference between case (2) and case (1) is that 

Eq. (25) is adopted instead of (13). The computation of Eq. (25) requires twice 

additions more than that is needed in Eq. (13). Thus, the total computational 

complexity is approximately M2N2+M3N/6 additions and 2M2N+2M3/3 

multiplications. 
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The computational complexities of the proposed algorithm and the direct method 

are summarized in Table 1. The displayed values show that the new algorithm uses a 

much fewer number of multiplications than the direct method, what consequently 

leads to a more efficient computation time. 

We illustrate the algorithm efficiency with two binary and grey level images of 

size 256!256, respectively (first column of Table 2). The first one displays a Chinese 

character while the second one shows some butterflies. In both cases, the 

reconstruction of the image was performed using the following relation 

!!
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The results are provided for different orders of the moments, and are shown in Table 

2. 

5. Conclusion 

 In this paper, a new fast algorithm for computing the 2D Legendre moments of 

grey level images has been presented. The proposed method has the following 

advantages: 

(1) The 1D Legendre moments can be obtained by a recurrence relation. Moreover, 

the initial value used in the iterative method can be calculated with additions 

only. 

(2) The 2D moment computation can be decomposed into two 1D moment 

calculation. 



 13 

(3) It does not require so many multiplications that as the direct method, leading thus 

to a better efficiency in terms of computational time. 

(4) The algorithm can be implemented in parallel. 
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Fig. 1. Computation process of Lp(0) with p from 0 to 5. Grey level boxes correspond 

to already computed coefficients and white boxes to coefficients that will be 

computed from those which appear in grey level boxes. 
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for i = 1 to N 

      computing L0(q) (0 " q " M-2) and L1(q) (0 " q " M-1) using Eqs. (9) and (10)  

   for q = 0 to M 

      computing Yiq for each row i of the image using Eq. (8) 

   endfor 

endfor 

for p = 0 to M 

      computing L0(a) (0 " a " M-p-2) and L1(a) (0 " a " M-p-1) using Eqs. (9) and 

(10) from pre-calculated Yiq 

   for q = 0 to M – p 

      computing the 2D Legendre moments Lpq using recursive method 

   endfor 

endfor 

   

Fig. 2. Algorithm for computing Lpq 
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Table 1 Comparison of the computational complexity for the two methods  

 
 
 

original 24=M  32=M  40=M  

    

    

 
Table 2 Results of reconstruction image for different order 24, 32, 40 

  Number of additions Number of multiplications 

N=256 
M=40 

direct method 
# M2N2/2 

56 426 496 
#  M2N2/2 
56 426 496 

our method 
# M2 N2+M3N/6 

109 735 680 
# 2NM2+2M3/3 

798 720 

N=255 
M=40 

direct method 
#  M2N2/2 
55 986 525 

#  M2N2/2 
55 986 525 

our method 
#  M2N 2/2+M3N/12  

54 010 530 
# 2NM2+2M3/3 

795 600 
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